DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-12-07 07:30:53
    • Article ID: 705083

    Solar Base Station Gets Upgrade

    Improvements will facilitate solar energy research conducted by scientists from Brookhaven Lab and outside institutions

    • Credit: Brookhaven National Laboratory

      (Clockwise from left) Brookhaven Lab Environmental and Climate Sciences Department (ECSD) Chair Allison McComiskey, consultant Dong Huang, Stony Brook University graduate student Chenxiao Xu, ECSD technician Gabriel Vignato, ECSD electronics engineer Andrew McMahon, project engineer Thomas McEvaddy of Brookhaven's Modernization Project Office, ECSD computational scientist Richard Wagener, and Brookhaven Meteorological Services Group Leader John Heiser are part of the team that contributed to the development of the newly installed solar base station seen above. Located on an elevated platform on the roof of a Brookhaven Lab building, the station is equipped with instruments for measuring the amount of energy coming from the sun and atmosphere. Utilities need such measurements to improve solar energy forecasting to maintain the stability of the power grid and to efficiently allocate energy resources.

    • Credit: Brookhaven National Laboratory

      An overhead photo of the Long Island Solar Farm at Brookhaven Lab. Located in a marine environment, Brookhaven provides a unique site for solar research. On average, more than 300 clouds roll in each day.

    • Credit: Brookhaven National Laboratory

      The sun tracker on the solar base station (new platform seen above) has four radiometers that each measure a different component of solar and terrestrial or longwave irradiance. A pyranometer that is level with the ground measures global horizontal irradiance, or the total amount of shortwave radiation received from above. This measurement is also important to environmental protection and emergency response because it is used to determine how quickly particles—such as smoke from a forest fire—spread. Another pyranometer measures only the light that is scattered or reflected by clouds of particles in the atmosphere (diffuse horizontal irradiance). Shadow balls are placed in front of the instrument so that it only "sees" reflected light. One of the other radiometers (called a pyrheliometer) is aimed directly at the sun to measure the direct normal incidence, or the solar radiation that hits earth's surface without any reflections. The fourth radiometer is a pyrgeometer that measures longwave radiation.

    • Credit: Brookhaven National Laboratory

      The new solar base station sits on top of a 12-foot-high elevated platform located on the roof of a four-story building.

    • Credit: Brookhaven National Laboratory

      Weatherproof electrical outlet (left) and ethernet (right) boxes were among the upgrades to the solar base station.

    • Credit: Brookhaven National Laboratory

      The platform contains a reference solar panel (left) and pyranometers (right). Pyranometers set at the same angles are installed at LISF and the Northeast Solar Energy Research Center at Brookhaven Lab. Met Services regularly performs quality checks by comparing the data obtained by these two reference stations and the solar base station.

    • Credit: Brookhaven National Laboratory

      A DOE ARM infrared radiation thermometer—a device that can be used to measure cloud height and thickness—is installed at the base station.

    • Credit: Brookhaven National Laboratory

      Brookhaven Lab computational scientists developed algorithms to detect clouds at the pixel level and track their movement. First, original images taken by total-sky imagers (a) are used to generate cloud masks (b), which are used to separate the cloud and sky regions. Irrelevant pixels (including those of the imager's supporting arm) are shaded black. Then, the cloud components belonging to the same piece of cloud (color-coded patches) are detected (c). The final output is a sequence of cloud blocks (d), each of which is a unit for cloud tracking. The 3D coordinates of the blocks can be recovered via triangulation of the cameras to estimate cloud base height and motion.

    • Credit: Brookhaven National Laboratory

      A high-definition sky imager installed on the new platform where the solar base station was relocated.

    For utilities to efficiently integrate solar energy into the electric power grid, they need to be able to anticipate the amount of energy that will be generated on any given day in a particular area. This quantity depends on uncontrollable and highly variable environmental factors, such as clouds and atmospheric particles, which can reduce the amount of sunlight that reaches solar panels.

    Capabilities for accurate solar energy forecasting are needed to reliably balance electricity supply and demand. Because of the current lack of cost-effective energy storage methods, electricity generated by solar and other renewable resources such as wind must be consumed as it is generated. By knowing when to expect drops and surges in these renewable resources, utilities can efficiently allocate them.

    For example, if given sufficient notice (e.g., 24–48 hours) that the amount of available solar irradiance will be reduced due to overcast skies, utilities can negotiate the purchase of cost-effective alternative sources of electricity (hydro, coal, oil, and nuclear power) to keep up with demand. For short-term shortages caused by variability in cloud cover, they could power up natural gas peaking power plants (i.e., plants that only operate when high, or “peak,” demand for electricity exists) to maintain equilibrium power on the grid. Conversely, they could power down these facilities when clear, cloud-free conditions are present and solar production is optimal.

