DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-09-26 14:00:11
    • Article ID: 719658

    Scientists finally find superconductivity in exactly the place they have been looking for decades

    The Hubbard model, used to understand electron behavior in numerous quantum materials, now shows us its stripes, and superconductivity too, in simulations for cuprate superconductors.

    • Credit: Greg Stewart/SLAC National Accelerator Laboratory

      Computer simulations at SLAC and Stanford suggest a way to turn superconductivity on and off in copper-based materials called cuprates: Tweak the chemistry of the materials so electrons hop from atom to atom in a particular pattern – as if hopping to the atom diagonally across the street rather than to the one next door. This grid of simulated atoms illustrates the idea. Copper atoms are in orange, oxygen atoms are in red and electrons are in blue.

    Researchers at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory say they have found the first, long-sought proof that a decades-old scientific model of material behavior can be used to simulate and understand high-temperature superconductivity ­– an important step toward producing and controlling this puzzling phenomenon at will.

    The simulations they ran, published in Science today, suggest that researchers might be able to toggle superconductivity on and off in copper-based materials called cuprates by tweaking their chemistry so electrons hop from atom to atom in a particular pattern – as if hopping to the atom diagonally across the street rather than to the one next door.

    “The big thing you want to know is how to make superconductors operate at higher temperatures and how to make superconductivity more robust,” said study co-author Thomas Devereaux, director of the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC. “It’s about finding the knobs you can turn to tip the balance in your favor.”

    The biggest obstacle to doing that, he said, has been the lack of a model – a mathematical representation of how a system behaves – that describes this type of superconductivity, whose discovery in 1986 raised hopes that electricity might someday be transmitted with no loss for perfectly efficient power lines and maglev trains.

    While scientists thought the Hubbard model, used for decades to represent electron behavior in numerous materials, might apply to cuprate high-temperature superconductors, until now they had no proof, said Hong-Chen Jiang, a SIMES staff scientist and co-author of the report.

    “This has been a major unsolved problem in the field – does the Hubbard model describe high-temperature superconductivity in the cuprates, or is it missing some key ingredient?” he said. “Because there are a number of competing states in these materials, we have to rely on unbiased simulations to answer these questions, but the computational problems are very difficult, and so progress has been slow.”

    The many faces of quantum materials

    Why so difficult?

    While many materials behave in very predictable ways – copper is always a metal, and when you bust up a magnet the bits are still magnetic – high-temperature superconductors are quantum materials, where electrons cooperate to produce unexpected properties. In this case, they pair up to conduct electricity with no resistance or loss at much higher temperatures than established theories of superconductivity can explain.

    Unlike everyday materials, quantum materials can host a number of phases, or states of matter, at once, Devereaux said. For instance, a quantum material might be metallic under one set of conditions, but insulating under slightly different conditions. Scientists can tip the balance between phases by tinkering with the material’s chemistry or the way its electrons move around, for instance, and the goal is to do this in a deliberate way to create new materials with useful properties.

    One of the most powerful algorithms for modeling situations like this is known as density matrix renormalization group, or DMRG. But because these coexisting phases are so complex, using the DMRG to simulate them requires a lot of computation time and memory and typically takes quite a while, Jiang said.

    To reduce the computing time and reach a deeper level of analysis than would have been practical before, Jiang looked for ways to optimize the details of the simulation. “We have to carefully streamline each step,” he said, “making it as efficient as possible and even finding ways to do two separate things at once.” These efficiencies allowed the team to run DMRG simulations of the Hubbard model significantly faster than before, with about a year of computing time at Stanford’s Sherlock computing cluster and other facilities on the SLAC campus.

    Hopping electron neighbors

    This study focused on the delicate interplay between two phases that are known to exist in cuprates – high-temperature superconductivity and charge stripes, which are like a wave pattern of higher and lower electron density in the material. The relationship between these states is not clear, with some studies suggesting that charge stripes promote superconductivity and others suggesting they compete with it.

