DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-03-07 11:00:36
    • Article ID: 709308

    Scientists Take a Deep Dive Into the Imperfect World of 2D Materials

    Berkeley Lab-led team combines several nanoscale techniques to gain new insights on the effects of defects in a well-studied monolayer material

    • Credit: Katherine Cochrane/Berkeley Lab

      This image shows an illustration of the atomic structure of a 2D material called tungsten disulfide. Tungsten atoms are shown in blue and sulfur atoms are shown in yellow. The background image, taken by an electron microscope at Berkeley Lab’s Molecular Foundry, shows groupings of flakes of the material (dark gray) grown by a process called chemical vapor deposition on a titanium dioxide layer (light gray).

    • Credit: Roland Koch/Berkeley Lab

      This animation displays a scan of arrow-shaped flakes of a 2D material. Samples were scanned across their electron energy, momentum, and horizontal and vertical coordinates using an X-ray-based technique known as nanoARPES at Berkeley Lab’s Advanced Light Source. Red represents the highest intensity measured, followed by orange, yellow, green, and blue, and purple (least intense).

    • Credit: Christoph Kastl/Berkeley Lab

      This sequence of images shows a variety of energy intensities (white and yellow) at the edges of a 2D material known as tungsten disulfide, as measured via different techniques: photoluminescense intensity (far left); contact potential difference map (second from left); exciton emission intensity (third from left) – excitons are pairs consistent of an electrons and their quasiparticle counterpart, called a hole; trion emission intensity (far right) – trions are gropus of three charged quasiparticles consistening of either two electrons and a hole or two holes and an electron).

    Nothing is perfect, or so the saying goes, and that’s not always a bad thing. In a study at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), scientists learned how nanoscale defects can enhance the properties of an ultrathin, so-called 2D material. 

    They combined a toolbox of techniques to home in on natural, nanoscale defects formed in the manufacture of tiny flakes of a monolayer material known as tungsten disulfide (WS2) and measured their electronic effects in detail not possible before.

    “Usually we say that defects are bad for a material,” said Christoph Kastl, a postdoctoral researcher at Berkeley Lab’s Molecular Foundry and the lead author of the study, published in the journal ACS Nano. “Here they provide functionality.”

    Tungsten disulfide is a well-studied 2D material that, like other 2D materials of its kind, exhibits special properties because of its atomic thinness. It is particularly well-known for its efficiency in absorbing and emitting light, and it is a semiconductor.

    Members of this family of 2D materials could serve as high-efficiency computer transistors and as other electronics components, and they also are prime candidates for use in ultrathin, high-efficiency solar cells and LED lighting, as well as in quantum computers.

    These 2D materials could also be incorporated in new forms of memory storage and data transfer, such as spintronics and valleytronics, that would revolutionize electronics by making use of materials in new ways to make smaller and more efficient devices.

    The latest result marks the first comprehensive study at the Lab’s Advanced Light Source (ALS) involving a technique called nanoARPES, which researchers enlisted to probe the 2D samples with X-rays. The X-rays knocked out electrons in the sample, allowing researchers to measure their direction and energy. This revealed nanoscale defects and how the electrons interact with each other.

    The nanoARPES capability is housed in an X-ray beamline, launched in 2016, known as MAESTRO (Microscopic and Electronic Structure Observatory). It is one of dozens of specialized beamlines at the ALS, which produces light in different forms – from infrared to X-rays – for a variety of simultaneous experiments.

    “It’s a very big advance to get this electronic structure on small length scales,” said Eli Rotenberg, a senior staff scientist at the ALS who was a driving force in developing MAESTRO and served as one of the study’s leaders. “That matters for real devices.”

    The team also enlisted a technique known as XPS (X-ray photoelectron spectroscopy) to study the chemical makeup of a sample at very small scales; a form of AFM (atomic force microscopy) to view structural details approaching the atomic scale; and a combined form of optical spectroscopy (Raman/photoluminescence spectroscopy) to study how light interacts with the electrons at microscope scales. 

