DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-06-08 11:00:05
    • Article ID: 695789

    Non-Crystal Clarity: Scientists Find Ordered Magnetic Patterns in Disordered Magnetic Material

    Study led by Berkeley Lab scientists relies on high-resolution microscopy techniques to confirm nanoscale magnetic features

    • Credit: Lawrence Berkeley National Laboratory

      The top row shows electron phase, the second row shows magnetic induction, and the bottom row shows schematics for the simulated phase of different magnetic domain features in multilayer material samples. The first column is for a symmetric thin-film material and the second column is for an asymmetric thin film containing gadolinium and cobalt. The scale bars are 200 nanometers (billionths of a meter). The dashed lines indicate domain walls and the arrows indicate the chirality or “handedness.” The underlying images in the top two rows were producing using a technique at Berkeley Lab’s Molecular Foundry known as Lorentz microscopy.

    • Credit: Lawrence Berkeley National Laboratory

      In these rows of sequenced images, produced using X-ray-based techniques, the first column shows the demagnetized state of a multilayer material containing gadolinium and cobalt; the second column shows the residual magnetism in the same samples after an external, positive magnetic field was applied and then removed; and the last column shows the samples when a negative magnetic field is applied. The white arrows in the third row of images indicate gadolinium-rich regions in the material.

    A team of scientists working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has confirmed a special property known as “chirality” – which potentially could be exploited to transmit and store data in a new way – in nanometers-thick samples of multilayer materials that have a disordered structure.

    While most electronic devices rely on the flow of electrons’ charge, the scientific community is feverishly searching for new ways to revolutionize electronics by designing materials and methods to control other inherent electron traits, such as their orbits around atoms and their spin, which can be thought of as a compass needle tuned to face in different directions.

    These properties, scientists hope, can enable faster, smaller, and more reliable data storage by facilitating spintronics – one facet of which is the use of spin current to manipulate domains and domain walls. Spintronics-driven devices could generate less heat and require less power than conventional devices.

    In the latest study, detailed in the May 23 online edition of the journal Advanced Materials, scientists working at Berkeley Lab’s Molecular Foundry and Advanced Light Source (ALS) confirmed a chirality, or handedness, in the transition regions – called domain walls – between neighboring magnetic domains that have opposite spins.

    Scientists hope to control chirality – analogous to right-handedness or left-handedness – to control magnetic domains and convey zeros and ones as in conventional computer memory.

    The samples were composed of an amorphous alloy of gadolinium and cobalt, sandwiched between ultrathin layers of platinum and iridium, which are known to strongly impact neighboring spins.

    Modern computer circuits commonly use silicon wafers based on a crystalline form of silicon, which has a regularly ordered structure. In this latest study, the material samples used in experiments were amorphous, or noncrystalline, which means their atomic structure was disordered.

    Experiments revealed a dominant chirality in the magnetic properties of these domain walls that could possibly be flipped to its opposite. Such a flipping mechanism is a critical enabling technology for spintronics and variant fields of research that are based on the electron's spin property.

    The science team worked to identify the right thickness, concentration, and layering of elements, and other factors to optimize this chiral effect.

    “Now we have proof that we can have chiral magnetism in amorphous thin films, which no one had shown before,” said Robert Streubel, the study's lead author and a postdoctoral researcher in Berkeley Lab's Materials Sciences Division. The success of the experiments, he said, opens the possibility of controlling some properties of domain walls, such as chirality, with temperature, and of switching a material’s chiral properties with light.

    Amorphous materials, despite their disordered structure, could also be manufactured to overcome some of the limitations of crystalline materials for spintronics applications, Streubel noted. “We wanted to investigate these more complex materials that are easier to make, especially for industrial applications.”

    The research team enlisted a unique, high-resolution electron microscopy technique at Berkeley Lab's Molecular Foundry, and conducted the experiments in a so-called Lorentz observation mode to image the magnetic properties of the material samples. They combined these results with those of an X-ray technique at the ALS known as magnetic circular dichroism spectroscopy to confirm the nanoscale magnetic chirality in the samples.

    The Lorentz microscopy technique employed at the Molecular Foundry's National Center for Electron Microscopy provided the tens-of-nanometers resolution required to resolve the magnetic domain properties known as spin textures.