    For their analysis, Jiang and Devereaux created a virtual version of a cuprate on a square lattice, like a wire fence with square holes. The copper and oxygen atoms are confined to planes in the real material, but in the virtual version they become single, virtual atoms that sit at each of the intersections where wires meet. Each of these virtual atoms can accommodate at most two electrons that are free to jump or hop – either to their immediate neighbors on the square lattice or diagonally across each square.

    When the researchers used DMRG to simulate the Hubbard model as applied to this system, they discovered that changes in the electrons’ hopping patterns had a noticeable effect on the relationship between charge stripes and superconductivity.

    When electrons hopped only to their immediate neighbors on the square lattice, the pattern of charge stripes got stronger and the superconducting state never appeared. When electrons were allowed to hop diagonally, charge stripes eventually weakened, but did not go away, and the superconducting state finally emerged.

    “Until now we could not push far enough in our modeling to see if charge stripes and superconductivity can coexist when this material is in its lowest energy state. Now we know they do, at least for systems of this size,” Devereaux said.

    It’s still an open question whether the Hubbard model describes all of the incredibly complex behavior of real cuprates, he added. Even a small increase in the complexity of the system would require a huge leap in the power of the algorithm used to model it. “The time it takes to do your simulation goes up exponentially fast with the width of the system you want to study,” Devereaux said. “It’s exponentially more complicated and demanding.”

    But with these results, he said, “We now have a fully interacting model that describes high temperature superconductivity, at least for systems at the sizes we can study, and that’s a big step forward.”

    Funding for the study came from the DOE Office of Science.


    SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

    SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.

     

     

     

     

     

    X
    X
    X
    • Filters

    • × Clear Filters
    The Spintronics Technology Revolution Could Be Just a Hopfion Away

    The Spintronics Technology Revolution Could Be Just a Hopfion Away

    A research team co-led by Berkeley Lab has created and observed quasiparticles called 3D hopfions at the nanoscale (billionths of a meter) in a magnetic system. The discovery could advance high-density, high-speed, low-power, yet ultrastable magnetic memory "spintronics" devices.

    Field guides: Argonne scientists bolster evidence of undiscovered particles or forces in Muon g-2 experiment

    Field guides: Argonne scientists bolster evidence of undiscovered particles or forces in Muon g-2 experiment

    The first result from the Muon g-2 experiment points to the existence of undiscovered particles or forces. These findings could have major implications for future particle physics experiments and could lead to greater understanding of how the universe works.

    Powerful polymers: ORNL study provides new insights into N95's COVID-19 filter efficiency

    Powerful polymers: ORNL study provides new insights into N95's COVID-19 filter efficiency

    Research results on the N95 filter media, recently published in ACS Applied Polymer Materials, outline the science behind what led to ORNL's successful production of material on the CFTF's precursor production line.

    Caught in the act: New data about COVID-19 virus's functions could aid in treatment designs

    Caught in the act: New data about COVID-19 virus's functions could aid in treatment designs

    For the first time, a team of researchers has captured X-ray images of a critical enzyme of the COVID-19 virus performing its function. This discovery could improve design of new treatments against the disease.

    Less than a nanometer thick, stronger and more versatile than steel

    Less than a nanometer thick, stronger and more versatile than steel

    Scientists from Argonne National Laboratory, Northwestern University and the University of Florida report a breakthrough involving a material called borophane, a sheet of boron and hydrogen a mere two atoms in thickness.

    Story Tips: Mighty Mo Material, Fueling Retooling, Goods on the Move, Doubling Concrete and Batteries Passport

    Story Tips: Mighty Mo Material, Fueling Retooling, Goods on the Move, Doubling Concrete and Batteries Passport

    ORNL story tips: Mighty Mo material, fueling retooling, goods on the move, doubling concrete and batteries passport

    This hydrogen fuel machine could be the ultimate guide to self improvement

    This hydrogen fuel machine could be the ultimate guide to self improvement

    Scientists at Berkeley have uncovered an extraordinary self-improving property that transforms an ordinary semiconductor into a highly efficient and stable artificial photosynthesis device

    April Snapshots

    April Snapshots

    Science Snapshots from Berkeley Lab: X-rays accelerate battery R&D; infrared microscopy goes off grid; substrates support 2D tech

    Quantum material's subtle spin behavior proves theoretical predictions

    Quantum material's subtle spin behavior proves theoretical predictions

    Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy's Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

    Research confirms ingredient in household cleaner could improve fusion reactions

    Research confirms ingredient in household cleaner could improve fusion reactions

    Research led by PPPL scientists provides new evidence that particles of boron, the main ingredient of Borax household cleaner, can coat internal components of doughnut-shaped plasma devices known as tokamaks and improve the efficiency of the fusion reactions.