    Without accurate forecasting capabilities, utilities cannot maximize the purchase of economic alternative power, maintain a stable grid, or prevent excess generated power from going to waste. 

    “Predicting when and where clouds will appear, how long they will persist, and what impact they may have on solar energy production is no easy task and is the subject of several solar forecasting development efforts at Brookhaven,” said Allison McComiskey, chair of the Environmental and Climate Sciences Department (ECSD) at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory.

    Clouds are impacted by several environmental factors, including winds, humidity, air pressure, and temperature. Cloud cover predictions require a combination of meteorological measurements from satellites and ground-based field sensors, and calculations by numerical weather prediction models.

    A site for solar research

    In 2011, the Long Island Solar Farm (LISF)—a 32-megawatt solar photovoltaic power plant, the largest such plant in the Eastern United States at that time—was installed at Brookhaven Lab through a collaboration between DOE, BP Solar, and the Long Island Power Authority (LIPA). In addition to providing power for about 4,500 homes on Long Island, New York, LISF has been helping scientists study how weather impacts the amount of power being generated by the solar array.

    “Access to the facility for research purposes was part of the agreement,” said Paul Kalb, deputy chair of ECSD and principal investigator for nowcasting projects. “Staff in our department have a lot of experience with meteorological instrumentation in support of climate research. Working closely with colleagues in the Sustainable Energy Technologies Department, we have installed a broad array of instruments for solar research and development.”

    To support this research and development effort, Brookhaven Lab established a solar base station with instruments for precisely measuring solar irradiance, or the amount of energy incoming from the sun onto the earth’s surface at a particular location and time.

    “We placed an array of solar irradiance sensors throughout the nearly 200-acre LISF, but these field-based instruments—called pyranometers—do not provide the most accurate data for research purposes,” explained John Heiser, group leader of Brookhaven Lab’s Meteorological (Met) Services, which is responsible for maintaining, calibrating, and collecting and archiving data (e.g., rainfall, temperature, wind speed) from a network of meteorological sensors for environmental protection and solar energy research. “Another more expensive grade of instruments is available for research, and we purchased a set of those for the base station in 2012.”

    The solar base station includes a solar tracker, which follows the sun as it moves across the sky throughout the day. A Global Positioning System (GPS) automatically configures the location and time. Mounted on top of the tracker are four research-grade radiometers, each of which measures the amount of radiation reaching the earth’s surface in a different way. The measurements are continuously recorded every second, transmitted to a computer database, and displayed on the Met Services website.   

    “These are the standard instruments and measurements expected by the solar research community,” said Heiser.

    A new and improved home base

    Though the solar base station has been providing high-quality data for the past six years, its infrastructure—a wooden platform on the roof of one of Brookhaven’s buildings—was outdated and not designed to support multiple research projects at once. This past summer, Brookhaven Lab relocated the station to the roof of another building on site. The relocation was accompanied by several improvements.

    “The original platform was about 25 years old,” said Heiser, who oversaw the new platform’s design and construction and is its primary user. “It had very rudimentary shelving that was built out over time, and shelf space to mount the sensors was limited. Network cables to transmit the recorded sensor data had to be run outside the building, and we only had one electric circuit to power everything. In addition, the location itself was problematic. A smoke stack for an on-site medical facility shadowed the pyranometers in the spring and fall, resulting in missing data for a 15-minute window each day in those seasons.”

    The new platform—three times the size of the previous one—is made out of aluminum and has weatherproof data logger boxes and internet connections and multiple electric outlets. It was designed and built at a height off the building’s roof that is above the tree line to provide an unobstructed 360-degree view of the sky for solar research and emergency protection.

    In addition to these improvements, several new features were added, including a calibration plate that can calibrate up to 25 pyranometers at a time. In the past, Met Services had to annually send the pyranometers to DOE’s National Renewable Energy Laboratory for calibration.

    Another new feature is a pad with the appropriate electrical requirements for lidars, which are devices that measure the distance to objects by sensing reflected light pulses. Among other applications, lidar measurements are used to study wind flow in onshore and offshore environments. 

    Scientists in ECSD who are conducting research through DOE’s Atmospheric Radiation Measurement (ARM) User Facility have already installed instruments on the base station, and there is plenty of space to accommodate additional researchers. 

