DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-04-09 17:05:42
    • Article ID: 692483

    Fusion Research Ignites Innovation

    How technologies developed for fusion have taken on second lives in industry.

    • Credit: Princeton Plasma Physics Laboratory

      Princeton Plasma Physics Laboratory used the technology they developed to decommission the Tokamak Fusion Test Reactor to develop the Miniature Integrated Nuclear Detection System. The Tokamak Fusion Test Reactor, a former Office of Science user facility, ran for more than a decade before the lab decommissioned it in 1999.

    If you’re heating something to 100 million degrees — three times hotter than the core of the sun — oven mitts and aprons aren’t going to cut it. But researchers investigating how to produce fusion energy tackle this challenge every day. Fusion involves combining nuclei from two atoms into one, resulting in a small amount of mass transforming into a staggering amount of energy. Getting that reaction started and containing it requires some of the most high-tech equipment in science.

    While sustained fusion power is still years away, several technologies that scientists have developed to research it have already moved beyond the lab. From enabling smartphones to scanning for radioactive materials, technologies originally produced for fusion research supported by the Department of Energy’s (DOE) Office of Science are keeping us safe, secure, and connected.

    Enabling Improvements in Semiconductors

    When manufacturers needed to make electronics increasingly smaller in the 1990s, turning to fusion researchers may not have been the first thing on their minds. To make electronics smaller, faster, and more powerful, they needed to make semiconductors much smaller as well. The grooves and lines in semiconductors and other components needed to be at the atomic level, more than 100 times smaller than a human hair.

    But fusion researchers at DOE’s Oak Ridge National Laboratory (ORNL) knew something industry didn’t — how to control plasma. A separate state of matter from solids, liquids, or gases, plasma is a collection of particles with positive and negative electric charges. It occurs when high amounts of power run through a gas. As it’s chemically very reactive, it interacts readily with almost anything you put it in contact with.

    The semiconductor industry wanted to put materials into chambers filled with plasma and use the resulting chemical reactions to strip off or add atoms. In theory, this process would give them the level of control they needed to make miniscule grooves and lines.

    Unfortunately, the companies had unpredictable results when they used radio frequency (RF) waves to create the plasma.

    “Mother Nature was not kind. It turns out that there are very complex connections between different frequencies of voltages,” said Mark Kushner, a University of Michigan professor and director of the DOE Plasma Science Center there.

    Because testing the RF power levels by hand was too complex and time-consuming, they sought outside expertise.

    Fortunately, ORNL scientists had been using RF waves to heat up fuel for fusion for more than a decade.

    “The government’s here to help you; they can actually help you!” laughed ORNL’s Gary Bell, recalling how manufacturers felt. “We got a big kick out of that.”

    Partnering with a consortium of semiconductor manufacturers and suppliers, ORNL researchers evaluated a number of RF power delivery systems and controls. Using knowledge and tools from fusion research, ORNL scientists helped companies reposition components and reprogram controls. They also helped build testing equipment and developed technician training.

    “A lot of expertise that came in was developed through magnetic fusion energy research, through the people and understanding of plasma science,” said Amy Wendt, a professor at the University of Wisconsin-Madison and a member of DOE’s Fusion Energy Sciences Advisory Committee.

    Modifying how they produced semiconductors allowed manufacturers to fit more components onto computer chips than ever before. Those improvements and others using plasma made it possible for companies to build smaller, lighter, more efficient cell phones, tablets, and computers.

     

    Launching Jets From Aircraft Carriers

    While smartphone components are some of our smallest technologies, fusion research has also set the stage for improving some of the world’s biggest ones: aircraft carriers.

    In the 1990s, the Department of Defense (DOD) realized that they could do better than the steam and hydraulic-powered catapults on aircraft carriers in use at the time. So they released a request for proposals for a technology that could store a huge amount of energy and release it almost instantaneously — over and over again.

    Researchers at the DIII-D National Fusion Facility, an Office of Science user facility run by General Atomics (GA), were familiar with those challenges. In fact, they had to solve a similar problem back in 1978 before they could get a new iteration of their reactor up and running.

    “GA is in a unique position to drive technology innovations, given its long history of using scientific research results to develop cross-cutting practical applications,” said John Rawls, chief scientist at GA.

