- 2019-10-23 09:45:44
- Article ID: 721233
NSLS-II Celebrates its 5th Anniversary
In just five years, 28 beamlines came online, over 1,800 different experiments ran, and nearly 3,000 scientists conducted research at the National Synchrotron Light Source II
“It is astonishing to me how much we have accomplished in just five years,” said NSLS-II Director John Hill. “Every day when I come to work, I am proud of what we have achieved through the expertise, dedication and passion that everyone here brings to NSLS-II.”
The legacy of light sources at Brookhaven Lab
Synchrotron light sources like NSLS-II produce extremely intense light (from infrared to x-rays), which scientists can use to “see” the inner structural, chemical, and electronic makeup of materials, down to the atomic scale. From protein structures to chemical processes in batteries, light sources illuminate scientific mysteries of all kinds. But in decades past, this ultrabright light could only be produced as a byproduct of particle accelerators and it was widely considered to be a nuisance.
As the scientific value of ultrabright synchrotron light became well-recognized in the early 1970s, two scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Renate Chasman and G. Kenneth Green, pushed the field forward by developing a novel magnet configuration for synchrotron storage rings that optimized the brightness of light sources. Their design became the basis for Brookhaven’s National Synchrotron Light Source (NSLS), NSLS-II’s predecessor, and later led to the rapid growth of major light source facilities around the world.
NSLS was one of the first research facilities designed and built specifically for producing ultrabright light or “synchrotron radiation.” NSLS was also the first DOE facility dedicated to “user” research; rather than tackling a single large scientific question, NSLS served many users who conducted individual experiments and came from diverse areas of science and the world. The model gave birth to the DOE Office of Science User Facility program and, ultimately, research at NSLS was awarded two Nobel Prizes.
Building on the legacy of NSLS, NSLS-II was designed to deliver x-rays 10,000 times brighter than its predecessor. The key to the upgraded design is NSLS-II’s half-mile-long accelerator ring that enables the facility to produce extremely narrow x-ray beams. At its largest point, the beam at NSLS-II is only a few dozen microns wide—the width of a human hair. NSLS-II’s advanced accelerator design also provides unprecedented beam stability, giving the facility a world record for beam spot size and opening doors to many new types of scientific experiments.
Five years of growth and success at NSLS-II
In NSLS-II’s first five years, scientists and engineers came together to bring 28 experimental stations, called beamlines, into operations, building out nearly half of the facility’s experimental floor. That means that at any given time, 28 different experiments can run simultaneously at NSLS-II. When the facility is fully built out, NSLS-II will accommodate up to 60 different experiments at once.
NSLS-II’s large capacity for beamlines not only enables more scientists to access the facility’s ultrabright light at once, but it also provides the space and flexibility needed to develop highly specialized scientific instruments that accommodate unique and difficult-to-run experiments.
One of the most notable of these highly specialized beamlines at NSLS-II is the Hard X-ray Nanoprobe (HXN). Housed in its own satellite building that was specially constructed to provide extraordinary stability, HXN gave NSLS-II a world record for beam spot size and offers world-leading spatial resolution to users. The beamline enables scientists to investigate everything from microelectronics to cell membranes.
Another remarkable beamline that is unique to NSLS-II is the Soft Inelastic X-ray Scattering (SIX) beamline. Like HXN, SIX is also enclosed in its own satellite building, but for a different reason. This beamline is built with a 50-foot-long spectrometer arm that moves from one end of the building to the other, providing world-leading energy resolution. The beamline’s design enables scientists to probe the electronic structure of materials to advance research on quantum materials and superconductors.
With so many specialized and world-class tools available at NSLS-II, visiting researchers can benefit by taking their experiments to multiple beamlines to compare and combine datasets and achieve a more holistic view of their samples.
