DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-12-05 10:00:16
    • Article ID: 704941

    Scientists Enter Unexplored Territory in Superconductivity Search

    Combo of experimental techniques plots points in previously unmapped region of a high-temperature superconductor's "phase diagram."

    • Credit: Brookhaven National Laboratory

      Brookhaven physicist Tonica Valla in the OASIS laboratory at Brookhaven National Laboratory.

    • Brookhaven physicist Ilya Drozdov, lead author on a new paper mapping out a previously unexplored region of the phase diagram of a common superconductor.

    • This phase diagram for BSCCO plots the temperature (T, in degrees Kelvin, on the y axis) at which superconductivity sets in as more and more charge vacancies, or "holes," are doped into the material (horizontal, x axis). On the underdoped side of the "dome" (left), as more holes are added, the transition temperate increases to a maximum of 94 K, but as more holes are added, the transition temperature drops off. The red dashed line represents previously assumed dependence of superconductivity "dome," while the black line represents the correct dependence, obtained from the new data (black dots). This was the first time scientists were able to create highly overdoped samples, allowing them to explore the part of the phase diagram shaded in yellow where superconductivity disappears. Tracking the disappearance may help them understand what causes superconductivity to occur in the first place.

    • The Fermi surface, or the highest occupied state in the electronic structure, allows direct determination of the doping level. This picture shows the Fermi surface of the highly overdoped, non-superconducting BSCCO where the holes were added into the material by exposure to ozone.

    Scientists Enter Unexplored Territory in Superconductivity Search

    Combo of experimental techniques plots points in previously unmapped region of a high-temperature superconductor's "phase diagram."

    EMBARGOED for release on December 6, 2018, 5 a.m. U.S. Eastern Time

    UPTON, NY—Scientists mapping out the quantum characteristics of superconductors—materials that conduct electricity with no energy loss—have entered a new regime. Using newly connected tools named OASIS at the U.S. Department of Energy's Brookhaven National Laboratory, they've uncovered previously inaccessible details of the "phase diagram" of one of the most commonly studied "high-temperature" superconductors. The newly mapped data includes signals of what happens when superconductivity vanishes.

    "In terms of superconductivity, this may sound bad, but if you study some phenomenon, it is always good to be able to approach it from its origin," said Brookhaven physicist Tonica Valla, who led the study just published in the journal Nature Communications. "If you have a chance to see how superconductivity disappears, that in turn might give insight into what causes superconductivity in the first place."

    Unlocking the secrets of superconductivity holds great promise in addressing energy challenges. Materials able to carry current over long distances with no loss would revolutionize power transmission, eliminate the need for cooling computer-packed data centers, and lead to new forms of energy storage, for example. The hitch is that, at present, most known superconductors, even the "high-temperature" varieties, must themselves be kept super cold to perform their current-carrying magic. So, scientists have been trying to understand the key characteristics that cause superconductivity in these materials with the goal of discovering or creating new materials that can operate at temperatures more practical for these everyday applications.

    The Brookhaven team was studying a well-known high-temperature superconductor made of layers that include bismuth-oxide, strontium-oxide, calcium, and copper-oxide (abbreviated as BSCCO). Cleaving crystals of this material creates pristine bismuth-oxide surfaces.  When they analyzed the electronic structure of the pristine cleaved surface, they saw telltale signs of superconductivity at a transition temperature (Tc) of 94 Kelvin (-179 degrees Celsius)—the highest temperature at which superconductivity sets in for this well-studied material.

    The team then heated samples in ozone (O3) and found that they could achieve high doping levels and explore previously unexplored portions of this material's phase diagram, which is a map-like graph showing how the material changes its properties at different temperatures under different conditions (similar to the way you can map out the temperature and pressure coordinates at which liquid water freezes when it is cooled, or changes to steam when heated). In this case, the variable the scientists were interested in was how many charge vacancies, or "holes," were added, or "doped" into the material by the exposure to ozone. Holes facilitate the flow of current by giving the charges (electrons) somewhere to go.

    "For this material, if you start with the crystal of 'parent' compound, which is an insulator (meaning no conductivity), the introduction of holes results in superconductivity," Valla said. As more holes are added, the superconductivity gets stronger and at higher temperatures up to a maximum at 94 Kelvin, he explained. "Then, with more holes, the material becomes 'over-doped,' and Tc goes down—for this material, to 50 K.

    "Until this study, nothing past that point was known because we couldn't get crystals doped above that level. But our new data takes us to a point of doping way beyond the previous limit, to a point where Tc is not measurable."

