Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-09 15:55:17
  • Article ID: 694302

NASA Spacecraft Finds New Type of Magnetic Explosion

Discovery is important to understanding the phenomena's potential impact on astronauts in space, satellites and electrical power industries

  • Credit: NASA’s Goddard Space Flight Center

    Earth is surrounded by a protective magnetic environment — the magnetosphere —shown here in blue, which deflects a supersonic stream of charged particles from the Sun, known as the solar wind. As the particles flow around the Earth’s magnetosphere, it forms a highly turbulent boundary layer called the magnetosheath, shown in yellow. Scientists, like those involved with NASA’s Magnetospheric Multiscale mission, are studying this turbulent region to help us learn more about our dynamic space environment.

  • Credit: Courtesy of Michael Shay

    University of Delaware Professors William Matthaeus (right) and Michael Shay (left) were at Cape Canaveral, Fla., for the launch of NASA’s Magnetospheric Multiscale (MMS) mission. Both are part of the team analyzing data gathered by instruments on the mission’s four spacecraft.

Four NASA spacecraft have observed magnetic reconnection in a turbulent region of the Earth's outer atmosphere known as the magnetosheath, the planet's first line of defense against the intensity of the solar wind. The new insights could help us understand how such phenomena affect Earth's atmosphere because of the potential impact on astronauts in space, satellites and electrical power industries.

Frequent flyers know a thing or two about turbulence--the jarring, sometimes-terrifying change in air currents that can make you think your plane has been put into a giant spin cycle.

Turbulence happens in space, too, in the plasma that surrounds our planet and fills much of what looks like the void beyond.

But amazing things happen when turbulence occurs in magnetic fields, such as those that wrap around Planet Earth. In an article published Wednesday in Nature, researchers including University of Delaware Professor Michael Shay report on surprising new information from NASA's Magnetospheric Multiscale (MMS) mission. The MMS was launched from the Cape Canaveral Air Force Station Space Launch Complex on March 12, 2015.

The MMS was commissioned to study magnetic reconnection, a common event throughout the universe that occurs when magnetic fields change by connecting and then breaking apart. In the magnetic fields that hug Earth--a region known as the magnetosphere--scientists have been able to observe the process and the jet streams of ionized hydrogen atoms that shoot off from it.

It's important to understand how such phenomena affect Earth's atmosphere because of the potential impact on astronauts in space, satellites and electrical power industries as well as the radio communications, GPS devices and other systems that depend on them.

Now, for the first time, the four spacecraft of the MMS have observed magnetic reconnection in a turbulent region of Earth's outer atmosphere known as the magnetosheath, the planet's first line of defense against the intensity of the solar wind. There, they found a new breed of magnetic reconnection--electron magnetic reconnection--that is much different than the kind that happens in the much less turbulent magnetosphere closer to Earth.

The new insights could help us understand properties of the universe far beyond our planet.

"Turbulence occurs everywhere in space--on the sun, in the solar wind, the interstellar medium, dynamos, around stars, in active galactic nuclei jets, supernova remnant shocks and more," Shay said.

Shay has been studying magnetic reconnection in turbulence for NASA and helped Tai Phan, lead author of the Nature article, analyze the MMS data he collected.

"The turbulence in the magnetosheath contains a lot of magnetic energy," said Phan, senior fellow in the Space Sciences Laboratory at the University of California at Berkeley. "People have been debating how this energy is dissipated and magnetic reconnection is one of the possible processes."

The energy comes directly from the sun's corona, a blazing hot environment that shoots particles out in all directions at speeds around 1 million miles per hour. This is the forceful solar wind. When its power hits the magnetosheath, waves of plasma chaos roll through it.
Scientists don't know yet how all of that turbulent energy is dissipated.

But this new discovery--electron magnetic reconnection--may help them learn more.

The MMS mission has four spacecraft flying in formation about four miles apart, gathering data as they go. Its array of instruments gave researchers one of their first opportunities to search for reconnection in the magnetosheath.

