Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-28 13:00:05
  • Article ID: 690735

Scientists Simulate a Sliver of the Universe to Tackle a Subatomic-Scale Physics Problem

Berkeley Lab-led research team simulates sliver of the universe to tackle subatomic-scale physics problem

  • Credit: Evan Berkowitz/Jülich Research Center, Lawrence Livermore National Laboratory

    In this illustration, the grid in the background represents the computational lattice that theoretical physicists used to calculate a particle property known as nucleon axial coupling. This property determines how a W boson (white wavy line) interacts with one of the quarks in a neutron (large transparent sphere in foreground), emitting an electron (large arrow) and antineutrino (dotted arrow) in a process called beta decay. This process transforms the neutron into a proton (distant transparent sphere).

  • Credit: Marilyn Chung/Lawrence Berkeley National Laboratory

    André Walker-Loud, a staff scientist at Berkeley Lab, led the study that calculated a property central to understanding the lifetime of neutrons.

  • Credit: Marilyn Chung/Lawrence Berkeley National Laboratory

    Chia Cheng “Jason” Chang, a Berkeley Lab postdoctoral researcher, was the lead author in a study describing the supercomputer-intensive calculation of a property known as the nucleon axial coupling.

  • Credit: Oak Ridge National Laboratory

    The Titan supercomputer.

  • Credit: Marilyn Chung/Lawrence Berkeley National Laboratory

    From left: David Brantley, André Walker-Loud, Pavlos Vranas, Henry Monge-Camacho, Thorsten Kurth, and Chia Cheng “Jason” Chang – pictured here at Berkeley Lab – participated in an international team that calculated the nucleon axial coupling, a property important to understanding the neutron lifetime.

Experiments that measure the lifetime of neutrons reveal a perplexing and unresolved discrepancy. While this lifetime has been measured to a precision within 1 percent using different techniques, apparent conflicts in the measurements offer the exciting possibility of learning about as-yet undiscovered physics.

Now, a team led by scientists in the Nuclear Science Division at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has enlisted powerful supercomputers to calculate a quantity known as the “nucleon axial coupling,” or gA – which is central to our understanding of a neutron’s lifetime – with an unprecedented precision. Their method offers a clear path to further improvements that may help to resolve the experimental discrepancy. 

To achieve their results, the researchers created a microscopic slice of a simulated universe to provide a window into the subatomic world. Their study was published online May 30 in the journal Nature.

The nucleon axial coupling is more exactly defined as the strength at which one component (known as the axial component) of the “weak current” of the Standard Model of particle physics couples to the neutron. The weak current is given by one of the four known fundamental forces of the universe and is responsible for radioactive beta decay – the process by which a neutron decays to a proton, an electron, and a neutrino.

In addition to measurements of the neutron lifetime, precise measurements of neutron beta decay are also used to probe new physics beyond the Standard Model. Nuclear physicists seek to resolve the lifetime discrepancy and augment with experimental results by determining gA more precisely.

The researchers turned to quantum chromodynamics (QCD), a cornerstone of the Standard Model that describes how quarks and gluons interact with each other. Quarks and gluons are the fundamental building blocks for larger particles, such as neutrons and protons. The dynamics of these interactions determine the mass of the neutron and proton, and also the value of gA.

But sorting through QCD’s inherent complexity to produce these quantities requires the aid of massive supercomputers. In the latest study, researchers applied a numeric simulation known as lattice QCD, which represents QCD on a finite grid.

While a type of mirror-flip symmetry in particle interactions called parity (like swapping your right and left hands) is respected by the interactions of QCD, and the axial component of the weak current flips parity – parity is not respected by nature (analogously, most of us are right-handed). And because nature breaks this symmetry, the value of gA can only be determined through experimental measurements or theoretical predictions with lattice QCD. 

The team’s new theoretical determination of gA is based on a simulation of a tiny piece of the universe – the size of a few neutrons in each direction. They simulated a neutron transitioning to a proton inside this tiny section of the universe, in order to predict what happens in nature.

The model universe contains one neutron amid a sea of quark-antiquark pairs that are bustling under the surface of the apparent emptiness of free space.

“Calculating gA was supposed to be one of the simple benchmark calculations that could be used to demonstrate that lattice QCD can be utilized for basic nuclear physics research, and for precision tests that look for new physics in nuclear physics backgrounds,” said André Walker-Loud, a staff scientist in Berkeley Lab’s Nuclear Science Division who led the new study. “It turned out to be an exceptionally difficult quantity to determine.”

This is because lattice QCD calculations are complicated by exceptionally noisy statistical results that had thwarted major progress in reducing uncertainties in previous gA calculations. Some researchers had previously estimated that it would require the next generation of the nation’s most advanced supercomputers to achieve a 2 percent precision for gA by around 2020.

The team participating in the latest study developed a way to improve their calculations of gA using an unconventional approach and supercomputers at Oak Ridge National Laboratory (Oak Ridge Lab) and Lawrence Livermore National Laboratory (Livermore Lab). The study involved scientists from more than a dozen institutions, including researchers from UC Berkeley and several other Department of Energy national labs.

