DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-08-19 16:05:45
    • Article ID: 717687

    Fermilab’s newest accelerator delivers first results

    • Credit: Photo: Giulio Stancari

      Scientists using the 40-meter-circumference Integrable Optics Test Accelerator saw their first results from IOTA this summer.

    Fermilab’s newest particle accelerator is small but mighty. The Integrable Optics Test Accelerator, designed to be versatile and flexible, is enabling researchers to push the frontiers of accelerator science.

    Instead of smashing beams together to study subatomic particles like most high-energy physics research accelerators, IOTA is dedicated to exploring and improving the particle beams themselves.

    IOTA researchers say they are excited by the observation of single-electron beams near the speed of light and the first results on decreasing beam instabilities. They are eager to use their single-electron technique to probe aspects of quantum science and see future breakthroughs in accelerator science.

    “The scientists who designed the accelerator are also the scientists that use it,” said Vladimir Shiltsev, a Fermilab distinguished scientist and one of the founders of IOTA. “It’s an opportunity to get great insight into the physics of beams at relatively small cost.”

    Versatility is the mother of innovation

    In the Fermilab Accelerator Science and Technology facility, a particle accelerator delivers intense bursts of electrons that are then stored in IOTA’s 40-meter-circumference ring, where they circulate about 7.5 million times every second at near the speed of light. The system’s design enables a small team to adjust or exchange components in the beamline to perform a variety of experiments on the frontier of accelerator science.

    “This machine was designed with a lot of flexibility in mind,” said Fermilab scientist Alexander Valishev, head of the team that developed and constructed IOTA.

    Consider the accelerator magnets, which are responsible for the size and shape of the particle beam’s profile. At IOTA, every magnet is powered separately so that researchers can reconfigure the machine for completely different experiments in a few minutes. At other accelerator facilities, a comparable change could require a lengthy shutdown of weeks or months.

    For research accelerators that serve researchers, the focus is typically on maximizing running time and maintaining well-understood, established beam parameters. In contrast, the IOTA team expects the accelerator to be routinely shut down, reconfigured and restarted. Its technical and operational flexibilities make it easier for outside teams to use IOTA to conduct their own experiments, exploring a variety of topics at the frontier of accelerator and beam physics.

    IOTA’s versatility has already attracted groups from Lawrence Berkeley National Laboratory; Northern Illinois University; SLAC National Accelerator Laboratory; University of California, Berkeley; University of Chicago and other institutions. Not only are they conducting exciting science, but early-career researchers are also receiving valuable practical training in accelerator and beam science that can be challenging to come by.

    “If you wanted to have a comparable scientific program at a more traditional facility, it would be very difficult, if not prohibitive. Typically, those facilities are designed for a narrow range of research, aren’t easily modified and require nearly continuous operation,” said Fermilab scientist Jonathan Jarvis, who works on IOTA. “But here at IOTA, we are a purpose-built facility for frontier topics in accelerator research and development, and we have those flexibilities by design.”

    First results: Testing IOTA’s IO

    As part of the only dedicated ring-based accelerator R&D facility for high-intensity beam physics in the United States, IOTA is designed to develop technologies to increase the number of particles in a beam without increasing the beam’s size and thus the size and cost of the accelerator. Since all particles in the beam have an identical charge, they electrically repel each other, and as more particles are packed into the beam, it can become unstable. Particles may behave chaotically and escape. It takes expertise and innovative technology to tame a dense particle beam.

    To that end, IOTA researchers are investigating a novel technique called nonlinear integrable optics. The technique uses specially designed sets of magnets configured to prevent beam instabilities, significantly better than the configurations of magnets used over the past 50 years.

    To test the nonlinear integrable optics technique, IOTA researchers deliberately produced instability in the beam. They then measured how difficult it was to provoke unstable behavior in IOTA’s electron beam both with and without the influence of the magnetic fields

    The technique was a winner: Scientists observed that these specialized magnets significantly decreased the instability.

    During the next run of the system, the team plans to more rigorously study this effect.

    “The first result is merely a demonstration,” Valishev said. “But I think it’s already a big accomplishment.”

    Watching a single electron near the speed of light

    In a first for Fermilab, the researchers have also observed the circulation of a single electron.

    The IOTA beam, when injected into the storage ring, can contain about a billion electrons. As the beam circulates, electrons tend to escape the beam due to collisions with one another or with stray gas molecules in the beam pipe. So if you want to see an electron fly solo around the ring, it is just a matter of waiting.