    “This high spatial resolution at this instrument allowed us to see the chirality in the domain walls – and we looked through the whole stack of materials,” said Peter Fischer, a co-leader of the study and a senior staff scientist in the Lab's Materials Sciences Division.

    Fischer noted that the increasingly precise, high-resolution experimental techniques – which use electron beams and X-rays, for example – now allow scientists to explore complex materials that lack a well-defined structure. 

    “We are now looking with new kinds of probes,” he said, that are drilling down to ever-smaller scales. “Novel properties and discoveries can quite often occur at materials’ interfaces, which is why we ask: What happens when you put one layer next to another? And how does that impact the spin textures, which are a material's magnetic landscapes of spin orientations?” 

    The ultimate research tool, Fischer said, which is on the horizon with the next-generation of electron and X-ray probes, would provide scientists the capability to see directly, at atomic resolution, the magnetic switching occurring in a material’s interfaces at femtosecond (quadrillionths of a second) timescales.

    “Our next step is therefore to go into the dynamics of the chirality of these domain walls in an amorphous system: to image these domain walls while they're moving, and to see how atoms are assembled together,” he said. 

    Streubel added, “It was really a profound study in almost every aspect that was needed. Every piece by itself posed challenges.” The Lorentz microscopy results were fed into a mathematical algorithm, customized by Streubel, to identify domain wall types and chirality. Another challenge was in optimizing the sample growth to achieve the chiral effects using a conventional technique known as sputtering.

    The algorithm, and the experimental techniques, can now be applied to a whole set of sample materials in future studies, and “should be generalizable to different materials for different purposes,” he said.

    The research team also hopes that their work may help drive R&D related to spin orbitronics, where “topologically protected” (stable and resilient) spin textures called skyrmions could potentially replace the propagation of tiny domain walls in a material and lead to smaller and faster computing devices with lower power consumption than conventional devices.

    The Molecular Foundry and the ALS are DOE Office of Science User Facilities. This work was supported by the U.S. Department of Energy's Office of Science.

    ###

    Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    X
    X
    X
    • Filters

    • × Clear Filters

    Researchers switch material from one state to another with a single flash of light

    Scientists from the Department of Energy's SLAC National Accelerator Laboratory and the Massachusetts Institute of Technology have demonstrated a surprisingly simple way of flipping a material from one state into another, and then back again, with single flashes of laser light.

    The Stories Behind the Science: How Does the Ocean's Saltiness Affect Tropical Storms?

    Two researchers with personal experience of hurricanes set out to investigate the role of an underestimated factor in storm's strength - salinity. They found that salinity plays a larger role than anyone thought, including them.

    Surprise finding: Discovering a previously unknown role for a source of magnetic fields

    Feature describes unexpected discovery of a role the process that seeds magnetic fields plays in mediating a phenomenon that occurs throughout the universe and can disrupt cell phone service and knock out power grids on Earth.

    Genetic behavior reveals cause of death in poplars essential to ecosystems, industry

    Scientists studying a valuable, but vulnerable, species of poplar have identified the genetic mechanism responsible for the species' inability to resist a pervasive and deadly disease. Their finding could lead to more successful hybrid poplar varieties for increased biofuels and forestry production and protect native trees against infection.

    Pushing the (Extra Cold) Frontiers of Superconducting Science

    Ames Laboratory has developed a method to measure magnetic properties of superconducting and magnetic materials that exhibit unusual quantum behavior at very low temperatures in high magnetic fields.

    Scientists Find Unusual Behavior in Topological Material

    Argonne scientists have identified a new class of topological materials made by inserting transition metal atoms into the atomic lattice of a well-known two-dimensional material.

    Wind Farms and Reducing Hurricane Precipitation

    New research reveals an unexpected benefit of large-scale offshore wind farms: the ability to lessen precipitation from hurricanes.

    New simulations confirm efficiency of waste-removal process in plasma device

    PPPL scientists have found evidence suggesting that a process could remove the unwanted ash produced during fusion reactions and make the fusion processes more efficient within a type of fusion facility known as a field-reversed configuration device.

    How Animals Use Their Tails to Swish and Swat Away Insects

    A new study shows how animals use their tails to keep mosquitoes at bay by combining a swish that blows away most of the biting bugs and a swat that kills the ones that get through.