    To control the 100-million-degree plasma inside of it, the DIII-D reactor produces huge magnetic fields. The machine creates and maintains these fields by running tremendous amounts of energy through giant magnets. When GA scientists designed the machine with funding from the Office of Science’s predecessor in the 1970s, they developed the controls and inverters to release and control those bursts of energy.

    Based on that expertise and existing technology, DOD chose GA to develop the Electromagnetic Aircraft Launch System (EMALS). This system speeds an aircraft down the deck of a carrier using a linear induction motor coupled to the same type of inverters that provided such precise electrical and magnetic control at DIII-D. The performance of the induction motor can be finely controlled to deliver the precise amount of acceleration and velocity necessary to launch an aircraft of a specific size and weight. Because it’s much more precise than previous systems, EMALS minimizes the physical stress put on the aircraft, increasing their lifespans, and reducing costs.

    Today, the U.S. Navy is using EMALS on the USS Gerald R. Ford (CVN 78). It is also installing EMALS on all future Ford-class aircraft carriers.

    “We were able to advance numerous first-of-kind technologies, including the creation of the world’s most powerful linear motor and new inverter drives, to produce an integrated EMALS system that has a smaller footprint, greater efficiency, and requires less manning and maintenance to help save costs and improve reliability,” said Scott Forney, president of General Atomics Electromagnetic Systems. “To top it off, we offer a flexible design that has the potential for installation on other platforms requiring different catapult configurations and aircraft support.”    

     

    Developing New Materials for Extreme Conditions

    Fusion reactions create some of the most high-stress environments in the universe. The materials used in reactors must withstand staggeringly high pressures, temperatures, and radiation.

    “We’re taking materials outside their usual comfort zone,” said Steven Zinkle, a University of Tennessee professor with a joint appointment at ORNL.

    The plasma bombarding a fusion reactor’s walls can remove and re-deposit a single atom a billion times a year. Through it all, the walls need to stay tough, maintain stability, and absorb as little radiation as possible in a very stressful environment for building materials.

    “If you’re going to make a fusion reactor work, it’s all about the materials,” said Bell.

    To build a better reactor, ORNL researchers helped develop a new type of stainless steel that could resist temperatures up to 1560 degrees F.

    It turns out that fusion researchers weren’t the only ones who needed steel that could withstand extremely high temperatures. Because advanced diesel engines run hotter than conventional ones, they needed advanced materials to match. ORNL’s materials group realized that this new steel could meet that challenge. After the Office of Science’s fusion group completed the basic research, DOE’s Vehicle Technologies Office took it over, supporting an agreement between ORNL and equipment manufacturer Caterpillar to adapt the material for vehicles. In 2007, Caterpillar started using it in all of their heavy-duty highway truck engines. Since then, the material has generated millions of dollars of revenue.

    Even the best steel isn’t tough enough for fusion reactors’ inner walls. To provide further protection, ORNL developed radiation-tolerant silicon carbide ceramic composites. These composites can survive temperatures of up to 2700 degrees F.

    Recognizing the potential of this material, NASA and other agencies supported further design and processing research on these composites. In rocket nozzles, thrusters, gas turbines, and even conventional nuclear reactors, this material can now simplify components and increase efficiency.

    While national laboratories often develop these innovative materials, they also provide equipment and expertise that enable private companies to do so as well. Using tools developed for fusion research at DOE’s Princeton Plasma Physics Laboratory (PPPL), Lenore Rasmussen found a way to use plasma to improve the attachment of her Synthetic Muscle™ technology to metal electrodes. She also used the laboratory’s resources to test the material’s resistance to extreme temperatures and radiation. Since then, NASA has tested how well the material resists radiation on the International Space Station. Rasmussen is now working to commercialize the technology. In the future, companies may use it in prosthetic limbs and robotics.

     

    Detecting Radioactive Materials for Security

    Building a fusion reactor is hard enough. Retiring it can be even tougher. Charles Gentile and his colleagues at PPPL faced this dilemma in 1999. They needed to decommission the lab’s Tokamak Fusion Test Reactor that had been running for more than a decade.

