DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-12-17 15:55:08
    • Article ID: 705516

    Massive New Dark Matter Detector Gets Its 'Eyes'

    Array of light-sensing photomultiplier tubes for the LUX-ZEPLIN dark matter detector arrives in South Dakota

    • Credit: Nick Dentamaro/Brown University

      A researcher at Brown University installs photomultiplier tubes for a component of the LUX-ZEPLIN dark matter search experiment.

    • Credit: Nick Dentamaro/Brown University

      Researchers assemble an LZ photomultiplier tube array at Brown University.

    • Credit: Nick Dentamaro/Brown University

      Researchers assemble an LZ photomultiplier tube array at Brown University.

    • Credit: Nick Dentamaro/Brown University

      A researcher installs ligh-sensing photomultiplier tubes for the LUX-ZEPLIN dark matter detector.

    The LUX-ZEPLIN (LZ) dark matter detector, which will soon start its search for the elusive particles thought to account for a majority of matter in the universe, had its first set of “eyes” delivered Thursday.

    The first of two large arrays of photomultiplier tubes (PMTs) — powerful light sensors that can detect the faintest of flashes — completed a 2,000-mile journey by truck from Rhode Island to the Sanford Underground Research Facility (SURF) in Lead, South Dakota, where LZ is scheduled to begin its dark matter search in 2020.

    The second array will arrive in January. When the LZ detector is completed and switched on, the PMT arrays will keep careful watch on LZ’s 10-ton tank of liquid xenon, looking for the tell-tale twin flashes of light produced if a dark matter particle bumps into a xenon atom inside the tank.

    A team of researchers and technicians from Brown University has spent the past six months painstakingly assembling the two arrays, each about 5 feet in diameter and holding a total of 494 PMTs.

    “The delivery of these arrays is the pinnacle of an enormous assembly effort that we’ve had to execute here in our clean room,” said Rick Gaitskell, a professor of physics at Brown University who oversaw the construction of the arrays. “For the last two years, we’ve been making sure that every piece that’s going into the devices is working as expected. Only by doing that can we be confident that everything will perform the way we want when the detector is switched on.”

    The Brown team has worked with researchers and engineers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and from Imperial College London to design, procure, test, and assemble all of the components of the array. Testing of the PMTs, which are manufactured by the Hamamatsu Corp. in Japan, was performed at Brown and at Imperial College.

    “The delivery of the first array of PMTs for LZ to SURF is a critical milestone for the LZ Project,” said Murdock “Gil” Gilchriese of Berkeley Lab, who is the LZ project director.

    In preparation for the arrival of the PMT arrays, researchers at SURF had already been working with prototype arrays to practice connecting the PMTs to a complex sequence of cabling. The actual assembly of these cables to the PMTs will take place in a clean room at SURF.

    Nobody knows exactly what dark matter is. Scientists can see the effects of its gravity in the rotation of galaxies and in the way light bends as it travels across the universe, but no one has directly detected a dark matter particle. The leading theoretical candidate for a dark matter particle is the WIMP, or weakly interacting massive particle. WIMPs can’t be seen because they don’t absorb, emit, or reflect light. And they interact with normal matter only on very rare occasions, which is why they’re so hard to detect even when millions of them may be traveling through the Earth each second.

    The LZ experiment, a collaboration of more than 250 scientists from 38 institutions worldwide, aims to capture one of those fleetingly rare WIMP interactions, and thereby characterize the particles thought to make up more than 80 percent of the matter in the universe. The detector will be the most sensitive ever built: 100 times more sensitive than the LUX detector, which wrapped up its dark matter search at SURF in 2016.

    The PMT arrays are a critical part of the experiment. Each PMT is a 6-inches-long cylinder that is roughly the diameter of a soda can. To form arrays large enough to monitor the entire LZ xenon target, hundreds of PMTs are assembled together within a circular titanium matrix. The array that will sit on top of the xenon target has 253 PMTs, while the lower array has 241.

    PMTs are designed to amplify weak light signals. When individual photons (particles of light) enter a PMT, they strike a photocathode. If the photon has sufficient energy, it causes the photocathode to eject one or more electrons. Those electrons then strike an electrode, which ejects more electrons. By cascading through a series of electrodes the original signal is amplified by over a factor of 1 million to create a detectable signal.

    LZ’s PMT arrays will need every bit of that sensitivity to catch the flashes associated with a WIMP interaction.

    “We could be looking for events emitting as few as 20 photons in a huge tank containing 10 tons of xenon, which is something that the human visual system wouldn’t be able to do,” Gaitskell said. “But it’s something these arrays can do, and we’ll need them to do it in order to see the signal from rare particle events.”