    Said Valla, "That means we can now explore the entire dome-shaped curve of superconductivity in this material, which is something that nobody has been able to do before."

    The team created samples heated in a vacuum (to produce underdoped material) and in ozone (to make overdoped samples) and plotted points along the entire superconducting dome.  They discovered some interesting characteristics in the previously unexplored "far side" of the phase diagram.

    "What we saw is that things become much simpler," Valla said. Some of the quirkier characteristics that exist on the well-explored side of the map and complicate scientists' understanding of high-temperature superconductivity—things like a "pseudogap" in the electronic signature, and variations in particle spin and charge densities—disappear on the overdoped far side of the dome.

    "This side of the phase diagram is somewhat like what we expect to see in more conventional superconductivity," Valla said, referring to the oldest known metal-based superconductors.

    "When superconductivity is free of these other things that complicate the picture, then what is left is superconductivity that perhaps is not that unconventional," he added. "We still might not know its origin, but on this side of the phase diagram, it looks like something that theory can handle more easily, and it gives you a simpler way of looking at the problem to try to understand what is going on."

    ###

    SIDEBAR: Combination of Uniquely Connected Tools

    The tools scientists used in this study are part of a suite of three that Brookhaven Lab has built named OASIS to explore materials such as high-temperature superconductors. The idea is to connect the tools with ultra-high vacuum sample-transfer lines so scientists can create and study samples using multiple techniques without ever exposing the experimental materials to the atmosphere (and all its potentially "contaminating" substances, including oxygen). OASIS is a tool that connects sample preparation capabilities of oxide molecular beam epitaxy (OMBE) synthesis with electronic structure characterization tools: angle resolved photoemission spectroscopy (ARPES) and spectroscopic imaging-scanning tunneling microscopy (SI-STM).

    In this case, the scientists used ARPES to examine the samples' electronic structure. ARPES uses light to measure "electronic excitations" in the sample. These measurements provide a sort of electronic fingerprint that describes the energy and movement of electrons and how they interact with other types of excitations—say, distortions or vibrations in the crystal lattice, variations in temperature, or imperfections or impurities.

    After studying pristine samples, the scientists transported them via vacuum tube to an OMBE machine where they could anneal (heat) the crystals under a steady stream of ozone.

    The connected tools allow the scientists to transfer samples back and forth to study the material both before and after heating in both a vacuum and ozone to create both the underdoped and overdoped samples needed to map out the phase diagram.

    In this paper, the spectroscopic imaging-scanning tunneling microscope (SI-STM) connected to the previously mentioned ARPES and OMBE modules was not employed. A complementary SI-STM study of the BSCCO samples is currently ongoing.

    ### 

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov [https://science.energy.gov/].

    Follow @BrookhavenLab on Twitter [http://twitter.com/BrookhavenLab] or find us on Facebook [http://www.facebook.com/BrookhavenLab/].

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

    X
    X
    X
    • Filters

    • × Clear Filters

    A Challenging Future for Tropical Forests

    Mortality rates of moist tropical forests are on the rise due to environmental drivers and related mechanisms.

    Stronger, lighter, greener

    A new award-winning magnet technology invented at the U.S. Department of Energy's Argonne National Laboratory could help drive the nation's transition from gas-powered vehicles to electric and hybrid power more rapidly, at lower cost, and in a more environmentally friendly way.

    Science Up-Close: Developing a Cookbook for Efficient Fusion Energy

    To develop a future fusion reactor, scientists need to understand how and why plasma in fusion experiments moves into a "high-confinement mode" where particles and heat can't escape. Scientists at the Department of Energy's Princeton Plasma Physics Laboratory simulated the transition into that mode starting from the most basic physics principles.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Neutron science publications reach new highs at ORNL's flagship facilities

    The High Flux Isotope Reactor and the Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory have reached new levels of increased science productivity. In 2018, a record high of more than 500 scientific instrument publications were produced between HFIR and SNS--based on neutron beamline experiments conducted by more than 1,200 US and international researchers who used the world-leading facilities.

    Fiery sighting: A new physics of eruptions that damage fusion experiments

    Feature describes first direct sighting of a trigger for bursts of heat that can disrupt fusion reactions.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    An effect that Einstein helped discover 100 years ago offers new insight into a puzzling magnetic phenomenon

    Experiments at the Department of Energy's SLAC National Accelerator Laboratory have seen for the first time what happens when magnetic materials are demagnetized at ultrafast speeds of millionths of a billionth of a second: The atoms on the surface of the material move, much like the iron bar did. The work, done at SLAC's Linac Coherent Light Source (LCLS) X-ray laser, was published in Nature earlier this month.

