Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-31 11:30:23
  • Article ID: 695253

Nuclear Scientists Calculate Value of Key Property that Drives Neutron Decay

  • Enrico Rinaldi, a special postdoctoral researcher at the RIKEN BNL Research Center at Brookhaven National Laboratory, was involved in developing simulations essential to the new calculation of a property that helps determine a neutron's lifetime.

  • Credit: Credit: Evan Berkowitz/ Jülich Research Center, Lawrence Livermore National Laboratory

    In this illustration, the grid in the background represents the computational lattice that theoretical physicists used to calculate a particle property known as nucleon axial coupling. This property determines how a W boson (white wavy line) interacts with one of the quarks in a neutron (large transparent sphere in foreground), emitting an electron (large arrow) and antineutrino (dotted arrow) in a process called beta decay. This process transforms the neutron into a proton (distant transparent sphere).

  • Credit: Credit: LBNL

    Team members at Lawrence Berkeley National Laboratory (LBNL), from left: David Brantley (College of William & Mary, LBNL), André Walker-Loud (LBNL), Pavlos Vranas (Lawrence Livermore National Laboratory), Henry Monge-Camacho (W&M, LBNL), Thorsten Kurth (LBNL - NERSC), Chia Cheng (Jason) Chang (LBNL, RIKEN-iTHEMS).

  • Credit: Images courtesy of Oak Ridge and Lawrence Livermore national laboratories

    To perform the complex calculations, scientists used the Titan (top) and Vulcan (bottom) supercomputers, located at the Oak Ridge Leadership Computing Facility and Lawrence Livermore National Laboratory, respectively.

UPTON, NY—Using some of the world’s most powerful supercomputers, an international team including scientists from several U.S. Department of Energy (DOE) national laboratories has released the highest-precision calculation of a fundamental property of protons and neutrons known as nucleon axial coupling. This quantity determines the strength of the interaction that triggers neutrons to decay into protons—and can therefore be used to more accurately predict how long neutrons are expected to “live.” The results appear in Nature.

“The fact that neutrons decay into protons is a very, very important fact in the universe,” said Enrico Rinaldi, a special postdoctoral researcher at the RIKEN BNL Research Center at DOE’s Brookhaven National Laboratory, who was involved in developing simulations essential to the new calculation. “It basically tells you how atomic nuclei—made of protons and neutrons—were created after the Big Bang.”

Neutron lifetime also has bearing on the relative abundance of atoms like hydrogen and helium in the universe today, and how that balance will affect the formation of future stars.

The new calculation could also help scientists determine which of two approaches to experimentally measure neutron lifetime is more accurate—and whether the several-second discrepancy between the two could potentially point to the existence of yet-to-be discovered particles.

The effort to calculate the axial coupling, led by André Walker-Loud of DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab), used computing resources at Lawrence Livermore National Laboratory and the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science user facility at DOE’s Oak Ridge National Laboratory.

“This was an intense two-and-a-half-year project that only came together because of the great team of people working on it,” Walker-Loud said.

Details of neutron decay

When you think of the atoms that make up the stuff of our world today, you probably think of neutrons as relatively stable. A wooden desk, made of lots of carbon atoms, for example, doesn’t appear to decay in any appreciable way.

But if you pulled an isolated neutron out of one of those carbon atoms, it would transform into a proton, on average, in less than 15 minutes.

The process that makes this happen is a quantum mechanical interaction between external particles called W bosons with the inner building blocks of the neutron, known as quarks and gluons. This interaction changes the identity of one of the constituent quarks and therefore the overall identity of the particle.

But that’s an overly simplistic picture, Rinaldi said. “That is what would happen at very high energy where we can approximate the quarks and gluons as free objects.”

In the real world, at lower energy, quarks and gluons are confined, or bound together within particles like protons and neutrons, Rinaldi explained. And those quarks and gluons interact strongly with one another in myriad ways.

“We cannot tell exactly what the velocities and positions of all the constituents inside the neutron are. It’s a quantum mechanical bundle of quarks and gluons and the interactions among them,” Rinaldi said. The strength of the W boson interaction that triggers the neutron decay depends on a value determined by the composite sum of all those internal interactions.

