Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-16 11:05:12
  • Article ID: 694666

New Technique Reveals Details of Forest Fire Recovery

Novel remote sensing observations provide more accurate view of how ecosystems recover from wildfires.

  • Credit: Brookhaven National Laboratory

    Three of the study co-authors, Shawn Serbin (Brookhaven Lab), Feng Zhao (University of Maryland, College Park) and Ran Meng (Brookhaven Lab) in an area of the Long Island Pine Barrens ecosystem that was damaged by a wildfire in April 2012.

  • Credit: Brookhaven National Laboratory

    The high-resolution imaging techniques used in this study accurately distinguished live, healthy trees from dead ones, and a healthy canopy from ground-level resprouting and other understory greenery..

  • Credit: Brookhaven National Laboratory

    These maps of burn severity over the area affected by the Crescent Bow wildfire in the Long Island Pine Barrens show the improved capabilities of high-resolution data collected by reconnaissance satellites (bottom) for characterizing fire effects, compared with conventional satellite data (top).

  • Credit: Brookhaven National Laboratory

    This study linked data collected by several novel technologies to convey a more accurate representation of forest recovery relative to burn severity. The top map, showing burn severity, was created by comparing high-resolution reconnaissance satellite images taken before and after the fire. The middle map plots post-fire canopy recovery by species as identified by NASA's LiDAR measurements and hyperspectral imaging. The bottom map shows the post-fire canopy recovery rate obtained by combining reconnaissance satellite images with NASA aerial measurements..

UPTON, NY—Do you know someone who’s so caught up in the details of a problem that they “can’t see the forest for the trees?” Scientists seeking to understand how forests recover from wildfires sometimes have the opposite problem. Conventional satellite systems that survey vast tracts of land burned by forest fires provide useful, general information, but can gloss over important details and lead scientists to conclude that a forest has recovered when it’s still in the early stages of recovery.

According to a team of ecologists at the U.S. Department of Energy’s Brookhaven National Laboratory, a new technique using a combination of much higher-resolution remote sensing methods provides a more accurate and more detailed picture of what’s happening on the ground. In a paper that will appear in the June 2018 issue of the journal Remote Sensing of Environment, they describe how they used much higher-resolution satellite imagery and aerial measurements collected by NASA to characterize a forested area damaged by a 2012 wildfire that had spread onto the Laboratory’s grounds.

“Being able to quantify the relationship between forest recovery and burn severity is critical information for us to understand both forest dynamics and carbon sequestration,” said Ran Meng, a postdoctoral research associate in Brookhaven Lab’s Terrestrial Ecosystem Science & Technology (TEST) research group and lead author on the paper. “This work shows that by using more advanced remote sensing measurements with very high-resolution spectral imaging and LiDAR—a technique that allows us to measure of the forest’s 3D physical structure—we can characterize fire effects and monitor post-fire recovery more accurately,” he said.

Alistair Rogers, leader of the TEST group added, “This work is a nice example of the value of high resolution, multi-sensor, remote sensing. The novel combination of data from these sensors enabled deeper understanding of a challenging ecological question and provides a new tool for forest management.”

Ground level, satellite data mismatch

Meng noted the need for improved remote measurements as a graduate student prior to coming to Brookhaven. While tracking vegetation recovery after wildfires in the mountain west and California, his observations on the ground didn’t match what the conventional, moderate resolution satellite measurements (such as those obtained by Landsat) were showing.

“Doing field studies, we measure tree parameters and features, and we can see if the canopy—the part of the ecosystem formed by the tops of the trees—is healthy, or if there is just regrowth at the ground level,” Meng said.

The scientists need to be able to distinguish this “understory” growth (for example, shrubs and grasses) from the canopy to determine if the forest has actually recovered to its pre-fire state.

“In terms of managing forests and understanding how much carbon is stored in these systems and how they support biodiversity and change over time, the canopy trees are what’s important,” explained Shawn Serbin, Meng’s supervisor at Brookhaven.

But traditional satellite imaging, which has been used to study big forest fires since the 1970s, can’t distinguish the canopy from the understory, Serbin noted. It produces images with much larger pixel sizes—squares with sides measuring about 30 meters or more—and only measures in a few “channels,” or reflected colors/wavelengths of light, with no sense of depth.

“So, if a fire sweeps through and then a bunch of herbaceous plants that are very green spring up in the newly exposed understory, a traditional satellite system would just see all of that at once—a general pattern of greenness—and confuse that as showing that ‘the vegetation has recovered,’ even when there are still fully burned trees on the ground,” Serbin said.

“Clearly, we need a way to understand in more detail how the forest recovers in terms of the canopy trees without having to conduct massive ground studies, which would be way too time- and labor-intensive,” he added—or as Meng put it, “mission impossible.”

A fortuitous opportunity

Fortunately, remote sensing technologies have come a long way since the 1970s, particularly over the past 10 years. And thanks to an ongoing collaboration with scientists at NASA’s Goddard Space Flight Center and the availability of fine-resolution commercial satellite imagery, Meng and Serbin got a chance to try out these updated technologies and compare the results with ground observations.

