DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-11-06 16:55:44
    • Article ID: 722185

    Stitching It All Together

    • Credit: Pengfei Cao and Bingrui Li/Oak Ridge National Laboratory

      Rubbery segments in a ribbon-shaped polymer membrane make it super-stretchy. It also has the ability to heal itself after a cut or break.

    Imagine you’re an astronaut on a spacewalk. You’re doing your job when suddenly you get an alert: Your suit is leaking oxygen. Somewhere there’s a hole in your suit, a hole so tiny you can’t find it.

    Some materials should not break because the results would be catastrophic. What if instead of breaking, these materials could toughen up at a weak spot? What if that hole in your astronaut suit could heal itself?

    Biological systems handle this problem all the time. Sometimes fingers get calluses so they don’t get cut. Calluses form when repeated stress causes the skin to toughen. The tough skin provides resistance to breaking. But sometimes fingers get cut and the skin heals itself back together by forming a scab at the surface.

    These concepts of how skin reacts provide inspiration for “tough” and “self-healing” materials. What biology does that synthetic materials don’t do is “sense” when the material is under stress or needs repair. In biological systems it’s almost automatic. Replicating this in non-living systems raises some difficult questions in the world of material science.

    “How does the device know what to regrow and repair?” asks Rebecca Schulman of Johns Hopkins University. “Is it possible to avoid the self-healing problem altogether?” The latter question is the same thing skin asks: Do you need to form a callus or a scab?

    The future of materials science covers a smorgasbord of applications: batteries that self-repair, wind turbines robust enough to withstand the extreme forces put on them, or long-lasting devices that only require replacing small parts every so often. Before getting to these applications, these basic science questions need to be answered. These questions are one reason the Department of Energy (DOE) supports research in this area at universities and national laboratories around the country.

    Take a nuclear power plant. The building materials around the reactor core must withstand extreme heat and extreme radiation. If the building materials around power plants could react and correct themselves when experiencing high heat or radiation, then they could fix the damage before it becomes a problem.

     “Materials are at the heart of helping us to manage our energy consumption and making things sustainable,” said Michael Strano of Massachusetts Institute of Technology (MIT), who leads a DOE effort at MIT on self-healing materials that utilize atmospheric carbon dioxide.

    Preventing the need to completely replace materials is desirable not just from a cost-efficiency standpoint, but also from a sustainability standpoint. “As a science, we want to make better materials and better things,” said Tomonori Saito of the DOE's Oak Ridge National Laboratory (ORNL).

    Better materials mean less waste and less need to replace broken and defunct items. The difficulty comes when trying to do synthetically what nature does without thinking. In general, there are two ways to tackle this problem: make materials tough so they don’t break, or make materials that heal themselves when they do break.

    Preventing breakage

    One approach is for the materials to react to a constant stressor in the environment. Let’s say you’re repeatedly tapping a window pane with a hammer. What if the glass “knows” to get stronger before it breaks? The same type of process could be applied to areas of flexible materials, like the knees of your jeans. As the repeated stress happens—like bending your knees when walking—the material would thicken around the joint and reinforce itself. This process starts by examining self-correcting and protective mechanisms found in the natural world.

    “When biologists or biophysicists understand the molecular scale [of the system], we see that and think, ‘Oh this is cool. Can we design a synthetic system?’” said Zhibin Guan of the University of California, Irvine.

    The chemical or cellular scale tells a vibrant story about the process of systems correcting themselves and, sometimes, protecting themselves.

    “In biology, many systems have a gradient connection from hard tissues to soft tissues. The interface from hard to soft is critical,” said Guan. Without the proper gradient interface between the different tissue types, large exterior forces could lead to a break at the connection. How a system adjusts and responds to an outside force produces this protective contact between hard and soft tissues.

    Guan’s study was inspired by the tough outer skin of a polychaete worm. The jaw of the worm has a notably tough skin to it. The transition from the soft body of the worm to the tough outer skin intrigued Guan’s research group. The tough interface happens by increasing chemical bonding between proteins and metal ions in the worm’s jaw. Using selective bonding, the jaw toughens - making it able to withstand the force of a bite.

    Guan studies this interface between hard and soft tissues to replicate it in synthetic materials. In the lab, they take polymers consisting of long, repeating chemical structures and introduce metal ions to simulate the composition of the worm’s jaw. If the material could sense the weakened area and chemically react to it, strengthening the spot of the weakness, the material wouldn’t break.

    In the beginning, the weakened spot forms when micro-damage occurs. In both the worm’s jaw and synthetic materials, this damage happens at the molecular level. The stress causes small bonds to break between the metal ions and the proteins. These bonds, tenuous to begin with, sometimes reform.

    The difficulty comes when trying to find the happy medium between tough enough not to break but not so tough that the material becomes inflexible. If the material continues to toughen as it experiences stress, eventually it will get to the point where it is completely rigid. Then it will be prone to failure for a different reason.

    Ideally, tough materials would reverse this thickening process periodically to prevent that rigidity from becoming permanent. Understanding the chemistry behind the biological processes holds the key to signaling when a material could relax. By then, the threat of a catastrophic failure would have passed. The material could react again when another stressor affects the system.

    However, as Schulman noted, there are several questions to answer before getting to that point. Getting a material to respond to stress is difficult even in a lab. While biological systems have methods in place to communicate damage, chemical signaling in synthetic systems is more difficult than in living systems. Living systems have whole organized structures dedicated to signaling. Synthetic materials often consist as one or only a few types of chemical units with no integrated way to trigger this toughening. So the second approach involves making materials that heal breaks when they happen.