    The various techniques were applied at the Molecular Foundry, where the material was synthesized, and at the ALS. The sample used in the study contained microscopic, roughly triangular flakes, each measuring about 1 to 5 microns (millionths of a meter) across. They were grown atop titanium dioxide crystals using a conventional layering process known as chemical vapor deposition, and the defects were largely concentrated around the edges of the flakes, a signature of the growth process. Most of the experiments focused on a single flake of tungsten disulfide.

    Adam Schwartzberg, a staff scientist at the Molecular Foundry who served as a co-lead in the study, said, “It took a combination of multiple types of techniques to pin down what’s really going on.”

    He added, “Now that we know what defects we have and what effect they have on the properties of the material, we can use this information to reduce or eliminate defects – or if you want the defect, it gives us a way of knowing where the defects are,” and provides fresh insight about how to propagate and amplify the defects in the sample-production process.

    While the concentration of edge defects in the WS2 flakes was generally known before the latest study, Schwartzberg said that their effects on materials performance hadn’t previously been studied in such a comprehensive and detailed way.

    Researchers learned that a 10 percent deficiency in sulfur atoms was associated with the defective edge regions of the samples compared to other regions, and they identified a slighter, 3 percent sulfur deficiency toward the center of the flakes. Researchers also noted a change in the electronic structure and higher abundance of freely moving electrical charge-carriers associated with the high-defect edge areas. 

    For this study, the defects were due to the sample-growth process. Future nanoARPES studies will focus on samples with defects that are induced through chemical processing or other treatments. Researchers hope to control the amount and kinds of atoms that are affected, and the locations where these defects are concentrated in the flakes.

    Such tiny tweaks could be important for processes like catalysis, which is used to enhance and accelerate many important industrial chemical production processes, and to explore quantum processes that rely on the production of individual particles that serve as information carriers in electronics. 

    Because research of WS2 and related 2D materials is still in its infancy, there are many unknowns about the roles specific types of defects play in these materials, and Rotenberg noted that there is a world of possibilities for so-called “defect engineering” in these materials.

    In addition, MAESTRO’s nanoARPES has the ability to study the electronic structures of stacks of different types of 2D material layers. This can help researchers understand how their properties depend on their physical arrangement, and to explore working devices that incorporate 2D materials. 

    “The unprecedented small scale of the measurements – currently approaching 50 nanometers – makes nanoARPES a great discovery tool that will be particularly useful to understand new materials as they are invented,” Rotenberg said.

    MAESTRO is one of the priority beamlines to be upgraded as part of the Lab’s ALS Upgrade (ALS-U) project, a major undertaking that will produce even brighter, more focused beams of light for experiments. “The ALS-U project will further improve the performance of the nanoARPES technique,” Rotenberg said, “making its measurements 10 to 30 times more efficient and significantly improving our ability to reach even shorter length scales.”

    NanoARPES could play an important role in the development of new solar technologies, because it allows researchers to see how nanoscale variations in chemical makeup, number of defects, and other structural features affect the electrons that ultimately govern their performance. These same issues are important for many other complex materials, such as superconductors, magnets, and thermoelectrics – which convert temperature to current and vice versa – so nanoARPES will also be very useful for these as well.

    The Molecular Foundry and ALS are both DOE Office of Science User Facilities.

    Researchers from the Berkeley Lab Chemical Sciences Division, Aarhus University in Denmark, and Montana State University also participated in this study. The work was supported by the U.S. Department of Energy’s Office of Basic Energy Sciences, the DOE Early Career Grant program, Berkeley Lab’s Laboratory Directed Research and Development program, the Villum Foundation, and the German Academic Exchange Service.

    # # #

     
    Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Superconducting Films for Particle Acceleration

    Superconducting Films for Particle Acceleration

    Researchers demonstrated record accelerating cavity performance using a technique that could lead to significant cost savings.