“What the W boson sees is the nucleon axial coupling constant, a number that parameterizes all the interactions that the W boson could have with the constituents inside the neutron,” Rinaldi said.

Running the supercomputing experiment

To calculate the axial coupling constant, or gA, physicists use powerful supercomputers to solve the equations of quantum chromodynamics (QCD)—the theory of the strong nuclear force, which governs how quarks and gluons interact. These complex equations can be viewed as containing more than a million variables that account for all the possible interactions within the teeming microcosm of a neutron. They would be impossible to solve without a technique known as lattice QCD. Lattice QCD places the particles at discrete points on an imaginary four-dimensional grid of spacetime (three spatial dimensions plus time) to calculate all the possible interactions of adjacent particles one by one, and then combines them into a final result.

The overall computational part is fairly straightforward, Rinaldi said, again emphasizing that this is a vastly simplified view: “You have a computer and a code that solves the equations. You run the code on the computer, do analysis, and extract the result. It is kind of like doing an experiment because there are many steps and parts—analogous to a particle accelerator, its detectors, the collisions, and the data collection—and we have to control every one of these steps.”

One of Rinaldi’s roles was to create inputs for the “experiment”—a series of simulations that each included a different mass for the neutron. Artificially inflating the mass of the neutron makes the equations easier to work with, he explained.

“The algorithms become harder and harder to use, requiring more computing time to solve, as you try to analyze what happens in the real world. We would have huge error bars. But if you artificially change the input to the equations—make the neutrons more massive—that makes it easier to calculate. We can get a very accurate result for each of these calculations at higher masses, and then put the results together to extrapolate to the real-world conditions,” he said.

Reducing the noise to extract the signal

But changing the input can only do so much. The Berkeley Lab-led team’s biggest leap in precision (relative to other groups who have used similar methods to calculate gA) came from improvements to the experiment’s “detector,” Rinaldi said.

The team was interested in the properties of the neutron, he explained. But the quantum mechanical interactions of quarks and gluons can also generate “excited states” that look like neutrons but are not neutrons. Those excited states generate “noise” that contaminates the signal. The Berkeley Lab team figured out how to filter out the noise to produce a result that, for the first time, achieved the one-percent threshold of precision that is a gold-standard for lattice QCD calculations.

“When measuring the axial coupling, the signal-to-noise degrades exponentially the longer the neutron travels,” said Chia Cheng “Jason” Chang, a postdoc at Berkeley Lab who led the analysis. “Past calculations were all performed amidst this more noisy environment.”

“We found a way to extract the measurement before the noise takes over and ruins the experiment,” Rinaldi said.

The scientists have already used the new nucleon axial coupling calculation to derive a purely theoretical prediction of the lifetime of the neutron. Right now, this new value is consistent with the results from both types of experimental measurement, which differ by a mere 9 seconds. 

“We have a number for the neutron lifetime: 14 minutes and 40 seconds with an error bar of 14 seconds. That is right in the middle of the values measured by the two types of experiments, with an error bar that is big and overlaps both,” Rinaldi said.

With more statistics from more powerful supercomputers, the research team hopes to drive the uncertainty margin down to about 0.3 percent. “That’s where we can actually begin to discriminate between the results from the two different experimental methods of measuring the neutron lifetime,” Chang said. “That’s always the most exciting part: When the theory has something to say about the experiment.”

Ultimately, Rinaldi said, this and other calculations enabled by the team’s computational technique could improve our understanding of protons and neutrons, and help answer other outstanding questions about nuclear physics, dark matter, and the nature of the universe.

This research was supported by the DOE Office of Science, the RIKEN laboratory in Japan, and the U.S. National Science Foundation.