    The real trick is being able to observe the last electron left “standing.”

    The fast-moving electrons emit visible light as they travel along the curves of the ring. This light is synchrotron radiation, which is emitted when charged particles moving near the speed of light change direction. The light provides researchers with information about the beam, including how many electrons are in it.

    IOTA researchers used the synchrotron radiation to observe the loss of electrons, one by one, until they finally witnessed a solitary electron.

    On their next round, rather than play the waiting game to get down to a beam of one electron, the team tried a faster, more deliberate approach. They devised a way to instead inject single electrons into IOTA on demand. It worked. The method reliably saw lone particles traveling around the ring.

    The wait was over.

    This feat is more than just a novel curiosity. The ability to store and observe a single electron, or even a very small number of electrons moving around at high speeds, creates opportunities to probe interesting quantum science.

    “Everything we do is rather macroscopic, so you wouldn’t think of any of this facility, let alone a 40-meter ring, as a quantum instrument,” Jarvis said. “But we’ve got this situation where there’s an individual particle circulating in the ring at nearly the speed of light, and it gives us fascinating opportunities to do something that is very quantum in nature.”

    For instance, in its upcoming run, IOTA will become the first facility in the world with the ability to precisely redirect synchrotron light back on the particle that generated it.

    This capability opens the door to a wide variety of fundamental quantum experiments and will also enable Fermilab scientists to attempt the world’s first demonstration of a powerful technique called optical stochastic beam cooling. Generally, beam cooling methods sap accelerated particles of their chaotic or frenetic motion. Optical stochastic cooling is expected to be thousands of times stronger than the current state of the art and is a perfect example of the high-impact returns that IOTA is targeting.

    “We’ve got this situation where there’s an individual particle circulating in the ring at nearly the speed of light, and it gives us fascinating opportunities to do something that is very quantum in nature.”

    Accelerating into the future: proton beams, electron lenses and more

    IOTA is currently set up to circulate electrons, and this work sets the stage for future, more challenging experiments with protons.

    The high-energy electron beam naturally shrinks to a smaller size due to synchrotron radiation, which makes it a well-behaved system for IOTA researchers to confirm important parts of beam physics theories.

    In contrast to IOTA’s electron beam, its forthcoming experiments with protons will see beam circulate at low velocity, be significantly larger and be strongly affected by the repulsive forces between beam particles. Research into the behavior of such proton beams will be integral to understanding how nonlinear integrable optics can be effectively applied in the high-power accelerators of the future.

    And with both electrons and protons in the mix, scientists can also advance to another exciting phase in IOTA’s research program: electron lenses. Electron lenses are yet another technique that researchers are investigating in their quest to create stable particle beams. This technique uses the negative charge of electrons to oppose the positive charges of protons to pull the protons into a compact, stable beam. The electron lens will also allow IOTA scientists to demonstrate the nonlinear integrable optics concept using special charge distributions rather than the specialized nonlinear magnets.

    With its breadth of unique capabilities, IOTA and its team are ready for several years of exciting research.

    “Frontier science requires frontier research and development, and at IOTA, we are focused on realizing those major innovations that could invigorate accelerator-based high-energy physics for the next several decades,” Jarvis said.

    This work is supported by the Department of Energy Office of Science.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Science Snapshots: messenger proteins, new TB drug, artificial photosynthesis

    Science Snapshots: messenger proteins, new TB drug, artificial photosynthesis

    Science Snapshots: messenger proteins, new TB drug, artificial photosynthesis

    Plastics, Fuels and Chemical Feedstocks From CO2? They're Working on It

    Plastics, Fuels and Chemical Feedstocks From CO2? They're Working on It

    Four SUNCAT scientists describe recent research results related to the quest to capture CO2 from the smokestacks of factories and power plants and use renewable energy to turn it into industrial feedstocks and fuels.

    Getting a look under the hood of topological insulators

    Getting a look under the hood of topological insulators

    Because of topological insulators' unique electronic properties and their potential use in spintronic devices and even conceivably as transistors for quantum computers, scientists at the U.S. Department of Energy's Argonne National Laboratory investigated the dynamics of the conducting surface electrons in these materials.