    Missing gamma-ray blobs shed new light on dark matter, cosmic magnetism

    Scientists, including researchers from the Department of Energy's SLAC National Accelerator Laboratory, have compiled the most detailed catalog of such blobs using eight years of data collected with the Large Area Telescope (LAT) on NASA's Fermi Gamma-Ray Space Telescope. The blobs, including 19 gamma-ray sources that weren't known to be extended before, provide crucial information on how stars are born, how they die, and how galaxies spew out matter trillions of miles into space.


    • Filters

    • × Clear Filters

    Engineering professor receives Department of Energy grant

    New Mexico State University Department of Civil Engineering Assistant Professor Ehsan Dehghan Niri has received a United States Department of Energy grant. This is a three-year award for $400,000 and is a collaboration with Arizona State University.

    AVS and AIP Publishing Expand Partnership to Launch AVS Quantum Science

    AIP Publishing and AVS: Science and Technology of Materials, Interfaces, and Processing (AVS) today announced an agreement to publish AVS Quantum Science, a new online interdisciplinary journal. The announcement coincides with the AVS 65th International Symposium & Exhibition in Long Beach, California, from October 21-26, 2018.

    Prototype Solar Energy, Battery Systems to Fuel Commercialization

    Designing, building and testing prototype systems that show how renewable energy can power devices, such as a weather and soil sensor station, can help bridge the gap between basic science research and commercialization.

    Argonne to Advance High Performance Computing in Manufacturing

    Argonne awarded funding to partner with Industry to advance the use of high performance computing in manufacturing.

    "Invisible Glass" Wins 2018 Create the Future Design Contest Grand Prize

    Scientists from the Center for Functional Nanomaterials developed a technique for making nonreflecting glass, silicon, and plastic surfaces.

    Missouri S&T researchers win multimillion dollar grant to build fast-charging stations for electric cars

    Researchers from Missouri S&T and three private companies will combine their expertise to create charging stations for electric vehicles that could charge a car in less than 10 minutes - matching the time it takes to fill up a conventional vehicle with gasoline."The big problem with electric vehicles is range, and it's not so much range as range anxiety.

    Making batteries store more energy, last longer

    A new solid polymer electrolyte may help make cell phone batteries store more energy and last longer.

    Three Brookhaven Lab Scientists Named Fellows of American Physical Society

    The American Physical Society (APS), the world's largest physics organization, has elected three scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory as 2018 APS fellows.

    Southern Research first to win accreditation under ISO 14034

    Southern Research has become the first organization in the United States to earn accreditation under ISO 14034, a new international standard for evaluating and verifying environmental technologies that was recently adopted by the American National Standards Institute.

    Kawtar Hafidi to head Physical Sciences and Engineering directorate at Argonne

    Physicist Kawtar Hafidi has been appointed Associate Laboratory Director, Physical Sciences and Engineering at the U.S. Department of Energy's (DOE) Argonne National Laboratory.


    • Filters

    • × Clear Filters

    Cryocooler Cools an Accelerator Cavity

    Researchers demonstrated cryogen-free operation of a superconducting radio-frequency cavity that might ease barriers to its use in societal applications.

    Shining Light on the Separation of Rare Earth Metals

    New studies identify key molecular characteristics to potentially separate rare earth metals cleanly and efficiently with light.

    Placing Atoms for Optimum Catalysts

    Precise positioning of oxygens could help engineer faster, more efficient energy-relevant chemical transformations.

    How to Make Soot and Stardust

    Scientists unlock mystery that could help reduce emissions of fine particles from combustion engines and other sources.

    Breaking the Symmetry Between Fundamental Forces

    Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

    Water Plays Unexpected Role in Forming Minerals

    Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

    Heavy Particles Get Caught Up in the Flow

    First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

    Seeing Between the Atoms

    New detector enables electron microscope imaging at record-breaking resolution.

    Scaling Up Single-Crystal Graphene

    New method can make films of atomically thin carbon that are over a foot long.

    Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

    U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.


    Spotlight

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Tuesday March 28, 2017, 12:05 PM

    Champions in Science: Profile of Jenica Jacobi

    Department of Energy, Office of Science

    Friday March 24, 2017, 10:40 AM

    Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

    Brookhaven National Laboratory

    Wednesday February 15, 2017, 04:05 PM

    Middle Schoolers Test Their Knowledge at Science Bowl Competition

    Argonne National Laboratory





    Showing results

    0-4 Of 2215