In addition to researchers at Berkeley Lab and the RIKEN BNL Research Center, the team also included scientists from the National Energy Research Scientific Computing Center (NERSC), another DOE Office of Science user facility located at Berkeley Lab; the University of California, Berkeley; the University of North Carolina; Lawrence Livermore National Laboratory; the Jülich Research Center (Germany); the University of Liverpool (U.K.); The College of William & Mary; Rutgers University; the University of Washington; the University of Glasgow (U.K.); NVIDIA Corp.; and Thomas Jefferson National Accelerator Facility.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov [https://science.energy.gov/].

Follow @brookhavenlab on Twitter and Facebook

X
X
X
  • Filters

  • × Clear Filters

Carbon Nanotube Optics Poised to Provide Pathway to Optical-Based Quantum Cryptography and Quantum Computing

Researchers at Los Alamos and partners in France and Germany are exploring the enhanced potential of carbon nanotubes as single-photon emitters for quantum information processing. Their analysis of progress in the field is published in this week's edition of the journal Nature Materials.

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.

Scientists Use Neutrons to Take a Deeper Look at Record Boost in Thermoelectric Efficiency

Neutron facilities at Oak Ridge National Laboratory are aiding scientists in research to boost the power and efficiency of thermoelectric materials. These performance increases could enable more cost-effective and practical uses for thermoelectrics, with wider industry adoption, to improve fuel economy in vehicles, make power plants more efficient, and advance body heat-powered technologies for watches and smartphones.

The science behind pickled battery electrolytes

Argonne material scientists have discovered a reaction that helps explain the behavior of a key electrolyte additive used to boost battery performance.

Faster, Cheaper, Better: A New Way to Synthesize DNA

Researchers at the Department of Energy's Joint BioEnergy Institute (JBEI) based at Berkeley Lab have pioneered a new way to synthesize DNA sequences through a creative use of enzymes that promises to be faster, cheaper, and more accurate. DNA synthesis is a fundamental tool in the rapidly growing field of synthetic biology, in which organisms can be engineered to do things like decompose plastic and manufacture biofuels and medicines. This discovery could dramatically accelerate the pace of scientific discovery.

Scientists Create Continuously Emitting Microlasers With Nanoparticle-Coated Beads

Researchers have found a way to convert nanoparticle-coated microscopic beads into lasers smaller than red blood cells. These microlasers, which convert infrared light into light at higher frequencies, are among the smallest continuously emitting lasers of their kind ever reported and can constantly and stably emit light for hours at a time, even when submerged in biological fluids such as blood serum.

New Material for Splitting Water

Solar energy is clean and abundant, but when the sun isn't shining, you must store the energy in batteries or through a process called photocatalysis. In photocatalytic water splitting, sunlight separates water into hydrogen and oxygen. The hydrogen and oxygen can then be recombined in a fuel cell to release energy. Now, a new class of materials -- halide double perovskites -- may have just the right properties to split water, according to a newly published paper in Applied Physics Letters.

Large Outdoor Study Shows Biodiversity Improves Stability of Algal Biofuel Systems

A diverse mix of species improves the stability and fuel-oil yield of algal biofuel systems, as well as their resistance to invasion by outsiders, according to the findings of a federally funded outdoor study by University of Michigan researchers.

SLAC, Stanford Scientists Discover How a Hardy Microbe's Crystalline Shell Helps it Reel in Food

SLAC and Stanford scientists have discovered how some archaea thrive where other organisms would starve: Their crystalline shells not only protect them from the environment, but they also draw in nutrients through nanosized pores. Those nutrients concentrate in the space between the shell and the microbial cell, so what looks like a famine turns into a feast.

Scientists Make the First Molecular Movie of One of Nature's Most Widely Used Light Sensors

Scientists have made the first molecular movie of the instant when light hits a sensor that's widely used in nature for probing the environment and harvesting energy from light. The sensor, a form of vitamin A known as retinal, is central to a number of important light-driven processes in people, animals, microbes and algae, including human vision and some forms of photosynthesis, and the movie shows it changing shape in a trillionth of an eye blink.


  • Filters

  • × Clear Filters

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Li (Emily) Liu, associate professor of nuclear engineering and engineering physics in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer Polytechnic Institute, has been selected by the U.S. Department of Energy Solar Energy Technologies Office (SETO) to receive a $1.8 million award to study high-temperature molten-salt properties and corrosion mechanisms.