    Staff first needed to identify radioactive elements in the vacuum vessel, the container that housed the fusion reactions. So they created a portable detection unit to collect data, as well as software to process that data. After they finished disassembling the reactor, the technology sat on the shelf.

    But in 2001, they saw the opportunity for their invention to have a second life. The federal government had put out a call for technologies that could have applications in homeland security. The team determined that their device had the potential to accurately identify in real time radionuclides that might be used in “dirty” bombs. With a $400,000 grant from the U.S. Army, PPPL staff adapted their technology. They revised it so it could run in any weather, be used by non-nuclear scientists, and detect a wider array of radioactive substances.

    Now, the Miniature Integrated Nuclear Detection System is a combination hardware and software system that’s the size of a thermos. In one second, it can sense one-billionth of the material needed to build a credible dirty bomb. It can scan moving vehicles, luggage, packages, and cargo for more than 20 different types of radioactive substances. So far, security firms have used it at a major bus and commuter rail center as well as major U.S. ports. 

    As fusion technology advances, the work that goes into it will continue to yield unexpected benefits.

    As Gentile said, “It’s nice that we do have these technologies that come out of the laboratory that can help people in other areas.”

     

    The Office of Science is the single largest supporter of basic energy research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit https://science.energy.gov.

    Shannon Brescher Shea is a senior writer/editor in the Office of Science, shannon.shea@science.doe.gov.

    X
    X
    X
    • Filters

    • × Clear Filters

    Seeing a Salt Solution's Structure Supports One Hypothesis About How Minerals Form

    Oak Ridge National Laboratory scientists used neutrons, isotopes and simulations to "see" the atomic structure of a saturated solution and found evidence supporting one of two competing hypotheses about how ions come together to form minerals.

    New PMLD Technique Improves Tools to Form Organic Multilayers

    Researchers have developed a new class of molecular layer deposition chemistry that paves the way for a new photoactivated molecular layer deposition technique. They report that their new method will expand the tool kit for forming covalently bound organic multilayers at surfaces. These emerging deposition techniques have enabled engineers to produce organic thin films with improved conformality. Richard Closser, Stanford University, will present the findings at the AVS 65th International Symposium and Exhibition, Oct. 21-26, 2018.

    Spotlighting Differences in Closely-Related Species

    Aspergillus fungi play roles in fields including bioenergy, health, and biotechnology. In Nature Genetics, a team led by scientists at the Technical University of Denmark, the DOE Joint Genome Institute, and the Joint Bioenergy Institute, present the first large analysis of an Aspergillus fungal subgroup, section Nigri.

    Researchers switch material from one state to another with a single flash of light

    Scientists from the Department of Energy's SLAC National Accelerator Laboratory and the Massachusetts Institute of Technology have demonstrated a surprisingly simple way of flipping a material from one state into another, and then back again, with single flashes of laser light.

    The Stories Behind the Science: How Does the Ocean's Saltiness Affect Tropical Storms?

    Two researchers with personal experience of hurricanes set out to investigate the role of an underestimated factor in storm's strength - salinity. They found that salinity plays a larger role than anyone thought, including them.

    Surprise finding: Discovering a previously unknown role for a source of magnetic fields

    Feature describes unexpected discovery of a role the process that seeds magnetic fields plays in mediating a phenomenon that occurs throughout the universe and can disrupt cell phone service and knock out power grids on Earth.

    Genetic behavior reveals cause of death in poplars essential to ecosystems, industry

    Scientists studying a valuable, but vulnerable, species of poplar have identified the genetic mechanism responsible for the species' inability to resist a pervasive and deadly disease. Their finding could lead to more successful hybrid poplar varieties for increased biofuels and forestry production and protect native trees against infection.

    Pushing the (Extra Cold) Frontiers of Superconducting Science

    Ames Laboratory has developed a method to measure magnetic properties of superconducting and magnetic materials that exhibit unusual quantum behavior at very low temperatures in high magnetic fields.

    Scientists Find Unusual Behavior in Topological Material

    Argonne scientists have identified a new class of topological materials made by inserting transition metal atoms into the atomic lattice of a well-known two-dimensional material.

    Wind Farms and Reducing Hurricane Precipitation

    New research reveals an unexpected benefit of large-scale offshore wind farms: the ability to lessen precipitation from hurricanes.