    New Investigation Cuts Through the Haze Surrounding "Smoke-Free" Tobacco Products

    New Investigation Cuts Through the Haze Surrounding "Smoke-Free" Tobacco Products

    Marketed as a healthier alternative to cigarettes, a new class of tobacco products called heat-not-burn devices is quickly gaining in popularity across the globe. A study by Berkeley Lab's Indoor Environment Group shows that

    Scientists couple magnetization to superconductivity for quantum discoveries

    Scientists couple magnetization to superconductivity for quantum discoveries

    In a recent study, scientists at the U.S. Department of Energy's Argonne National Laboratory have created a miniaturized chip-based superconducting circuit that couples quantum waves of magnetic spins called magnons to photons of equivalent energy.

    Story tips from the Department of Energy's Oak Ridge National Laboratory, September 2019

    Story tips from the Department of Energy's Oak Ridge National Laboratory, September 2019

    ORNL story tips: ORNL's project for VA bridges computing prowess, VA health data to speed up suicide risk screenings for U.S. veterans; ORNL reveals ionic liquid additive lubricates better than additives in commercial gear oil; researchers use neutron scattering to probe colorful new material that could improve sensors, vivid displays; unique 3D printing approach adds more strength, toughness in certain materials.

    Study Reveals 'Radical' Wrinkle in Forming Complex Carbon Molecules in Space

    Study Reveals 'Radical' Wrinkle in Forming Complex Carbon Molecules in Space

    A team of scientists has discovered a new possible pathway toward forming carbon structures in space using a specialized chemical exploration technique at Berkeley Lab's Advanced Light Source.

    SMART Algorithm Makes Beamline Data Collection Smarter

    SMART Algorithm Makes Beamline Data Collection Smarter

    Researchers in Lawrence Berkeley National Laboratory's Center for Advanced Mathematics for Energy Research Applications have been working with beamline scientists at Brookhaven National Laboratory to develop and test SMART, a mathematical method that enables autonomous experimental decision making without human interaction.

    The Chemistry of Art: Scientists Explore Aged Paint in Microscopic Detail to Inform Preservation Efforts

    The Chemistry of Art: Scientists Explore Aged Paint in Microscopic Detail to Inform Preservation Efforts

    To learn more about the chemical processes in oil paints that can damage aging artwork, a team led by researchers at the National Gallery of Art and the National Institute of Standards and Technology conducted a range of studies that included 3D X-ray imaging of a paint sample at Berkeley Lab's Advanced Light Source.

    First report of superconductivity in a nickel oxide material

    First report of superconductivity in a nickel oxide material

    Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss. The first in a potential new family of unconventional superconductors, its similarity to the cuprates raises hopes that it can be made to superconduct at relatively high temperatures.


    • Filters

    • × Clear Filters
    New round of DOE awards bolsters quantum information science at SLAC

    New round of DOE awards bolsters quantum information science at SLAC

    Researchers at the Department of Energy's SLAC National Accelerator Laboratory have received two DOE awards to explore how quantum information can be passed from one quantum device to another. The goal: develop ways to link quantum devices into quantum computing networks that are much more powerful than today's technology and into innovative photon detectors that could open up new areas of research, such as novel searches for dark matter.

    DOE awards ORNL researchers more than $11 million to advance quantum technologies

    DOE awards ORNL researchers more than $11 million to advance quantum technologies

    Three researchers at Oak Ridge National Laboratory will lead or participate in collaborative research projects aimed at harnessing the power of quantum mechanics to advance a range of technologies including computing, fiber optics and network communication.

    Volker Burkert Named Virginia Outstanding Scientist

    Volker Burkert Named Virginia Outstanding Scientist

    Volker Burkert has been named a Virginia Outstanding Scientist for 2019.

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    UPTON, NY--The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has collaborated with the Girl Scouts of Suffolk County to organize a new patch program that encourages Girl Scouts of all ages to delve into the world of science, technology, engineering, and mathematics (STEM). Starting today, Suffolk County Girl Scouts can earn three new Brookhaven Lab patches.

    Chain Reaction Innovations announces expanded call for applications to join its 4th Cohort of innovators at Argonne

    Chain Reaction Innovations announces expanded call for applications to join its 4th Cohort of innovators at Argonne

    Chain Reaction Innovations, the entrepreneurship program at Argonne National Laboratory, is expanding beyond advanced manufacturing and now open to any technology area that can be accelerated to market by leveraging resources available at Argonne.

    DOE announces funding for Argonne projects on better materials and chemistry through data science

    DOE announces funding for Argonne projects on better materials and chemistry through data science

    The Department of Energy has announced Argonne National Laboratory will be receiving funding for two new projects in data science to accelerate discovery in chemistry and material sciences.