    The photons are produced by what’s known as a nuclear recoil event, which produces two distinct flashes. The first comes at the moment a WIMP bumps into a xenon nucleus. The second, which comes a few hundred microseconds afterward, is produced by the ricochet of the xenon atom that was struck. It bounces into the atoms surrounding it, which knocks a few electrons free. The electrons are then drifted by an electric field to the top of the tank, where they reach a thin layer of xenon gas that converts them into light.

    In order for those tiny flashes to be distinguishable from unwanted background events, the detector needs to be protected from cosmic rays and other kinds of radiation, which also cause liquid xenon to light up. That’s why the experiment takes place underground at SURF, a former gold mine, where the detector will be shielded by about a mile of rock to limit interference.

    The need to limit interference is also the reason that the Brown University team was obsessed with cleanliness while they assembled the arrays. The team’s main enemy was plain old dust.

    “When you’re dealing with an instrument that’s as sensitive as LZ, suddenly things you wouldn’t normally care about before become very serious,” said Casey Rhyne, a Brown University graduate student who had a leading role in building the arrays. “One of the biggest challenges we had to confront was minimizing ambient dust levels during assembly.”

    Each dust particle carries a miniscule amount of radioactive uranium and thorium decay products. The radiation is vanishingly small and poses no threat to people, but too many of those specks inside the LZ detector could be enough to interfere with a WIMP signal.

    In fact, the dust budget for the LZ experiment calls for no more than one gram of dust to be contained in the entire 10-ton instrument. Because of all of their nooks and crannies, the PMT arrays could be significant dust collectors if pains were not taken to keep them clean throughout construction.

    The Brown University team performed most of its work in a “class 1000” clean room, which allows no more than 1,000 microscopic dust particles per cubic foot of space. And within that clean room was an even more pristine space that the team dubbed “PALACE (PMT Array Lifting And Commissioning Enclosure).” PALACE was essentially an ultraclean room where much of the actual array assembly took place. PALACE was a “class 10” space — allowing no more than 10 dust particles bigger than 1 hundredth the width of a human hair per cubic foot.

    But the radiation concerns didn’t stop at dust. Before assembly of the arrays began, the team prescreened every part of every PMT tube to assess radiation levels.

    “We had Hamamatsu send us all of the materials that they were going to use for the PMT construction, and we put them in an underground germanium detector,” said Samuel Chan, a graduate student and PMT system team leader. “This detector is very good at detecting the radiation that the construction materials are emitting. If the intrinsic radiation levels were low enough in these materials, then we told Hamamatsu to go ahead and use them in the manufacture of these PMTs.”

    The team is hopeful that all the work they put in over the past six months will pay dividends when LZ starts its WIMP search.

    “Getting everything right now will have a huge impact less than two years from now, when we switch on the completed detector and we’re taking data,” Gaitskell said. “We’ll be able to see directly from that data how good of a job we and other people have done.”

    Given the major increase in dark matter search sensitivity that the LZ detector can deliver compared to all previous experiments, the team hopes that this detector will finally identify and characterize the vast sea of stuff that surrounds us all. So far, the dark stuff has remained maddeningly elusive.

    Major support for LZ comes from the DOE Office of Science’s Office of High Energy Physics, South Dakota Science and Technology Authority, the U.K.’s Science & Technology Facilities Council, and by collaboration members in South Korea and Portugal.

    More info:

    ###

    Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

    The Sanford Underground Research Facility’s mission is to enable compelling underground, interdisciplinary research in a safe work environment and to inspire our next generation through science, technology, engineering, and math education. For more information, please visit the Sanford Lab website at http://www.sanfordlab.org.

    X
    X
    X
    • Filters

    • × Clear Filters

    A Challenging Future for Tropical Forests

    Mortality rates of moist tropical forests are on the rise due to environmental drivers and related mechanisms.

    Stronger, lighter, greener

    A new award-winning magnet technology invented at the U.S. Department of Energy's Argonne National Laboratory could help drive the nation's transition from gas-powered vehicles to electric and hybrid power more rapidly, at lower cost, and in a more environmentally friendly way.

    Science Up-Close: Developing a Cookbook for Efficient Fusion Energy

    To develop a future fusion reactor, scientists need to understand how and why plasma in fusion experiments moves into a "high-confinement mode" where particles and heat can't escape. Scientists at the Department of Energy's Princeton Plasma Physics Laboratory simulated the transition into that mode starting from the most basic physics principles.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Neutron science publications reach new highs at ORNL's flagship facilities

    The High Flux Isotope Reactor and the Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory have reached new levels of increased science productivity. In 2018, a record high of more than 500 scientific instrument publications were produced between HFIR and SNS--based on neutron beamline experiments conducted by more than 1,200 US and international researchers who used the world-leading facilities.