“NSLS-II recognizes the need for comprehensive studies on materials, which means researchers need to use more than one technique to uncover the properties and behaviors of materials,” Hill said. “I am very pleased that our users can now request multiple beamlines on a single proposal, what we call a ‘multimodal’ proposal.”
From biology to materials science, researchers from all areas of science have come to NSLS-II to take advantage of these capabilities. In the facility’s first five years, staff scientists and visiting researchers have unlocked new protein structures, studied nanoscale phenomena in electronic and information technologies, studied energy materials across multiple length and time scales at once, and watched chemical catalysts work in real-time.
Sometimes, the images produced at NSLS-II are as beautiful as they are informative. Earlier this year, scientists at Carnegie Mellon University collaborated with NSLS-II to determine how nanomaterials could be used to tackle global food security challenges. Using the Submicron Resolution X-ray Spectroscopy (SRX) beamline and the X-ray Fluorescence Microprobe (XFM) beamline, the team produced images in which key elements in crop samples fluoresced. By studying these images, the scientists were able to determine how nanoparticles influenced the movement of metals throughout the crops, suggesting ways to target the delivery of nutrients to specific plant organs.
In March, scientists at NSLS-II identified the cause of battery cathode degradation in nickel-rich materials. The team used the Inner-Shell Spectroscopy (ISS) and X-ray Powder Diffraction (XPD) beamlines at NSLS-II to “see” the chemical environment around nickel atoms in a cathode material, and determined inhomogeneities in nickel’s oxidation states led to the degradation. Their work could help improve lithium-ion batteries, which are used to power everything from consumer electronics to electric vehicles.
In addition to collaborating with universities and other national laboratories on individual studies, NSLS-II has established strong working relationships with outside institutions to fund and operate new beamlines at the facility. For example, the National Institute of Standards and Technology owns and operates three beamlines at NSLS-II that enable scientists to “see” detailed views of chemical reactions. Case Western Reserve University operates one beamline and collaborates with NSLS-II on two additional beamlines to provide scientists with a suite of biological imaging endstations. One of NSLS-II’s most notable partnerships, however, is with Brookhaven’s own Center for Functional Nanomaterials (CFN), another DOE Office of Science User Facility. CFN currently operates three beamlines in partnership with NSLS-II that are specialized for characterizing nanomaterials.
New science on the horizon
In the years to come, scientific collaborations will continue to be key for NSLS-II. For example, a new cryo-electron microscope (cryo-EM) center funded by New York State, called the Laboratory of Biomolecular Structure (LBMS), is currently under construction at Brookhaven Lab, adjacent to NSLS-II. Combining the suite of biological beamlines at NSLS-II with the cryo-EMs at LBMS will offer researchers complementary techniques to study biological systems. The goal is to reveal unprecedented information on the structure and dynamics of the engines of life.
Also under construction at NSLS-II is a new beamline funded by the New York State Energy Research and Development Authority, called the High Energy Engineering X-Ray Scattering (HEX) beamline. HEX will be a powerful and versatile tool to advance energy storage and conversion research, such as battery development and materials engineering. The beamline will provide extremely energetic x-rays that can penetrate steel casings of full-size batteries so scientists can image atomic structures under working conditions and in real time.
“Looking to the future, I see NSLS-II becoming an even larger hub for materials characterization of all kinds,” Hill said. “Our high-end beamlines and expert staff offer many opportunities for partnerships and collaborations. At the end of the day, this is what makes our science strong: the brightest minds, together, focusing on the biggest challenges in science.”
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Follow @BrookhavenLab on Twitter or find us on Facebook.