    “Through these improvements, the platform can now accommodate multiple research projects simultaneously,” said Heiser. “Our hope is that researchers from other organizations will make use of the solar base station, which, as far as I am aware, is the only complete station of its kind within our region.”

    Ongoing solar energy research

    The solar base station is part of a larger ongoing solar power forecasting effort at Brookhaven Lab.

    “Brookhaven Lab has a significant commitment to solar energy research,” said Kalb. “Early on, it provided program development support to invest in the sensors for LISF and the solar base station and built the Northeast Solar Energy Research Center (NSERC) with contributions from BP Solar, the developer of LISF.”

    Equipped with solar panels, pyranometers, temperature sensors, and other instruments, NSERC supplies electricity to the Brookhaven campus and serves as a DOE research and testing facility for the solar community to explore different technologies.

    “The solar base station goes hand in hand with NSERC—anyone doing solar research needs to know precisely what the solar resources were at that exact time,” said Kalb.

    At Brookhaven, data from NSERC and the solar base station are being used to support grid modernization research being carried out by the Sustainable Energy Technologies Department.

    “There is an ongoing national effort to modernize the electric grid, and the increased use of renewable energy will be one of the key elements for the modern grid,” explained Robert Lofaro, leader of the department’s Renewable Energy Group. “Brookhaven is performing research on how to mitigate the impacts of the variability of renewable resources using advanced sensors. Data from NSERC and the solar base station can be used to characterize solar energy variability, which will be an important input for this research.” 

    Outside Brookhaven, the data are relevant to industry, academia, and government.

    “I receive quite a few requests for data from the solar base station,” said Heiser. “Companies that are building solar farms for utilities need to properly size and angle solar arrays, and scientists around the country want high-quality solar energy data for their research.”

    According to Heiser, the station generates about a terabyte (1000 gigabytes) of data per year, at 30-second resolution. The collected data must be analyzed to identify any clouds present in the sky, track their movement over time, and assess their impact on the solar power output. This data can be used as one of the inputs to train computational models via machine learning.

    Shortly after Brookhaven invested in the solar research equipment, ECSD and Brookhaven’s Computational Science Initiative (CSI)—in collaboration with the National Center for Atmospheric Research (NCAR)—began a three-year project funded by the U.S. Department of Energy Solar Energy Technologies Office under the “Improving the Accuracy of Solar Forecasting” funding program.

    “The question is, how do you accurately predict the variability in solar energy generation over minutes and days?” said Kalb. “Our project addressed this issue, with Brookhaven developing nowcasting algorithms for near-term forecasts (within 30 minutes) and NCAR developing and running numerical weather models to forecast up to 48 hours.”

    Brookhaven’s approach is to capture images of the sky using ground-based imagers, and then apply software to identify and track the movement of clouds and estimate their impact on available solar energy. These prediction capabilities were successfully tested at LISF during various seasons. Initially, Brookhaven used Total Sky Imagers (TSIs), similar to those in use by the ARM User Facility to image the sky. These instruments have cameras with ultrawide-angle (fisheye) lenses, which look down at a hemispherical mirror that reflects a picture of the sky above. Three TSIs took 360-degree snapshots of the sky every 30 seconds, and using the geometry and distance between the imagers, scientists calculated the base height and thickness of clouds via triangulation. They also determined the direction and speed of the clouds through image processing techniques.  

    However, TSIs are expensive and difficult to maintain. The mirror needs to be cleaned regularly, and the rotating parts used to block the direct image of the sun are prone to mechanical failures.

    “John Heiser came up with the idea to use inexpensive, smaller high-definition (HD) digital cameras instead,” said Kalb. “These cameras are not only ten times cheaper than the TSIs but also ten times the resolution, with a field of view almost 40 degrees more. Rain is enough to keep them clean.”

    Following the successful completion of this project in 2016, the team was approached by the Electrical Power Research Institute and the New York Power Authority (NYPA) to extend the previously developed solar forecasting technologies to a regional scale.

    The ongoing project is currently in its second phase, which is co-funded by the DOE Solar Energy Technologies Office and NYPA. The team recently placed 12 HD sky imagers on site and off site across Long Island to expand the near-term nowcasting range from approximately one square mile to 20 square miles.

    “The imager sites include a fire department, self-storage facility, retirement community, and the Tesla Science Center,” said Kalb. “There has been great interest and cooperation among outside organizations who are very willing to grant us access to their facilities for our research. It is nice to see such community involvement.”

    The team also modified the nowcasting model to develop a working prototype. At any given time, wide variability exists among the available solar radiation across the forecast region, and large changes can occur within minutes.

