DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-06-12 14:20:11
    • Article ID: 714302

    Electron (or 'Hole') Pairs May Survive Effort to Kill Superconductivity

    Emergence of unusual metallic state supports role of "charge stripes" in formation of charge-carrier pairs essential to resistance-free flow of electrical current

    • Showing their stripes: Brookhaven Lab physicists present new evidence that stripes—alternating areas of charge and magnetism in certain copper-oxide materials—are good for forming the charge-carrier pairs needed for electrical current to flow with no resistance. Left to right: Qiang Li, Genda Gu, John Tranquada, Alexei Tsvelik, and Yangmu Li in front of an image of wind-blown ripples in desert sand.

    • This image represents the stripes of magnetism and charge in the cuprate (copper and oxygen) layers of the superconductor LBCO. Gray shading represents the modulation of the charge ("holes," or electron vacancies), which is maximized in stripes that separate areas of magnetism, indicated by arrows representing alternating magnetic orientations on adjacent copper atoms.

    • Copper-oxide layers of LBCO (the lanthanum-barium layers would be between these). 3-D superconductivity occurs when current can flow freely in any direction within and between the copper-oxide layers, while 2-D superconductivity exists when current moves freely only within the layers (not perpendicular). The perpendicular orientations of stripe patterns from one layer to the next may be part of what inhibits movement of current between layers.

    • A phase diagram of LBCO at different temperatures and magnetic field strengths. Colors represent how resistant the material is to the flow of electrical current, with purple being a superconductor with no resistance. When cooled to near absolute zero with no magnetic field, the material acts as a 3-D superconductor. As the magnetic field strength goes up, 3-D superconductivity disappears, but 2-D superconductivity reappears at higher field strength, then disappears again. At the highest fields, resistance grew, but the material retained some unusual metallic conductivity, which the scientists interpreted as an indication that charge-carrier pairs might persist even after superconductivity is destroyed.

    Electron (or 'Hole') Pairs May Survive Effort to Kill Superconductivity

    Emergence of unusual metallic state supports role of "charge stripes" in formation of charge-carrier pairs essential to resistance-free flow of electrical current

    EMBARGOED for release on Friday, June 14, 2019 at 2 p.m. U.S. Eastern Time

    UPTON, NY—Scientists seeking to understand the mechanism underlying superconductivity in "stripe-ordered" cuprates—copper-oxide materials with alternating areas of electric charge and magnetism—discovered an unusual metallic state when attempting to turn superconductivity off. They found that under the conditions of their experiment, even after the material loses its ability to carry electrical current with no energy loss, it retains some conductivity—and possibly the electron (or hole) pairs required for its superconducting superpower.

    "This work provides circumstantial evidence that the stripe-ordered arrangement of charges and magnetism is good for forming the charge-carrier pairs required for superconductivity to emerge," said John Tranquada, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory.

    Tranquada and his co-authors from Brookhaven Lab and the National High Magnetic Field Laboratory at Florida State University, where some of the work was done, describe their findings in a paper just published in Science Advances [https://advances.sciencemag.org/content/5/6/eaav7686]. A related paper [https://www.pnas.org/content/early/2019/06/07/1902928116] in the Proceedings of the National Academy of Sciences by co-author Alexei Tsvelik, a theorist at Brookhaven Lab, provides insight into the theoretical underpinnings for the observations.

    The scientists were studying a particular formulation of lanthanum barium copper oxide (LBCO) that exhibits an unusual form of superconductivity at a temperature of 40 Kelvin (-233 degrees Celsius). That's relatively warm in the realm of superconductors. Conventional superconductors must be cooled with liquid helium to temperatures near -273°C (0 Kelvin or absolute zero) to carry current without energy loss. Understanding the mechanism behind such "high-temperature" superconductivity might guide the discovery or strategic design of superconductors that operate at higher temperatures.

    "In principle, such superconductors could improve the electrical power infrastructure with zero-energy-loss power transmission lines," Tranquada said, "or be used in powerful electromagnets for applications like magnetic resonance imaging (MRI) without the need for costly cooling."