Their testbed was a swath of forest in their own backyard that had been damaged when a wildfire in the Long Island Pine Barrens spread onto an undeveloped portion of Brookhaven Lab’s property in April 2012. Meng first used fine-resolution commercial imagery purchased by the National Geospatial-Intelligence Agency (NGA), collected before and after the fire, to create a high-resolution map of burn severity (published previously). Then, he used this map to superimpose detailed measurements of forest characteristics that he extracted from remote sensing imagery collected by the NASA Goddard team in 2015. By comparing the high-resolution remote data with their own on-the-ground observations, Meng and Serbin could test whether the new technologies were conveying an accurate representation of how the trees were recovering in the different areas of burn severity.

“This was an opportunity to study forest dynamics in an unprecedented way,” Serbin said.

The airborne NASA instruments included cameras for very high-resolution digital photography (with pixels measuring one square meter instead of the 30 x 30-meter pixels used by conventional satellites); “hyperspectral” imaging (to pick up light in ~100 colors); thermal infrared imaging (for measuring heat); and LiDAR (which operates like a radar gun speed detector—shooting out beams of near-infrared light and measuring how long they take to bounce back to measure distance, or in this case, the depth into the forest).

Because these instruments make their measurements simultaneously, the scientists can track exactly what color (even subtle variations of green) is reflected back, and from what depth in the forest—all at one-meter resolution.

“This can give us much more information and reduce our uncertainties for understanding the forest dynamics and consequences of fire,” Meng said.

The high-resolution and 3D structural data were able to differentiate the canopy from the understory and gave the scientists an accurate representation of forest recovery in relation to burn severity that matched what they were seeing on the ground.


Instead of a recovery rate that increased with increasing burn severity, as the conventional satellite data—obscured by new understory growth—had suggested, the high-resolution data showed an increasing recovery rate for canopy trees up to a certain threshold.

“Before they reach a certain threshold of damage, trees can recover—create new branches. But after they reach this critical point they get killed and can’t recover. They have to start from scratch and it will take a long time,” said Meng. Meanwhile, new understory species taking advantage of the sunlight able to reach the ground through the depleted canopy, rapidly take their place.

Seeing species differences remotely

The scientists were even able to pick out quantitative differences in recovery rates among different species in the canopy.

“Here at the Lab, we have a simple example of pine vs. oak trees. Pine has a conical shape with thin, closely packed, dark green needles. Oak has a rounder structure with broad lighter-colored leaves. They also have different chemistry and water content. All of that changes the way they reflect light, so they each have a unique ‘spectral signature’ that we can pick out with these new technologies,” Serbin said.

The scientists used machine learning techniques to train computers to recognize the unique spectral and structural features so they could differentiate among these and other species.

“Using a traditional satellite imaging system, it would be impossible to tell these species apart. But now, for the first time, we can use our new technology to quantify these responses over large areas and over a longer time than ever before,” Meng said.


Applying the knowledge

Beyond providing insight into the health of the Long Island Pine Barrens, the method should work to improve remote assessments of fire damage and recovery in different types of forests, and particularly in remote areas where field studies are impractical.

“We think this method should apply across the world. We think it’s adaptable, and the data is publicly available, so we could scale this up,” Serbin said.

Understanding the details of forest dynamics would help inform forest management strategies, such as when and where to stage a controlled burn to limit the buildup of fuel for wildfires, or to identify where new trees—and which types—should be planted to maintain biodiversity. It would also provide input for models designed to predict how forest ecosystems will respond to other types of challenge, such as drought or climate change.

“The people tasked with projecting how ecosystems are going to respond to change in the future need very detailed information on the dynamics of forests and vegetation for their models,” Serbin said. “We’ve learned that the structure of vegetation is highly related to how much carbon can be stored in those ecosystems, and that ecosystems with higher biodiversity store more carbon. So the ability to assess biodiversity and forest structure will be very important to building those models.”

Brookhaven Lab’s contributions to this study were funded by the Lab’s Laboratory Directed Research and Development program. NASA imagery was funded by the U.S. Forest Service.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Follow @BrookhavenLab on Twitter or find us on Facebook.

  • Filters

  • × Clear Filters

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.

Graphene helps protect photocathodes for physics experiments

Argonne researchers have used thin sheets of graphene to prevent photocathode materials from interacting with air, which increases their lifetimes. Photocathodes are used to convert light to electricity in accelerators and other physics experiments.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

  • Filters

  • × Clear Filters

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.

UIC company develops hybrid air-conditioning system with help from DOE

NETenergy, a clean tech startup company based on technology developed at the University of Illinois at Chicago and licensed from UIC, will commercialize its unique hybrid, super-efficient air-conditioning system with funding from the U.S. Department of Energy.The $500,000 grant was awarded to NETenergy's partner, National Renewable Energy Laboratory, as part of the DOE's Technology Commercialization Fund.

STAR Team Receives Secretary's Achievement Award

The Brookhaven Lab scientists, engineers, and support staff who run the Solenoidal Tracker (STAR) experiment at the Lab's Relativistic Heavy Ion Collider (RHIC) received one of 17 Achievement Awards presented by Secretary of Energy Rick Perry at the Secretary's Honor Awards ceremony held in Washington, D.C. August 29.

  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Showing results

0-4 Of 2215