Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-01 11:05:29
  • Article ID: 693788

Scientists Find a New Way to Make Novel Materials by 'Un-Squeezing'

Like turning a snowball back into fluffy snow, a new technique turns high-density materials into a lower-density one by applying the chemical equivalent of 'negative pressure.'

  • Credit: Matt Beardsley/SLAC National Accelerator Laboratory

    SLAC staff scientists Laura Schelhas and Kevin Stone at an experimental station at the Stanford Synchrotron Radiation Lightsource, where they used X-rays to measure the structure of a novel ‘negative pressure’ material created at NREL.

  • Credit: (DOI: 10.1126/sciadv.aaq1442)

    A team led by scientists at NREL demonstrated a way to use “negative pressure” to combine two dense materials into an alloy (right) with a much lower density, as if turning a snowball back into fluffy snow. The new alloy also has much different properties than either of its parents. The spheres represent atoms of manganese (blue), selenium (red) and tellurium (gold).

Some materials can morph into multiple crystal structures with very different properties. For instance, squeezing a soft form of carbon produces diamond, a harder and more brilliant form of carbon. The Kurt Vonnegut novel “Cat’s Cradle” featured ice-nine, a fictional form of water with a much higher melting point than regular ice that threatened to irreversibly freeze all the water on Earth.

These materials are called polymorphs, and they’re commonly made by applying pressure, or squeezing. Scientists looking for new materials would also like to do the opposite – apply “negative pressure” to stretch a material’s crystal structure into a new configuration. In the past, this approach seemed to require negative pressures that are difficult if not impossible to achieve in the lab, plus it risked pulling the material apart.

Now researchers at the Department of Energy’s National Renewable Energy Laboratory (NREL) have found a way to create the equivalent of negative pressure by mixing two materials together under just the right conditions to make an alloy with an airier and entirely different crystal structure and unique properties.

X-ray measurements at DOE’s SLAC National Accelerator Laboratory confirmed that they have succeeded. Their new alloy has more space between its atoms then either of its parent materials, as if it had been stretched out. Unlike its parents, the new material is piezoelectric – able to generate an electric charge in response to applied mechanical stress. This may be important for use in sensors and actuators.

Published in Science Advancesthe paper reporting their findings contains both the theoretical understanding and experimental proof of concept that show how such novel low-density materials can be made.

“Creating the negative pressure conditions in alloys required counterintuitive thinking, and maybe that’s why this has not been pointed out before,” said Andriy Zakutayev, an NREL scientist and a lead author of the new paper.

“It’s possible to apply positive pressure to the material by squeezing it, but it’s really difficult to un-squeeze the material,” he said. “Think about it this way: you can pack a snowball out of snow, but you can’t turn a dense snowball back into fluffy snow.”

Pioneering Work on Mismatched Materials

The experiment builds on pioneering work led by NREL on mixing compounds with atomic structures that didn’t match.

As surely as water flows downhill, a chemical reaction will take the path of least resistance, proceeding in a way that consumes the least energy. Mixing two materials with high-density structures takes a lot of energy; but if you could nudge the reaction in the direction of creating a low-density end product whose atoms were farther apart, it would require a lot less energy, the researchers theorized. It would be the equivalent of making a material under negative pressure.

They tested this hypothesis by mixing high-density forms of manganese selenide and manganese telluride that have different crystal structures – one resembling rock salt, the other the mineral nickeline. To combine the two, they used a technique called sputtering in which fine sprays of atoms were freed from the surfaces of both starting materials and deposited as a thin film on a hot surface, where the new alloy crystallized and grew, said SLAC associate staff scientist Laura Schelhas. She conducted X-ray measurements of the new alloy at the lab’s Stanford Synchrotron Radiation Lightsource (SSRL) with staff scientist Kevin Stone. The alloy, it turned out, had the crystal structure of yet another mineral, wurtzite.

“You can use this alloying approach to make different, never-before-seen materials with interesting properties,” Schelhas said. “For instance, this one becomes piezoelectric: When you apply a voltage across the material it actually stretches and gets bigger. And the opposite also happens: If you push on it, it produces an electric charge. These piezoelectric materials are used in a lot of places – including some airbags, where the pressure from getting hit in a collision creates a little bit of electric charge that sets the airbag off ­– and the material created here was entirely new.”

Aaron Holder, an NREL researcher and assistant professor at the University of Colorado Boulder, said, “The properties of this new alloy could lead to its use as a contact layer for solar cells, or for future magnetic memory, thin film transistors, or thermoelectric devices. But how we made it is even more promising: Finding new routes to synthesize materials that nature cannot make would catalyze progress towards next-generation technologies.”

SSRL is a DOE Office of Science user facility. Other collaborators on the research came from NREL, SLAC and the University of Connecticut. The research was funded by the DOE Office of Science as part of the Energy Frontier Research Center’s Center for Next Generation of Materials Design.

This article is partially based on an article prepared by NREL.

 


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information please visit slac.stanford.edu.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

X
X
X
  • Filters

  • × Clear Filters

No Longer Whistling in the Dark: Scientists Uncover a Little-Understood Source of Waves Generated Throughout the Universe

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and other laboratories, using data from a NASA four-satellite mission that is studying reconnection, have developed a method for identifying the source of waves that help satellites determine their location in space.

New biofuel production system powered by a community of algae and fungi

MSU scientists have a new proof of concept for a biofuel production platform that uses two species of marine algae and soil fungi. It lowers cultivation and harvesting costs and increases productivity, factors that currently hold back biofuels from being widely adopted.

Multimodal Imaging Shows Strain Can Drive Chemistry in a Photovoltaic Material

A unique combination of imaging tools and atomic-level simulations has allowed a team led by the Department of Energy's Oak Ridge National Laboratory to solve a longstanding debate about the properties of a promising material that can harvest energy from light.

Study of tiny vortices could lead to new self-healing materials, other advances

Argonne scientists hope that tiny vortices, driven by various magnetic fields, will be able to move microscopic particles.

How a Molecular Signal Helps Plant Cells Decide When to Make Oil

Scientists identify new details of how a sugar-signaling molecule helps regulate oil production in plant cells. The work could point to new ways to engineer plants to produce substantial amounts of oil for use as biofuels or in the production of other oil-based products.

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.


  • Filters

  • × Clear Filters

Department of Energy Announces $218 Million for Quantum Information Science

The U.S. Department of Energy (DOE) announced $218 million in funding for 85 research awards in the important emerging field of Quantum Information Science (QIS).

Energy Secretary awards researchers for global threat reduction

Seven employees from the U.S. Department of Energy's (DOE) Argonne National Laboratory were among those presented with a Secretary of Energy Achievement Award at the Secretary's Honors Awards ceremony in Washington, D.C., on August 29.

University of Minnesota to lead $5.3 million federal grant to improve electronic circuit design

The University of Minnesota announced today that it has received a four-year, $5.3 million grant from the Defense Advanced Research Projects Agency (DARPA), an agency of the U.S. Department of Defense, to lead an effort that could spark the next wave of U.S. semiconductor innovation and broaden the competitive field for circuit design.

Berkeley Lab to Build an Advanced Quantum Computing Testbed

Lawrence Berkeley National Laboratory (Berkeley Lab) will receive $30 million over five years from the U.S. Department of Energy to build and operate an Advanced Quantum Testbed (AQT) allowing researchers to explore superconducting quantum processors to advance scientific research

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Friday September 21, 2018, 01:05 PM

"Model" students enjoy Argonne campus life

Argonne National Laboratory

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility





Showing results

0-4 Of 2215