    The mystery of high-Tc

    LBCO was the first high-temperature (high-Tc) superconductor discovered, some 33 years ago. It consists of layers of copper-oxide separated by layers composed of lanthanum and barium. Barium contributes fewer electrons than lanthanum to the copper-oxide layers, so at a particular ratio, the imbalance leaves vacancies of electrons, known as holes, in the cuprate planes. Those holes can act as charge carriers and pair up, just like electrons, and at temperatures below 30K, current can move through the material with no resistance in three dimensions—both within and between the layers.

    An odd characteristic of this material is that, in the copper-oxide layers, at the particular barium concentration, the holes segregate into "stripes" that alternate with areas of magnetic alignment. Since this discovery, in 1995, there has been much debate about the role these stripes play in inducing or inhibiting superconductivity.

    In 2007 [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.067001], Tranquada and his team discovered the most unusual form of superconductivity in this material at the higher temperature of 40K. If they altered the amount of barium to be just under the amount that allowed 3-D superconductivity, they observed 2-D superconductivity—meaning just within the copper-oxide layers but not between them.

    "The superconducting layers seem to decouple from one another," Tsvelik, the theorist, said. The current can still flow without loss in any direction within the layers, but there is resistivity in the direction perpendicular to the layers. This observation was interpreted as a sign that charge-carrier pairs were forming "pair density waves" with orientations perpendicular to one another in neighboring layers. "That's why the pairs can't jump from layer to another. It would be like trying to merge into traffic moving in a perpendicular direction. They can't merge," Tsvelik said.

    Superconducting stripes are hard to kill

    In the new experiment, the scientists dove deeper into exploring the origins of the unusual superconductivity in the special formulation of LBCO by trying to destroy it. "Often times we test things by pushing them to failure," Tranquada said. Their method of destruction was exposing the material to powerful magnetic fields generated at Florida State.

    "As the external field gets bigger, the current in the superconductor grows larger and larger to try to cancel out the magnetic field," Tranquada explained. "But there's a limit to the current that can flow without resistance. Finding that limit should tell us something about how strong the superconductor is."

    For example, if the stripes of charge order and magnetism in LBCO are bad for superconductivity, a modest magnetic field should destroy it. "We thought maybe the charge would get frozen in the stripes so that the material would become an insulator," Tranquada said.

    But the superconductivity turned out to be a lot more robust.

    Using perfect crystals of LBCO grown by Brookhaven physicist Genda Gu, Yangmu Li, a postdoctoral fellow who works in Tranquada's lab, took measurements of the material's resistance and conductivity under various conditions at the National High Magnetic Field Laboratory. At a temperature just above absolute zero with no magnetic field present, the material exhibited full, 3-D superconductivity. Keeping the temperature constant, the scientists had to ramp up the external magnetic field significantly to make the 3-D superconductivity disappear. Even more surprising, when they increased the field strength further, the resistance within the copper-oxide planes went down to zero again!

    "We saw the same 2-D superconductivity we'd discovered at 40K," Tranquada said.

    Ramping up the field further destroyed the 2-D superconductivity, but it never completely destroyed the material's ability to carry ordinary current.

    "The resistance grew but then leveled off," Tranquada noted.

    Signs of persistent pairs?

    Additional measurements made under the highest-magnetic-field indicated that the charge-carriers in the material, though no longer superconducting, may still exist as pairs, Tranquada said.

    "The material becomes a metal that no longer deflects the flow of current," Tsvelik said. "Whenever you have a current in a magnetic field, you would expect some deflection of the charges—electrons or holes—in the direction perpendicular to the current [what scientists call the Hall effect]. But that's not what happens. There is no deflection."

    In other words, even after the superconductivity is destroyed, the material keeps one of the key signatures of the "pair density wave" that is characteristic of the superconducting state.