    Fermilab achieves world-record field strength for accelerator magnet

    Fermilab achieves world-record field strength for accelerator magnet

    Scientists at the Department of Energy's Fermilab have announced that they achieved the highest magnetic field strength ever recorded for an accelerator steering magnet, setting a world record of 14.1 teslas, with the magnet cooled to 4.5 kelvins or minus 450 degrees Fahrenheit.

    Mainz University, Fermilab agree to joint appointment in support of Deep Underground Neutrino Experiment

    Mainz University, Fermilab agree to joint appointment in support of Deep Underground Neutrino Experiment

    Fermilab and Johannes Gutenberg University Mainz in Germany have signed an agreement for a joint appointment to work on the Deep Underground Neutrino Experiment.

    New national facility will explore low-temperature plasma, a dynamic source of innovation for modern technologies

    New national facility will explore low-temperature plasma, a dynamic source of innovation for modern technologies

    Feature describes new collaborative facility hosted by PPPL and Princeton University to advance understanding and control of low-temperature plasma

     Innovators in Argonne's entrepreneurship program amass millions in investments to aid their energy startups

    Innovators in Argonne's entrepreneurship program amass millions in investments to aid their energy startups

    The Chain Reaction Innovations (CRI) program is demonstrating impact in moving energy innovation tech to market as its first cohort leaves Argonne. CRI innovators have raised more than $12.5 million in funding since the program began.


    • Filters

    • × Clear Filters
    Microbial Evolution: Nature Leads, Nurture Supports

    Microbial Evolution: Nature Leads, Nurture Supports

    Based on an extensive study across environments, from mixed conifer forest to high-desert grassland, the team suggests that microbes aren't so different from larger, more complex forms of life. That is, in determining species traits, nature takes the lead, while nurture plays a supporting role.

    Building a Scale to Weigh Superheavy Elements

    Building a Scale to Weigh Superheavy Elements

    Scientists made the first direct, definitive measurement of the weight, also known as the mass number, for two superheavy nuclei.

    Survey Delivers on Dark Energy with Multiple Probes

    Survey Delivers on Dark Energy with Multiple Probes

    The Dark Energy Survey has combined its four primary cosmological probes for the first time in order to constrain the properties of dark energy.

    Crossing the Great Divide Between Model Studies and Applied Reactors in Catalysis

    Crossing the Great Divide Between Model Studies and Applied Reactors in Catalysis

    A team devised a way to bridge the gap between two extremes. Using their approach, they can predict catalyst performance across a wider range of temperatures and pressures.

    Tiny, Sugar-Coated Sheets Selectively Target Pathogens

    Tiny, Sugar-Coated Sheets Selectively Target Pathogens

    Researchers developed molecular flypaper that recognizes and traps viruses, bacteria, and other pathogens.

    Getting Metal Under Graphite's Skin

    Getting Metal Under Graphite's Skin

    Some metals need to be protected from the atmosphere. Exposure leads to damage that ruins their unique properties. Controllably forming metal islands just under the surface of graphite protects the metals. This allows these metals to take on new roles in ultrafast quantum computers. It also means new roles in magnetic, catalytic, or plasmonic materials.

    Atomically Packed Boundaries Resist Cracking

    Atomically Packed Boundaries Resist Cracking

    Scientists devised specialized X-ray mapping techniques. They determined that boundaries associated with regions where atoms are closely packed together most readily resist cracking. This analysis revealed that when a crack encounters such a boundary, it's deflected to a less direct path and crack growth is slowed.

    End-run Spreads Lithium Throughout Battery Electrodes

    End-run Spreads Lithium Throughout Battery Electrodes

    Scientists used chemically sensitive X-ray microscopy to map lithium transport during battery operation.

    Knowledgebase Is Power for Nuclear Reactor Developers

    Knowledgebase Is Power for Nuclear Reactor Developers

    Six new nuclear reactor technologies are planned to commercially deploy between 2030 and 2040. ORNL's Weiju Ren heads a project managing structural materials information. This conversation explores challenges and opportunities in sharing nuclear materials knowledge internationally.

    Excited Atoms Rush Independently to New Positions

    Excited Atoms Rush Independently to New Positions

    How atoms react to a sudden burst of light shows scientists how the larger material might act in sensors, data storage devices, and more.


    Spotlight

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code
    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom
    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215