    • Filters

    • × Clear Filters

    Department of Energy to Provide $25 Million toward Development of a Quantum Internet

    Today the U.S. Department of Energy (DOE) announced a plan to provide $25 million for basic research toward the development of a quantum internet.

    Department of Energy to Provide $5 Million to Advance Workforce Development for High Energy Physics Instrumentation

    Today, the U.S. Department of Energy (DOE) announced plans to provide $5 million to support a DOE traineeship program to address workforce needs in high energy physics instrumentation.

    DOE Awards $110 Million to Small Businesses Pursuing Scientific, Clean Energy, and Climate Solutions

    The U.S. Department of Energy (DOE) today announced awards totaling $110 million for diverse small businesses working on scientific, clean energy, and climate solutions for the American people.

    Teachers Invited to Participate in Virtual Science Activities Night

    Teachers Invited to Participate in Virtual Science Activities Night

    Elementary and middle school teachers are invited to register now to participate in the annual Virginia Region II Teacher Night hosted by the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility on April 14, 2021. The fully virtual event will allow educators to see demonstrations of new methods for teaching physical science concepts and safely meet and interact with their colleagues, all while they pick up one recertification point from the comfort of their own homes. Advance registration is required, and the event is open to all upper elementary and middle school teachers of physical science.

    DOE Announces $29 Million for Ultramodern Data Analysis Tools

    The U.S. Department of Energy (DOE) today announced $29 million to develop new tools to analyze massive amounts of scientific information, including artificial intelligence, machine learning, and advanced algorithms.

    Argonne's 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

    Argonne's 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

    The Department of Energy's Argonne National Laboratory is proud to welcome five new FY21 Maria Goeppert Mayer Fellows to campus, each chosen for their incredible promise in their respective fields.

    DOE Announces $54 Million for Microelectronics Research to Power Next-Generation Technologies

    The U.S. Department of Energy (DOE) today announced up to $54 million in new funding for the agency's National Laboratories to advance basic research in microelectronics. Microelectronics are a fundamental building block of modern devices such as laptops, smartphones, and home appliances, and hold the potential to power innovative solutions to challenges like the climate crisis and national security.

    Department of Energy to Provide $12 Million for Research on Advanced Networking

    Today, the U.S. Department of Energy (DOE) announced plans to provide up to $12 million for basic research on advanced 5G and quantum networking. Our modern life has been transformed by wireless and cellular networks, creating a world where humans all over the globe can communicate with each other instantaneously.

    U.S. Department of Energy Announces $34.5 Million for Data Science and Computation Tools to Advance Climate Solutions

    The U.S. Department of Energy (DOE) today announced up to $34.5 million to harness cutting-edge research tools for new scientific discoveries, including clean energy and climate solutions. Two new funding opportunities will support researchers using data science and computation-based methods--including artificial intelligence and machine learning--to tackle basic science challenges, advance clean energy technologies, improve energy efficiency, and predict extreme weather and climate patterns.

    U.S. Department of Energy Announces $30M for Research to Secure Domestic Supply Chain of Critical Elements and Minerals

    The U.S. Department of Energy (DOE) today announced up to $30 million to support scientific research that will ensure American businesses can reliably tap into a domestic supply of critical elements and minerals, such as lithium, cobalt and nickel, needed to produce clean energy technologies.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate students gather virtually for summer school at PPPL
    Monday October 05, 2020, 04:45 PM

    Graduate students gather virtually for summer school at PPPL

    Princeton Plasma Physics Laboratory

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory





    Showing results

    0-6 Of 2215