    Electron (or 'Hole') Pairs May Survive Effort to Kill Superconductivity

    Electron (or 'Hole') Pairs May Survive Effort to Kill Superconductivity

    Scientists seeking to understand the mechanism underlying superconductivity in "stripe-ordered" cuprates--copper-oxide materials with alternating areas of electric charge and magnetism--discovered an unusual metallic state when attempting to turn superconductivity off. They found that under the conditions of their experiment, even after the material loses its ability to carry electrical current with no energy loss, it retains some conductivity--and possibly the electron (or hole) pairs required for its superconducting superpower.

    Parceling Particle Beams

    Parceling Particle Beams

    Beam chopper cuts accelerator-generated ion beams under highly demanding conditions.

    An Interaction of Slipping Beams

    An Interaction of Slipping Beams

    Successful models of the fraught dynamics of two particle beams in close contact lead to smoother sailing in an area of particle acceleration.

    Hybrid Nanostructure Steps Up Light-Harvesting Efficiency

    Hybrid Nanostructure Steps Up Light-Harvesting Efficiency

    Energy is transferred through the structure in a way that boosts its response to light, showing promise for solar cell applications.

    Pulsed Electron Beams Shed Light on Plastics Production

    Pulsed Electron Beams Shed Light on Plastics Production

    Researchers at Berkeley Lab have developed a pulsed electron beam technique that enables high-resolution imaging of magnesium chloride without damage. This approach could apply to a vast range of beam-sensitive materials, and help to create a path toward sustainable plastics.

    Tracking major sources of energy loss in compact fusion facilities

    Tracking major sources of energy loss in compact fusion facilities

    Analysis of energy loss in low-aspect ratio tokamaks opens a new chapter in the development of predictions of transport in such facilities.

    Computer Simulation Shows Astrophysical Particle Acceleration

    Computer Simulation Shows Astrophysical Particle Acceleration

    Particles act in a way that justifies extrapolating simulation results to astrophysical scales.

    How Cryptocurrency Discussions Spread

    How Cryptocurrency Discussions Spread

    PNNL's Dr. Svitlana Volkova and her the team analyzed three years worth of discussions on Reddit from January 2015 to January 2018 measuring the speed and scale of discussion spread related to Bitcoin, Ethereum, and Monero cryptocurrencies.

    What if Dark Matter is Lighter? Report Calls for Small Experiments to Broaden the Hunt

    What if Dark Matter is Lighter? Report Calls for Small Experiments to Broaden the Hunt

    Theorized dark matter particles haven't yet shown up where scientists had expected them. So Berkeley Lab researchers are now designing new and nimble experiments that can look for dark matter in previously unexplored ranges of particle mass and energy, and using previously untested methods.


    • Filters

    • × Clear Filters

    Energy Department to Invest $32 Million in Computer Design of Materials

    The U.S. Department of Energy announced that it will invest $32 million over the next four years to accelerate the design of new materials through use of supercomputers.

    Demarteau to head ORNL Physics Division

    Demarteau to head ORNL Physics Division

    The Department of Energy's Oak Ridge National Laboratory has named Marcel Demarteau as Physics Division Director, effective June 17.

    PPPL and Oak Ridge manage new DOE program designed to speed development of fusion energy with private-public partnerships

    PPPL and Oak Ridge manage new DOE program designed to speed development of fusion energy with private-public partnerships

    Feature describes PPPL role in innovative DOE program to promote public-private partnerships to speed development of fusion energy.

    ORNL welcomes seven new research fellows to Innovation Crossroads

    ORNL welcomes seven new research fellows to Innovation Crossroads

    Oak Ridge National Laboratory welcomed seven technology innovators to join the third cohort of Innovation Crossroads, the Southeast's only entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

    New DOE program connects fusion companies with national labs, taps ORNL to lead

    New DOE program connects fusion companies with national labs, taps ORNL to lead

    The Department of Energy has established the Innovation Network for Fusion Energy program, or INFUSE, to encourage private-public research partnerships for overcoming challenges in fusion energy development.