    Next, they will deploy and test the updated regional nowcasting model, making improvements as necessary. Preliminary results indicate that improvements in mean absolute error over the currently used “persistence” model of 20 to 30 percent for five-minute forecasts and more than 50 percent for 30-minute forecasts can be achieved. Eventually, the capabilities will be mature enough to be extended to additional regions in New York State, covering a larger and more diverse geographical area.

    Through a separate research award from the Solar Energy Technologies Office, a team led by Yangang Liu, a senior scientist and leader of the Climate and Process Modeling Group at Brookhaven, will further improve forecasting of solar irradiance in cloudy conditions. The team will build upon the NCAR-developed Weather Research Forecasting (WRF)-Solar, one of the premier numerical weather prediction models for forecasting solar energy resources. In particular, they will improve the representation of cloud physics and the way that solar radiation interacts with clouds. Researchers will use data from measurement systems in other parts of the country that are similar to those used at the solar base station to evaluate the performance of the model forecasts.

    “These research projects and the expanded measurement capabilities provided by the new base station platform will allow us to continue connecting laboratory research with industry and the public to provide the best technologies of the future to serve society and the environment,” said McComiskey.

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

    Follow @BrookhavenLab on Twitter or find us on Facebook.

    • Filters

    • × Clear Filters

    Sierra Snowpack Could Drop Significantly By End of Century

    A future warmer world will almost certainly feature a decline in fresh water from the Sierra Nevada mountain snowpack. Now a new study by Lawrence Berkeley National Laboratory that analyzed the headwater regions of California's 10 major reservoirs, representing nearly half of the state's surface storage, found they could see on average a 79 percent drop in peak snowpack water volume by 2100.

    The Biermann Battery Effect: Spontaneous Generation of Magnetic Fields and Their Severing

    The mechanism responsible for creating intense magnetic fields in laser-driven plasmas also helps tear the fields apart.

    Compelling Evidence for Small Drops of Perfect Fluid

    Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) have published additional evidence that collisions of miniscule projectiles with gold nuclei create tiny specks of the perfect fluid that filled the early universe.

    Topological Matters: Toward a New Kind of Transistor

    An experiment has demonstrated, for the first time, electronic switching in an exotic, ultrathin material that can carry a charge with nearly zero loss at room temperature. Researchers demonstrated this switching when subjecting the material to a low-current electric field.

    Experiments at PPPL show remarkable agreement with satellite sightings

    Feature describes striking similarity of laboratory research findings with observations of the four-satellite Magnetospheric Multiscale Mission that studies magnetic reconnection in space.

    New X-ray imaging approach could boost nanoscale resolution for Advanced Photon Source Upgrade

    A long-standing problem in optics holds that an improved resolution in imaging is offset by a loss in the depth of focus. Now, scientists are joining computation with X-ray imaging as they develop a new and exciting technique to bypass this limitation.

    Two-dimensional materials skip the energy barrier by growing one row at a time

    News Release RICHLAND, Wash. -- A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory and University of California, Los Angeles could provide engineers new design rules for creating microelectronics, membranes, and tissues, and open up better production methods for new materials.

    Blasting Molecules with Extreme X-Rays

    To understand how damage from high-energy X-rays affects imaging studies, scientists supported by the Department of Energy shot the most powerful X-ray laser in the world at a series of atoms and molecules. Surprisingly, the atoms within the molecules acted far differently than the isolated ones.

    Scientists Enter Unexplored Territory in Superconductivity Search

    Scientists mapping out the quantum characteristics of superconductors--materials that conduct electricity with no energy loss--have entered a new regime. Using newly connected tools named OASIS at Brookhaven Lab, they've uncovered previously inaccessible details of the "phase diagram" of one of the most commonly studied "high-temperature" superconductors.

    Human Exposures and Health Effects Associated with Unconventional Oil and Gas Development

    The Health Effects Institute (HEI) convened an Energy Research Committee to help ensure the protection of public health during such development. A symposium at the 2018 Society for Risk Analysis (SRA) Annual Meeting will summarize the Committee's review approach and preliminary findings and provide initial options for future research intended to fill knowledge gaps.

    • Filters

    • × Clear Filters

    Costas Soukoulis elected to National Academy of Inventors

    Costas Soukoulis, Ames Laboratory senior scientist and Iowa State University Frances M. Craig Endowed Chair and Distinguished Professor, has been named as a 2018 National Academy of Inventors (NAI) Fellow.