    Found: A precise method for determining how waves and particles affect fusion reactions

    Like surfers catching ocean waves, particles within plasma can ride waves oscillating through the plasma during fusion energy experiments. Now a team of physicists led by PPPL has devised a faster method to determine how much this interaction contributes to efficiency loss in tokamaks.

    Discovery adapts natural membrane to make hydrogen fuel from water

    In a recent study from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen.


    • Filters

    • × Clear Filters

    Argonne scientist elected as SAE Fellow

    Scientist Michael Wang from the U.S. Department of Energy's (DOE) Argonne National Laboratory was recently inducted as a Fellow of the professional engineering organization SAE (Society of Automotive Engineers). The organization reserves this prestigious grade of membership for thosewho have made significant contributions to mobility technology and have demonstrated leadership in their field.

    Top 10 Discoveries of 2018

    Every year, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory compiles a list of the biggest advances made by the Lab's staff scientists, engineers, and visiting researchers. From uncovering mysteries of the universe to building better batteries, here, in no particular order, are our picks for the top 10 discoveries of 2018.

    U.S. Department of Energy Announces $33 Million for Small Business Research and Development Grants

    The U.S. Department of Energy announced it will award 189 grants totaling $33 million to 149 small businesses in 32 states.

    DOE to Provide $16 Million for New Research into Atmospheric and Terrestrial Processes

    The U.S. Department of Energy (DOE) announced a plan to provide $16 million for new observational research aimed at improving the accuracy of today's climate and earth system models.

    Machine learning award powers Argonne leadership in engine design

    When attempting to design engines to be more fuel-efficient and emissions-free, automotive manufacturers have to take into account all the complexity inherent in the combustion process.

    ORNL partners with industry to address multiple nuclear technology challenges

    The Department of Energy's Oak Ridge National Laboratory is collaborating with industry on six new projects focused on advancing commercial nuclear energy technologies that offer potential improvements to current nuclear reactors and move new reactor designs closer to deployment.

    Lithium earns honors for three physicists working to bring the energy that powers the sun to Earth

    Feature describes research of three PPPL physicists who have won the laboratory's 2018 outstanding research awards

    DOE approves technical plan and cost estimate to upgrade Argonne facility; Project will create X-rays that illuminate the atomic scale, in 3D

    The U.S. Department of Energy has approved the technical scope, cost estimate and plan of work for an upgrade of the Advanced Photon Source, a major storage-ring X-ray source at Argonne.

    Costas Soukoulis elected to National Academy of Inventors

    Costas Soukoulis, Ames Laboratory senior scientist and Iowa State University Frances M. Craig Endowed Chair and Distinguished Professor, has been named as a 2018 National Academy of Inventors (NAI) Fellow.

    Biophysicist F. William Studier Elected Fellow of the National Academy of Inventors

    F. William Studier, a Senior Biophysicist Emeritus at the U.S. Department of Energy's Brookhaven National Laboratory and Adjunct Professor of Biochemistry at Stony Brook University, has been elected as a Fellow of the National Academy of Inventors (NAI). He is among 148 renowned academic inventors being recognized by NAI for 2018.


    • Filters

    • × Clear Filters

    Observing Clouds in Four Dimensions

    Six cameras are revolutionizing observations of shallow cumulus clouds.

    A Challenging Future for Tropical Forests

    Mortality rates of moist tropical forests are on the rise due to environmental drivers and related mechanisms.

    Rapid Lake Draining on Ice Sheets Changes How Water Moves in Unexpected Ways

    Widespread fracturing during lake drainage triggers vertical shafts to form that affect the Greenland Ice Sheet.

    New Historical Emissions Trends Estimated with the Community Emissions Data System

    The data system will allow for more detailed, consistent, and up-to-date global emissions trends that will aid in understanding aerosol effects.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    New Method Knocks Out Yeast Genes with Single-Point Precision

    Researchers can precisely study how different genes affect key properties in a yeast used industrially to produce fuel and chemicals.

    How Plants Regulate Sugar Deposition in Cell Walls

    Identified genes involved in plant cell wall polysaccharide production and restructuring could aid in engineering bioenergy crops.

    Scientists Identify Gene Cluster in Budding Yeasts with Major Implications for Renewable Energy

    How yeast partition carbon into a metabolite may offer insights into boosting production for biofuels.

    More Designer Peptides, More Possibilities

    A combined experimental and modeling approach contributes to understanding small proteins with potential use in industrial, therapeutic applications.


    Spotlight

    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory





    Showing results

    0-4 Of 2215