MORE NEWS FROM
Brookhaven National LaboratoryParticipating Labs
- DOE Office of Science
- Argonne National Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Iowa State University, Ames Laboratory
- Brookhaven National Laboratory
- Princeton Plasma Physics Laboratory
- Lawrence Berkeley National Laboratory
- Thomas Jefferson National Accelerator Facility
- Fermi National Accelerator Laboratory (Fermilab)
- SLAC National Accelerator Laboratory

Batten down the hatches: Preventing heat leaks to help create a star on Earth
PPPL physicists have identified a method by which instabilities can be tamed and heat can be prevented from leaking from fusion plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Quenching Water Scarcity with a Good Pore
Researchers at UC San Diego and MIT linked theory and experiment to move closer to developing materials that address global water scarcity.

Simulations Attempt to Reconstruct One of the Most Explosive Events in the Universe: A Neutron Star Merger
A team led by scientists that included Berkeley Lab researchers has simulated the formation of a disc of matter, a giant burst of ejected matter, and the startup of energetic jets in the aftermath of a merger by two neutron stars.

Tiny Quantum Sensors Watch Materials Transform Under Pressure
Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

Scientists harvest energy from light using bio-inspired artificial cells
By replicating biological machinery with non-biological components, scientists have created artificial cells that convert light into chemical energy.

Argonne's debt to 2019 Nobel Prize for lithium-ion battery
A roar of approval rang out at the U.S. Department of Energy's (DOE's) Argonne National Laboratory upon the announcement in October that John B. Goodenough, M. Stanley Whittingham and Akira Yoshino had won the 2019 Nobel Prize in Chemistry. On December 10th in Stockholm, they received this highly coveted prize for their major contributions to the invention of the lithium-ion battery, which is a long-standing major focus of research at Argonne.

Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries
At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.

New Function for Plant Enzyme Could Lead to Green Chemistry
Scientists at Brookhaven National Laboratory have discovered a new function in a plant enzyme that could inspire the design of new chemical catalysts. The enzyme catalyzes, or initiates, one of the cornerstone chemical reactions needed to synthesize a wide array of organic molecules, including those found in lubricants, cosmetics, and those used as raw materials for making plastics.

Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins
Scientists at Berkeley Lab are the first to use cryo-EM (cryogenic electron microscopy), a Nobel Prize-winning technique originally designed to image proteins in solution, to image atomic changes in a synthetic soft material.

Argonne Collaboration Shows Benefits of Better Corn Residue Management Strategies
Sustainable corn stover removal can maintain soil carbon stock, according a new Argonne-led study.

James Wilson Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran, experienced federal administrator, and active member of the Princeton community
James W. Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran with a long career in public service, who died Aug. 6. A memorial service in his honor will be held Dec. 21.
Department of Energy to Provide $24 Million in EPSCoR Grants for Energy-Related Research
The U.S. Department of Energy (DOE) announced a funding opportunity for up to $24 million for new grants under the Established Program to Stimulate Competitive Research (DOE EPSCoR).

University of Kentucky Grant Seeks to Turn Coal Into Carbon Fiber
UK's Center for Applied Energy Research (CAER) has received a $1.8 million U.S. Department of Energy (DOE) grant to transform coal tar pitch into high-value carbon fiber for use in aircraft, automobiles, sporting goods and other high-performance materials.

Six Berkeley Lab Scientists Named AAAS Fellows
Six scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been named Fellows of the American Association for the Advancement of Science (AAAS).

PPPL is recognized for being green
The U.S. Department of Energy's Princeton Plasma Physics Laboratory was recognized by the U.S. Environmental Protection Agency for its green practices in reducing waste, energy, and water, and transportation, and for green purchasing and electronics recycling.

Dmitri Zakharov Recognized with the 2019 Chuck Fiori Award
The award honors Dmitri Zakharov's contributions to environmental transmission electron microscopy at Brookhaven Lab's Center for Functional Nanomaterials.

Two Argonne projects earn Secretary of Energy Honor Awards
With this year's Nobel Prize in Chemistry awarded for the development of lithium-ion batteries, directors of the Joint Center for Energy Storage Research share perspectives on the future of energy storage.

Argonne teams up with Altair to manage use of upcoming Aurora supercomputer
Argonne National Laboratory and Altair, a global technology company, have created a new scheduling system that will be employed on the Aurora supercomputer.

University of Maryland, Baltimore County wins DOE's 2019 CyberForce Competition(tm)
After a long suspenseful day, University of Maryland, Baltimore County earned the top spot as national winner of the U.S. Department of Energy's CyberForce Competition.

In its 15th year, INCITE advances open science with supercomputer grants to 47 projects
The U.S. Department of Energy's Office of Science announced allocations of supercomputer access to 47 science projects for 2020--awarding 60 percent of the available time on some of the nation's most powerful supercomputers, with the ultimate goal of accelerating discovery and innovation. In 2020, 14 projects will run on Theta and 39 projects on Summit, where six of these projects will receive an allocation on both systems.

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory

Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory

Introducing Graduate Students Across the Globe to Photon Science
Brookhaven National Laboratory

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
Department of Energy, Office of Science

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
SLAC National Accelerator Laboratory

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
University of Virginia Darden School of Business

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
California State University, Channel Islands

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
Fermi National Accelerator Laboratory (Fermilab)
Showing results
0-4 Of 2215