Chia Cheng “Jason” Chang, the lead author of the publication and a postdoctoral researcher in Berkeley Lab’s Nuclear Science Division for the duration of this work, said, “Past calculations were all performed amidst this more noisy environment,” which clouded the results they were seeking. Chang has also joined the Interdisciplinary Theoretical and Mathematical Sciences Program at RIKEN in Japan as a research scientist.

Walker-Loud added, “We found a way to extract gA earlier in time, before the noise ‘explodes’ in your face.”

Chang said, “We now have a purely theoretical prediction of the lifetime of the neutron, and it is the first time we can predict the lifetime of the neutron to be consistent with experiments.”

“This was an intense 2 1/2-year project that only came together because of the great team of people working on it,” Walker-Loud said.

This latest calculation also places tighter constraints on a branch of physics theories that stretch beyond the Standard Model – constraints that exceed those set by powerful particle collider experiments at CERN’s Large Hadron Collider. But the calculations aren’t yet precise enough to determine if new physics have been hiding in the gA and neutron lifetime measurements.

Chang and Walker-Loud noted that the main limitation to improving upon the precision of their calculations is in supplying more computing power.

“We don’t have to change the technique we’re using to get the precision necessary,” Walker-Loud said.

The latest work builds upon decades of research and computational resources by the lattice QCD community. In particular, the research team relied upon QCD data generated by the MILC Collaboration; an open source software library for lattice QCD called Chroma, developed by the USQCD collaboration; and QUDA, a highly optimized open source software library for lattice QCD calculations.

The team drew heavily upon the power of Titan, a supercomputer at Oak Ridge Lab equipped with graphics processing units, or GPUs, in addition to more conventional central processing units, or CPUs. GPUs have evolved from their early use in accelerating video game graphics to current applications in evaluating large arrays for tackling complicated algorithms pertinent to many fields of science.

The axial coupling calculations used about 184 million “Titan hours” of computing power – it would take a single laptop computer with a large memory about 600,000 years to complete the same calculations.

As the researchers worked through their analysis of this massive set of numerical data, they realized that more refinements were needed to reduce the uncertainty in their calculations.

The team was assisted by the Oak Ridge Leadership Computing Facility staff to efficiently utilize their 64 million Titan-hour allocation, and they also turned to the Multiprogrammatic and Institutional Computing program at Livermore Lab, which gave them more computing time to resolve their calculations and reduce their uncertainty margin to just under 1 percent.

“Establishing a new way to calculate gA has been a huge rollercoaster,” Walker-Loud said.

With more statistics from more powerful supercomputers, the research team hopes to drive the uncertainty margin down to about 0.3 percent. “That’s where we can actually begin to discriminate between the results from the two different experimental methods of measuring the neutron lifetime,” Chang said. “That’s always the most exciting part: When the theory has something to say about the experiment.”

He added, “With improvements, we hope that we can calculate things that are difficult or even impossible to measure in experiments.”

Already, the team has applied for time on a next-generation supercomputer at Oak Ridge Lab called Summit, which would greatly speed up the calculations.

In addition to researchers at Berkeley Lab and UC Berkeley, the science team also included researchers from University of North Carolina, RIKEN BNL Research Center at Brookhaven National Laboratory, Lawrence Livermore National Laboratory, the Jülich Research Center in Germany, the University of Liverpool in the U.K., the College of William & Mary, Rutgers University, the University of Washington, the University of Glasgow in the U.K., NVIDIA Corp., and Thomas Jefferson National Accelerator Facility.

One of the study participants is a scientist at the National Energy Research Scientific Computing Center (NERSC). The Titan supercomputer is a part of the Oak Ridge Leadership Computing Facility (OLCF). NERSC and OLCF are DOE Office of Science User Facilities.

The work was supported by Laboratory Directed Research and Development programs at Berkeley Lab, the U.S. Department of Energy’s Office of Science, the Nuclear Physics Double Beta Decay Topical Collaboration, the DOE Early Career Award Program, the NVIDIA Corporation, the Joint Sino-German Research Projects of the German Research Foundation and National Natural Science Foundation of China, RIKEN in Japan, the Leverhulme Trust, the National Science Foundation’s Kavli Institute for Theoretical Physics, DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, and the Lawrence Livermore National Laboratory Multiprogrammatic and Institutional Computing program through a Tier 1 Grand Challenge award.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

How a Molecular Signal Helps Plant Cells Decide When to Make Oil

Scientists identify new details of how a sugar-signaling molecule helps regulate oil production in plant cells. The work could point to new ways to engineer plants to produce substantial amounts of oil for use as biofuels or in the production of other oil-based products.

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.


  • Filters

  • × Clear Filters

Berkeley Lab to Build an Advanced Quantum Computing Testbed

Lawrence Berkeley National Laboratory (Berkeley Lab) will receive $30 million over five years from the U.S. Department of Energy to build and operate an Advanced Quantum Testbed (AQT) allowing researchers to explore superconducting quantum processors to advance scientific research

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Friday September 21, 2018, 01:05 PM

"Model" students enjoy Argonne campus life

Argonne National Laboratory

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility





Showing results

0-4 Of 2215