    Fiery sighting: A new physics of eruptions that damage fusion experiments

    Feature describes first direct sighting of a trigger for bursts of heat that can disrupt fusion reactions.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    An effect that Einstein helped discover 100 years ago offers new insight into a puzzling magnetic phenomenon

    Experiments at the Department of Energy's SLAC National Accelerator Laboratory have seen for the first time what happens when magnetic materials are demagnetized at ultrafast speeds of millionths of a billionth of a second: The atoms on the surface of the material move, much like the iron bar did. The work, done at SLAC's Linac Coherent Light Source (LCLS) X-ray laser, was published in Nature earlier this month.

    Found: A precise method for determining how waves and particles affect fusion reactions

    Like surfers catching ocean waves, particles within plasma can ride waves oscillating through the plasma during fusion energy experiments. Now a team of physicists led by PPPL has devised a faster method to determine how much this interaction contributes to efficiency loss in tokamaks.

    Discovery adapts natural membrane to make hydrogen fuel from water

    In a recent study from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen.


    • Filters

    • × Clear Filters

    Argonne scientist elected as SAE Fellow

    Scientist Michael Wang from the U.S. Department of Energy's (DOE) Argonne National Laboratory was recently inducted as a Fellow of the professional engineering organization SAE (Society of Automotive Engineers). The organization reserves this prestigious grade of membership for thosewho have made significant contributions to mobility technology and have demonstrated leadership in their field.

    Top 10 Discoveries of 2018

    Every year, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory compiles a list of the biggest advances made by the Lab's staff scientists, engineers, and visiting researchers. From uncovering mysteries of the universe to building better batteries, here, in no particular order, are our picks for the top 10 discoveries of 2018.

    U.S. Department of Energy Announces $33 Million for Small Business Research and Development Grants

    The U.S. Department of Energy announced it will award 189 grants totaling $33 million to 149 small businesses in 32 states.

    DOE to Provide $16 Million for New Research into Atmospheric and Terrestrial Processes

    The U.S. Department of Energy (DOE) announced a plan to provide $16 million for new observational research aimed at improving the accuracy of today's climate and earth system models.

    Machine learning award powers Argonne leadership in engine design

    When attempting to design engines to be more fuel-efficient and emissions-free, automotive manufacturers have to take into account all the complexity inherent in the combustion process.

    ORNL partners with industry to address multiple nuclear technology challenges

    The Department of Energy's Oak Ridge National Laboratory is collaborating with industry on six new projects focused on advancing commercial nuclear energy technologies that offer potential improvements to current nuclear reactors and move new reactor designs closer to deployment.

    Lithium earns honors for three physicists working to bring the energy that powers the sun to Earth

    Feature describes research of three PPPL physicists who have won the laboratory's 2018 outstanding research awards

    DOE approves technical plan and cost estimate to upgrade Argonne facility; Project will create X-rays that illuminate the atomic scale, in 3D

    The U.S. Department of Energy has approved the technical scope, cost estimate and plan of work for an upgrade of the Advanced Photon Source, a major storage-ring X-ray source at Argonne.

    Costas Soukoulis elected to National Academy of Inventors

    Costas Soukoulis, Ames Laboratory senior scientist and Iowa State University Frances M. Craig Endowed Chair and Distinguished Professor, has been named as a 2018 National Academy of Inventors (NAI) Fellow.

    Biophysicist F. William Studier Elected Fellow of the National Academy of Inventors

    F. William Studier, a Senior Biophysicist Emeritus at the U.S. Department of Energy's Brookhaven National Laboratory and Adjunct Professor of Biochemistry at Stony Brook University, has been elected as a Fellow of the National Academy of Inventors (NAI). He is among 148 renowned academic inventors being recognized by NAI for 2018.


    • Filters

    • × Clear Filters

    Observing Clouds in Four Dimensions

    Six cameras are revolutionizing observations of shallow cumulus clouds.

    A Challenging Future for Tropical Forests

    Mortality rates of moist tropical forests are on the rise due to environmental drivers and related mechanisms.

    Rapid Lake Draining on Ice Sheets Changes How Water Moves in Unexpected Ways

    Widespread fracturing during lake drainage triggers vertical shafts to form that affect the Greenland Ice Sheet.

    New Historical Emissions Trends Estimated with the Community Emissions Data System

    The data system will allow for more detailed, consistent, and up-to-date global emissions trends that will aid in understanding aerosol effects.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    New Method Knocks Out Yeast Genes with Single-Point Precision

    Researchers can precisely study how different genes affect key properties in a yeast used industrially to produce fuel and chemicals.

    How Plants Regulate Sugar Deposition in Cell Walls

    Identified genes involved in plant cell wall polysaccharide production and restructuring could aid in engineering bioenergy crops.

    Scientists Identify Gene Cluster in Budding Yeasts with Major Implications for Renewable Energy

    How yeast partition carbon into a metabolite may offer insights into boosting production for biofuels.

    More Designer Peptides, More Possibilities

    A combined experimental and modeling approach contributes to understanding small proteins with potential use in industrial, therapeutic applications.


    Spotlight

    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory





    Showing results

    0-4 Of 2215