    Biophysicist F. William Studier Elected Fellow of the National Academy of Inventors

    F. William Studier, a Senior Biophysicist Emeritus at the U.S. Department of Energy's Brookhaven National Laboratory and Adjunct Professor of Biochemistry at Stony Brook University, has been elected as a Fellow of the National Academy of Inventors (NAI). He is among 148 renowned academic inventors being recognized by NAI for 2018.

    Blast to the future

    A grant from DOE's Technology Commercialization Fund will help researchers at Argonne and industry partners seek improvements to U.S. manufacturing by making discovery and design of new materials more efficient.

    Department of Energy to Provide $24 Million for Computer-Based Materials Design

    The U.S. Department of Energy (DOE) announced plans to provide $24 million in new and renewal research awards to advance the development of sophisticated software for computer-based design of novel materials.

    Argonne scientists recognized for decades of pioneering leadership in research

    Argonne scientists Ali Erdemir and Jack Vaughey were named 2018 Fellows of the American Association for the Advancement of Science (AAAS).

    Kurfess, Smith join ORNL to lead advanced manufacturing initiatives

    Two leaders in US manufacturing innovation, Thomas Kurfess and Scott Smith, are joining the Department of Energy's Oak Ridge National Laboratory to support its pioneering research in advanced manufacturing.

    Four Berkeley Lab Scientists Named AAAS Fellows

    Four Berkeley Lab scientists - Allen Goldstein, Sung-Hou Kim, Susannah Tringe, and Katherine Yelick - have been named Fellows of the American Association for the Advancement of Science, the world's largest general scientific society.

    U.S. Department of Energy to Host Nationwide CyberForce Competition(tm) December 1

    Students from dozens of colleges/universities will participate in the U.S. Department of Energy's CyberForce Competition(tm) this weekend

    Seven ORNL researchers named 2019 INCITE award winners

    Seven researchers from the Department of Energy's Oak Ridge National Laboratory have been chosen by the Innovative and Novel Computational Impact on Theory and Experiment, also known as INCITE, program to lead scientific investigations that require the nation's most powerful computers. The ORNL-based projects span a broad range of the scientific spectrum and represent the potential of high-performance computing in ensuring America's scientific competitiveness and energy security.

    DOE Laboratories Win Gordon Bell Prize

    Two U.S. Department of Energy (DOE) National Laboratories were recently awarded the 2018 Association for Computing Machinery's (ACM's) Gordon Bell Prize.

    • Filters

    • × Clear Filters

    The Biermann Battery Effect: Spontaneous Generation of Magnetic Fields and Their Severing

    The mechanism responsible for creating intense magnetic fields in laser-driven plasmas also helps tear the fields apart.

    Subtlety and the Selective Art of Separating Lanthanides

    Unexpected molecular interactions involving water clusters have a subtle, yet profound, effect on extractants picking their targets.

    Review Examines the Science and Needs of Nitrogen-Based Transformations

    Advances in biochemistry and catalysis could lead to faster, greener nitrogen-rich fertilizer.

    Quickly Capture Tiny Particles Reacting

    New method takes a snapshot every millisecond of groups of light-scattering particles, showing what happens during industrially relevant reactions.

    New Technology Consistently Identifies Proteins from a Dozen Cells

    A new platform melding microfluidics and robotics allows more in-depth bioanalysis with fewer cells than ever before.

    Optimal Foraging: How Soil Microbes Adapt to Nutrient Constraints

    How microbial communities adjust to nutrient-poor soils at the genomic and proteomic level gives scientists insights into land use.

    Microbes Eat the Same in Labs and the Desert

    Analyses of natural communities forming soil crusts agree with laboratory studies of isolated microbe-metabolite relationships.

    Diverse Biofeedstocks Have High Ethanol Yields and Offer Biorefineries Flexibility

    Evidence suggests that biorefineries can accept various feedstocks without negatively impacting the amount of ethanol produced per acre.

    Opening Access to Explore the Synthetic Chemistry of Neptunium

    New, easily prepared starting material opens access to learning more about a difficult-to-control element in nuclear waste.

    Tiny Titanium Barrier Halts Big Problem in Fuel-Producing Solar Cells

    New design coats molecular components and dramatically improves stability under tough, oxidizing conditions.


    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Tuesday March 28, 2017, 12:05 PM

    Champions in Science: Profile of Jenica Jacobi

    Department of Energy, Office of Science

    Friday March 24, 2017, 10:40 AM

    Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

    Brookhaven National Laboratory

    Wednesday February 15, 2017, 04:05 PM

    Middle Schoolers Test Their Knowledge at Science Bowl Competition

    Argonne National Laboratory

    Showing results

    0-4 Of 2215