    Department of Energy Announces $75 Million for High Energy Physics Research

    The U.S. Department of Energy (DOE) announced $75 million in funding for 66 university research awards on a range of topics in high energy physics to advance knowledge of how the universe works at its most fundamental level.

    Ames Laboratory names James Morris Chief Research Officer

    Ames Laboratory names James Morris Chief Research Officer

    Dr. James Morris has been named Chief Research Officer at the Department of Energy's (DOE) Ames Laboratory. His appointment follows an extensive search and will be effective June 17, 2019.

    Four scientists at PPPL awarded national and international honors

    Four scientists at PPPL awarded national and international honors

    Feature profiles four PPPL scientists who have received high honors.

    Brookhaven's Mircea Cotlet Named a Battelle "Inventor of the Year"

    Brookhaven's Mircea Cotlet Named a Battelle "Inventor of the Year"

    The global science and technology organization Battelle recognized materials scientist Mircea Cotlet of Brookhaven Lab's Center for Functional Nanomaterials for his research in applying self-assembly methods to control the interfaces between nanomaterials and other light-interacting components.

    Berkeley Lab Project to Pinpoint Methane 'Super Emitters'

    Berkeley Lab Project to Pinpoint Methane 'Super Emitters'

    Methane, a potent greenhouse gas that traps about 30 times more heat than carbon dioxide, is commonly released from rice fields, dairies, landfills, and oil and gas facilities - all of which are plentiful in California. Now Berkeley Lab has been awarded $6 million by the state to find "super emitters" of methane in an effort to quantify and potentially mitigate methane emissions.


    • Filters

    • × Clear Filters
    Superconducting Films for Particle Acceleration

    Superconducting Films for Particle Acceleration

    Researchers demonstrated record accelerating cavity performance using a technique that could lead to significant cost savings.

    Parceling Particle Beams

    Parceling Particle Beams

    Beam chopper cuts accelerator-generated ion beams under highly demanding conditions.

    An Interaction of Slipping Beams

    An Interaction of Slipping Beams

    Successful models of the fraught dynamics of two particle beams in close contact lead to smoother sailing in an area of particle acceleration.

    Computer Simulation Shows Astrophysical Particle Acceleration

    Computer Simulation Shows Astrophysical Particle Acceleration

    Particles act in a way that justifies extrapolating simulation results to astrophysical scales.

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    Engineers can model heat distribution in reactor designs with fewer or no approximations.

    Simulations Shed Light on Self-Healing Cement

    Simulations Shed Light on Self-Healing Cement

    A first-of-its-kind computer simulation reveals self-healing cement for geothermal and oil and gas wells performs better than originally thought.

    Solving a Beta Decay Puzzle

    Solving a Beta Decay Puzzle

    Researchers use advanced nuclear models to explain 50-year mystery surrounding the process stars use to transform elements.

    Why Are These Extremely Light Calcium Isotopes So Small?

    Why Are These Extremely Light Calcium Isotopes So Small?

    The radii of three proton-rich calcium isotopes are smaller than previously predicted because models didn't account for two nuclear interactions.

    Tiny Vortices Could One Day Haul Microscopic Cargo

    Tiny Vortices Could One Day Haul Microscopic Cargo

    The behavior of active magnetic liquids suggests new pathways to transport particles across surfaces and build materials that self-heal.

    Raised on Copper: A New Material for Tougher Devices

    Raised on Copper: A New Material for Tougher Devices

    Discovery of new boron-containing phase opens the door for resilient flexible electronics.


    Spotlight

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code
    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom
    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    The Future of Today's Electric Power Systems
    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Supporting the Development of Offshore Wind Power Plants
    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Stairway to Science
    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    After-School Energy Rush
    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Bringing Diversity Into Computational Science Through Student Outreach
    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM
    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215