    • Filters

    • × Clear Filters

    Physicist Takes Cues from Artificial Intelligence

    In the world of computing, there's a groundswell of excitement for what is perceived as the impending revolution in artificial intelligence. Like the industrial revolution in the 19th century and the digital revolution in the 20th, the AI revolution is expected to change the way we live and work. Now, Cristiano Fanelli aims to bring the AI revolution to nuclear physics.

    Engineering professor receives Department of Energy grant

    New Mexico State University Department of Civil Engineering Assistant Professor Ehsan Dehghan Niri has received a United States Department of Energy grant. This is a three-year award for $400,000 and is a collaboration with Arizona State University.

    Argonne and Capstone receive funding to advance thermal energy storage technology

    The U.S. Department of Energy's (DOE) Argonne National Laboratory and Capstone Turbine Corp. have received $380,000 in DOE Technology Commercialization Funding to refine Argonne's high-efficiency, fast charging/discharging latent heat thermal energy storage system (TESS) for use in building applications and process/manufacturing industries.

    AVS and AIP Publishing Expand Partnership to Launch AVS Quantum Science

    AIP Publishing and AVS: Science and Technology of Materials, Interfaces, and Processing (AVS) today announced an agreement to publish AVS Quantum Science, a new online interdisciplinary journal. The announcement coincides with the AVS 65th International Symposium & Exhibition in Long Beach, California, from October 21-26, 2018.

    Prototype Solar Energy, Battery Systems to Fuel Commercialization

    Designing, building and testing prototype systems that show how renewable energy can power devices, such as a weather and soil sensor station, can help bridge the gap between basic science research and commercialization.

    Argonne to Advance High Performance Computing in Manufacturing

    Argonne awarded funding to partner with Industry to advance the use of high performance computing in manufacturing.

    "Invisible Glass" Wins 2018 Create the Future Design Contest Grand Prize

    Scientists from the Center for Functional Nanomaterials developed a technique for making nonreflecting glass, silicon, and plastic surfaces.

    Missouri S&T researchers win multimillion dollar grant to build fast-charging stations for electric cars

    Researchers from Missouri S&T and three private companies will combine their expertise to create charging stations for electric vehicles that could charge a car in less than 10 minutes - matching the time it takes to fill up a conventional vehicle with gasoline."The big problem with electric vehicles is range, and it's not so much range as range anxiety.

    Making batteries store more energy, last longer

    A new solid polymer electrolyte may help make cell phone batteries store more energy and last longer.

    Three Brookhaven Lab Scientists Named Fellows of American Physical Society

    The American Physical Society (APS), the world's largest physics organization, has elected three scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory as 2018 APS fellows.


    • Filters

    • × Clear Filters

    Cryocooler Cools an Accelerator Cavity

    Researchers demonstrated cryogen-free operation of a superconducting radio-frequency cavity that might ease barriers to its use in societal applications.

    Shining Light on the Separation of Rare Earth Metals

    New studies identify key molecular characteristics to potentially separate rare earth metals cleanly and efficiently with light.

    Placing Atoms for Optimum Catalysts

    Precise positioning of oxygens could help engineer faster, more efficient energy-relevant chemical transformations.

    How to Make Soot and Stardust

    Scientists unlock mystery that could help reduce emissions of fine particles from combustion engines and other sources.

    Breaking the Symmetry Between Fundamental Forces

    Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

    Water Plays Unexpected Role in Forming Minerals

    Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

    Heavy Particles Get Caught Up in the Flow

    First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

    Seeing Between the Atoms

    New detector enables electron microscope imaging at record-breaking resolution.

    Scaling Up Single-Crystal Graphene

    New method can make films of atomically thin carbon that are over a foot long.

    Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

    U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.


    Spotlight

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Tuesday March 28, 2017, 12:05 PM

    Champions in Science: Profile of Jenica Jacobi

    Department of Energy, Office of Science

    Friday March 24, 2017, 10:40 AM

    Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

    Brookhaven National Laboratory

    Wednesday February 15, 2017, 04:05 PM

    Middle Schoolers Test Their Knowledge at Science Bowl Competition

    Argonne National Laboratory





    Showing results

    0-4 Of 2215