They got what they hoped to get--evidence that magnetic reconnection was happening even in that chaotic turbulence. But in the process, they discovered magnetic reconnection here works much differently than the kind observed elsewhere. Instead of huge jets of ionized hydrogen atoms, triggered by many collisions of magnetic fields, this form of magnetic reconnection shoots off much tinier electron jets with very few collisions occurring, Shay said.

This has never been recognized before, partly because no instruments could capture the process.

The relative difference in size between the electrons and the ions is similar to the difference between ball bearings and basketballs, Shay said. The electrons are harder to spot. And they are moving much faster--40 times faster, he said.

"I had simulated this possible kind of reconnection," Shay said. "But no one had ever observed it happening in space."

The magnetosheath reconnection was too fast and too tiny for the MMS instruments to capture in the usual way, but researchers developed a new way of using one of the instruments--the Fast Plasma Investigation--that gave them the perspective they needed to see what was going on.

"The key event of the paper happens in 45 milliseconds," said Amy Rager, a graduate student at Catholic University of America in Washington, D.C., who worked on the technique at NASA's Goddard Space Flight Center. "This would be one data point with the regular data, but instead we can get six to seven data points in that region with this method, allowing us to understand what is happening."

Also among the co-authors of the paper were two members of Shay's research group--postdoctoral researcher Colby Haggerty and graduate student Prayash Sharma Pyakurel.

The analysis could reveal many more surprises as scientists continue to explore the data MMS has sent.

"MMS has taken us to a whole new level," Shay said. "It's like knowing about atoms and then finding out about even tinier parts like the nucleus or the electrons. People were not expecting it."

X
X
X
  • Filters

  • × Clear Filters

No Longer Whistling in the Dark: Scientists Uncover a Little-Understood Source of Waves Generated Throughout the Universe

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and other laboratories, using data from a NASA four-satellite mission that is studying reconnection, have developed a method for identifying the source of waves that help satellites determine their location in space.

New biofuel production system powered by a community of algae and fungi

MSU scientists have a new proof of concept for a biofuel production platform that uses two species of marine algae and soil fungi. It lowers cultivation and harvesting costs and increases productivity, factors that currently hold back biofuels from being widely adopted.

Multimodal Imaging Shows Strain Can Drive Chemistry in a Photovoltaic Material

A unique combination of imaging tools and atomic-level simulations has allowed a team led by the Department of Energy's Oak Ridge National Laboratory to solve a longstanding debate about the properties of a promising material that can harvest energy from light.

Study of tiny vortices could lead to new self-healing materials, other advances

Argonne scientists hope that tiny vortices, driven by various magnetic fields, will be able to move microscopic particles.

How a Molecular Signal Helps Plant Cells Decide When to Make Oil

Scientists identify new details of how a sugar-signaling molecule helps regulate oil production in plant cells. The work could point to new ways to engineer plants to produce substantial amounts of oil for use as biofuels or in the production of other oil-based products.

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.


  • Filters

  • × Clear Filters

Department of Energy Announces $218 Million for Quantum Information Science

The U.S. Department of Energy (DOE) announced $218 million in funding for 85 research awards in the important emerging field of Quantum Information Science (QIS).

Energy Secretary awards researchers for global threat reduction

Seven employees from the U.S. Department of Energy's (DOE) Argonne National Laboratory were among those presented with a Secretary of Energy Achievement Award at the Secretary's Honors Awards ceremony in Washington, D.C., on August 29.

University of Minnesota to lead $5.3 million federal grant to improve electronic circuit design

The University of Minnesota announced today that it has received a four-year, $5.3 million grant from the Defense Advanced Research Projects Agency (DARPA), an agency of the U.S. Department of Defense, to lead an effort that could spark the next wave of U.S. semiconductor innovation and broaden the competitive field for circuit design.

Berkeley Lab to Build an Advanced Quantum Computing Testbed

Lawrence Berkeley National Laboratory (Berkeley Lab) will receive $30 million over five years from the U.S. Department of Energy to build and operate an Advanced Quantum Testbed (AQT) allowing researchers to explore superconducting quantum processors to advance scientific research

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Friday September 21, 2018, 01:05 PM

"Model" students enjoy Argonne campus life

Argonne National Laboratory

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility





Showing results

0-4 Of 2215