    "My theory relates the presence of the charge-rich stripes with the existence of magnetic moments between them to the formation of the pair density wave state," Tsvelik said. "The observation of no charge deflection at high field shows that the magnetic field can destroy the coherence needed for superconductivity without necessarily destroying the pair density wave."

    "Together these observations provide additional evidence that the stripes are good for pairing," Tranquada said. "We see the 2-D superconductivity reappear at high field and then, at an even higher field, when we lose the 2-D superconductivity, the material doesn't just become an insulator. There's still some current flowing. We may have lost coherent motion of pairs between the stripes, but we may still have pairs within the stripes that can move incoherently and give us an unusual metallic behavior."

    This work was funded by the DOE Office of Science. The National High Magnetic Field Laboratory at Florida State University is supported by the National Science Foundation.

    Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science [https://energy.gov/science].

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

    Follow @BrookhavenLab on Twitter [http://twitter.com/BrookhavenLab] or find us on Facebook [http://www.facebook.com/BrookhavenLab/].

    ***

    Related Links

    Science Advances paper: "Tuning from failed superconductor to failed insulator with magnetic field " [https://advances.sciencemag.org/content/5/6/eaav7686]

    PNAS paper: "Superconductor-metal transition in odd-frequency–paired superconductor in a magnetic field" [https://www.pnas.org/content/early/2019/06/07/1902928116]

    Unlocking the Secrets of High-temperature Superconductors [https://www.bnl.gov/newsroom/news.php?a=110598]

    Disappearing Superconductivity Reappears — in 2-D [https://www.bnl.gov/newsroom/news.php?a=110865]

    Media Contacts:

    Contact: Karen McNulty Walsh [kmcnulty@bnl.gov], (631) 344-8350, or Peter Genzer [genzer@bnl.gov], (631) 344-3174

    X
    X
    X
    • Filters

    • × Clear Filters
    Ultrafast lasers probe elusive chemistry at the liquid-liquid interface

    Ultrafast lasers probe elusive chemistry at the liquid-liquid interface

    Real-time measurements captured by researchers at the Department of Energy's Oak Ridge National Laboratory provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

    Dark Energy Survey census of the smallest galaxies hones the search for dark matter

    Dark Energy Survey census of the smallest galaxies hones the search for dark matter

    Scientists on the Dark Energy Survey have used observations of the smallest known galaxies to better understand dark matter, the mysterious substance that makes up 85% of the matter in the universe. The smallest galaxies can contain hundreds to thousands of times more dark matter than normal visible matter, making them ideal laboratories for studying this mysterious substance. By performing a rigorous census of small galaxies surrounding our Milky Way, scientists on the Dark Energy Survey have been able to constrain the fundamental particle physics that governs dark matter.

    Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    ORNL Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    Scientists propose a novel method for controlling fusion reactions

    Scientists propose a novel method for controlling fusion reactions

    Researchers at the DOE's Princeton Plasma Physics Laboratory have developed a pulsed method for stabilizing magnetic islands that can cause disruptions in fusion plasmas.

    Cementing the future

    Cementing the future

    Researchers from Argonne National Laboratory's Advanced Photon Source and Center for Nanoscale Materials are utilizing nano- and micro-scale imaging to better understand the chemical processes behind the formation of cement.

    Fat-Based Molecules are Key to Zika Virus Infection

    Fat-Based Molecules are Key to Zika Virus Infection

    Researchers from PNNL have helped colleagues at OHSU identify lipid molecules required for Zika infection in human cells. The specific lipids involved could also be a clue to why the virus primarily infects brain tissue.

    Another Win for the Standard Model: New Study Defies Decades-Old 'Discrepancy' With High-Precision Measurement

    Another Win for the Standard Model: New Study Defies Decades-Old 'Discrepancy' With High-Precision Measurement

    A new study dives into a decades-old discrepancy from a Standard Model of particle physics pillar known as "lepton flavor universality," and provides strong evidence to resolve it.