Vasilis Fthenakis Receives IEEE's William R. Cherry Award

UPTON, NY; Vasilis Fthenakis, a Senior Scientist Emeritus at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Founder and Director of the Center for Life Cycle Analysis at Columbia University, will receive the 2018 William R. Cherry Award from the Institute of Electrical & Electronics Engineers (IEEE).

New PPPL director Steve Cowley is honored with knighthood by Queen Elizabeth II

Steven Cowley, newly named director of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) effective July 1, has received a knighthood from Queen Elizabeth "for services to science and the development of nuclear fusion."

UVA Darden Releases Policy Playbook Identifying Six Actions to Catalyze Clean-Tech Innovation

Moving the needle on climate change will require substantive and disruptive innovation across multiple industry sectors. Public and private investment focused on a few key areas could have a significant impact, according to a new policy playbook released by the Batten Institute for Entrepreneurship and Innovation on 8 June.

Work Begins on New SLAC Facility for Revolutionary Accelerator Science

The Department of Energy's SLAC National Accelerator Laboratory has started to assemble a new facility for revolutionary accelerator technologies that could make future accelerators 100 to 1,000 times smaller and boost their capabilities.

Oak Ridge National Laboratory Launches America's New Top Supercomputer for Science

The U.S. Department of Energy's Oak Ridge National Laboratory unveiled Summit as the world's most powerful and smartest scientific supercomputer.

Takeuchi Receives European Inventor Award 2018 in the Non-EPO Countries Category

Prolific patent-holder won for inventing battery that increases the lifespan of implantable defibrillators fivefold, greatly reducing need for reoccurring surgery

Steve Kevan Named Next Director of Berkeley Lab's Advanced Light Source

After an international search, Stephen D. "Steve" Kevan has been named the new director of the Advanced Light Source (ALS) at the U.S. Department of Energy's Lawrence Berkeley National Laboratory.

International corrosion society elects first Sandia fellow

Sandia National Laboratories materials scientist David Enos has been elected a fellow of NACE International, the chief professional society for corrosion engineering. He is the first Sandia employee to receive the honor.

Power to the People

The University of Utah College of Engineering has received a $2 million grant to create a laboratory and develop new technology for communities with backup power sources, known as microgrids, so they can quickly and more securely operate in the event of a massive power outage due to a natural disaster or cyberattack.


  • Filters

  • × Clear Filters

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.

Simulations of Magnetically Confined Plasmas Reveal a Self-Regulating Stabilizing Mechanism

A mysterious mechanism that prevents instabilities may be similar to the process that maintains the Earth's magnetic field.

Seeing All the Colors of the Plasma Wind

2-D velocity imaging helps fusion researchers understand the role of ion winds (aka flows) in the boundary of tokamak plasmas.

Renewable Solvents Derived From Lignin Lowers Waste in Biofuel Production

New class of solvents breaks down plant biomass into sugars for biofuels and bioproducts in a closed-loop biorefinery concept.

Scientists Studying Nuclear Spin Make a Surprising Discovery

The size of a nucleus appears to influence the direction of certain particles emitted from collisions with spinning protons.

Simulating Turbulent Bubbly Flows in Nuclear Reactors

With a better understanding of bubbly flows, researchers can improve the safety and operation of our nuclear reactors.

Solving a Magnesium Mystery in Rechargeable Battery Performance

Study reveals surprising, bad chemical reactivity in battery components previously considered compatible.

Changing the Surroundings Improves Catalysis

Water changes how cobalt-based molecule turns carbon dioxide into chemical feedstock.

How to Draw a Line Narrower Than a Cold Virus

Scientists use ion beams to write high-purity metal structures, enabling nanofabrication opportunities.

Powering Up With a Smart Window

Window material repeatedly switches from being see-through to blocking the heat and converting sunlight into electricity.


Spotlight

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University





Showing results

0-4 Of 2215