    Influx of Electric Vehicles Accelerates Need for Grid Planning

    Influx of Electric Vehicles Accelerates Need for Grid Planning

    A new PNNL report says the western U.S. bulk power system can reliably support projected growth of up to 24 million electric vehicles through 2028, but challenges will arise as EV adoption grows beyond that threshold. This study is the most comprehensive of its kind, integrating multiple variables not evaluated before, such as growth in commercial delivery fleets and long-haul trucks, as well as large-scale and long-term EV charging scenarios and strategies.

    First results of an upgraded experiment highlight the value of lithium for the creation of fusion energy

    First results of an upgraded experiment highlight the value of lithium for the creation of fusion energy

    Initial results of the Lithium Tokamak Experiment-Beta (LTX-β) at PPPL show that the enhancements significantly improve performance of the plasma that will fuel future fusion reactors.

    Hybrid inverter integrates distributed energy resources, supports smart grid function

    Hybrid inverter integrates distributed energy resources, supports smart grid function

    Oak Ridge National Laboratory researchers have developed an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and smoothly interact with the utility power grid.


    • Filters

    • × Clear Filters
    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    The Department of Energy's Oak Ridge National Laboratory has licensed two additive manufacturing-related technologies that aim to streamline and ramp up production processes to Knoxville-based Magnum Venus Products, Inc., a global manufacturer of fluid movement and product solutions for industrial applications in composites and adhesives.

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    The Department of Energy has awarded $60 million to a new solar fuels initiative - called the Liquid Sunlight Alliance (LiSA) - led by Caltech in close partnership with Berkeley Lab. LiSA will build on the foundational work of the Joint Center for Artificial Photosynthesis (JCAP).

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Profile of PPPL winner of APS Dawson Award for outstanding achievement in plasma physics research.

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Bob May's career-long aspiration has been to keep people from all walks of life and in different work environments safe from radiation in the workplace. Now, the deputy director of Environment, Safety and Health at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has been honored for his dedication to the field by being named a fellow of the Health Physics Society.

    Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

    Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

    Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists' methods for correcting them or avoiding them to begin with.

    PNNL's Vapor Detection Technology Named GeekWire's 'Innovation of the Year'

    PNNL's Vapor Detection Technology Named GeekWire's 'Innovation of the Year'

    A PNNL-developed technology that can quickly detect explosive vapors, deadly chemicals and illicit drugs with unparalleled accuracy has been named the 2020 Innovation of the Year by GeekWire, the Seattle-based technology news company.

    Accomplished early career physicist is first recipient of fellowship that honors pioneering PPPL physicist Robert Ellis Jr.

    Accomplished early career physicist is first recipient of fellowship that honors pioneering PPPL physicist Robert Ellis Jr.

    An early career physicist with a strong background in plasma physics has been named to a new postdoctoral fellowship named for Robert Ellis Jr., a pioneering physicist at PPPL, that is aimed at diversifying the plasma physics field.

    U.S. Department of Energy to announce "Launch to the Future: Quantum Internet" at UChicago

    U.S. Department of Energy to announce "Launch to the Future: Quantum Internet" at UChicago

    On Thursday, July 23, Secretary of the U.S. Department of Energy Dan Brouillette will join government, academic, and science leaders at the University of Chicago to unveil a report outlining a blueprint for the construction of a national quantum internet, bringing the U.S. to the forefront of the global quantum race and ushering in a new era of communications.

    Department of Energy Names Three Office of Science Distinguished Scientists Fellows

    The U.S. Department of Energy (DOE) named three National Laboratory scientists as DOE Office of Science Distinguished Scientists Fellows

    U.S. Department of Energy unveils blueprint for the quantum internet at 'Launch to the Future: Quantum Internet' event

    U.S. Department of Energy unveils blueprint for the quantum internet at 'Launch to the Future: Quantum Internet' event

    The U.S. Department of Energy unveils a report that lays out a blueprint strategy for the development of a national quantum internet, bringing the United States to the forefront of the global quantum race and ushering in a new era of communications. This report provides a pathway to ensure the development of the National Quantum Initiative Act.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215