    Fixing a break

    A catastrophic failure doesn’t have to be big and dramatic to be cause serious problems. Take the space suit example. A tiny break in the suit material can be catastrophic for the astronaut; making the suit able to heal itself presents a possible solution.

    What exactly makes a material self-healing? Like the way skin heals itself, these materials use chemical properties to “heal” themselves.

    In synthetic materials, self-healing involves repair. The chemical bonds need to be able to reform, especially after catastrophic failures. Once damage causes the material to fail, it should be able to stitch itself back together just as a wound on skin does.

    This kind of repair happens down at the molecular level. Saito’s research focuses on developing novel, self-healing polymers and aiming to understand this chemical response. Saito takes a sheet of a specially prepared polymer and tears it apart. At the chemical level, these polymers work to reform bonds and stitch themselves together. The key is understanding the chemical trigger telling them to stitch themselves together.

    To use this synthetically, Schulman draws inspiration from cells. “Cells communicate about what needs to be in a particular location,” she said. “They use wireless signaling through chemicals.”

    Translating this system-wide reaction into a synthetic material has been challenging. While in biological systems a whole network of signals reacts to breaks, a synthetic polymer is usually made of only a few components. How the material could communicate to the chemical components to stitch back together is a particularly difficult proposition. The material would have to detect damage or breakage and react accordingly.

    Schulman noted that synthetic materials do not have the resilience of biological systems. When one piece fails, the whole system often fails. “Cells might live the lifetime of the organism, but the proteins turn over many times inside the cell,” she said.

    While the materials science focusing on self-healing zooms into that extreme chemical level, the bigger picture shows the applications of self-healing materials and the way these things can change even fundamental ideas about how infrastructure works.

    Strano likes to compare the possibilities of self-healing materials to the way a tree trunk grows. Trees breathe in carbon dioxide and nutrients from the soil and use these to build the trunk. By pulling their building materials from the air, they have constant access.

    “The material can get stronger over time,” Strano said. When materials are surrounded by their building materials, there may be no limit to how long they can last.

     

     

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://www.energy.gov/science.

    X
    X
    X
    • Filters

    • × Clear Filters
    Batten down the hatches: Preventing heat leaks to help create a star on Earth

    Batten down the hatches: Preventing heat leaks to help create a star on Earth

    PPPL physicists have identified a method by which instabilities can be tamed and heat can be prevented from leaking from fusion plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

    Quenching Water Scarcity with a Good Pore

    Quenching Water Scarcity with a Good Pore

    Researchers at UC San Diego and MIT linked theory and experiment to move closer to developing materials that address global water scarcity.

    Simulations Attempt to Reconstruct One of the Most Explosive Events in the Universe: A Neutron Star Merger

    Simulations Attempt to Reconstruct One of the Most Explosive Events in the Universe: A Neutron Star Merger

    A team led by scientists that included Berkeley Lab researchers has simulated the formation of a disc of matter, a giant burst of ejected matter, and the startup of energetic jets in the aftermath of a merger by two neutron stars.

    Tiny Quantum Sensors Watch Materials Transform Under Pressure

    Tiny Quantum Sensors Watch Materials Transform Under Pressure

    Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

    Scientists harvest energy from light using bio-inspired artificial cells

    Scientists harvest energy from light using bio-inspired artificial cells

    By replicating biological machinery with non-biological components, scientists have created artificial cells that convert light into chemical energy.

    Argonne's debt to 2019 Nobel Prize for lithium-ion battery

    Argonne's debt to 2019 Nobel Prize for lithium-ion battery

    A roar of approval rang out at the U.S. Department of Energy's (DOE's) Argonne National Laboratory upon the announcement in October that John B. Goodenough, M. Stanley Whittingham and Akira Yoshino had won the 2019 Nobel Prize in Chemistry. On December 10th in Stockholm, they received this highly coveted prize for their major contributions to the invention of the lithium-ion battery, which is a long-standing major focus of research at Argonne.

    Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries

    Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries

    At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.

    New Function for Plant Enzyme Could Lead to Green Chemistry

    New Function for Plant Enzyme Could Lead to Green Chemistry

    Scientists at Brookhaven National Laboratory have discovered a new function in a plant enzyme that could inspire the design of new chemical catalysts. The enzyme catalyzes, or initiates, one of the cornerstone chemical reactions needed to synthesize a wide array of organic molecules, including those found in lubricants, cosmetics, and those used as raw materials for making plastics.

    Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins

    Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins

    Scientists at Berkeley Lab are the first to use cryo-EM (cryogenic electron microscopy), a Nobel Prize-winning technique originally designed to image proteins in solution, to image atomic changes in a synthetic soft material.

    Argonne Collaboration Shows Benefits of Better Corn Residue Management Strategies

    Argonne Collaboration Shows Benefits of Better Corn Residue Management Strategies

    Sustainable corn stover removal can maintain soil carbon stock, according a new Argonne-led study.


    • Filters

    • × Clear Filters
    James Wilson Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran, experienced federal administrator, and active member of the Princeton community

    James Wilson Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran, experienced federal administrator, and active member of the Princeton community

    James W. Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran with a long career in public service, who died Aug. 6. A memorial service in his honor will be held Dec. 21.

    Department of Energy to Provide $24 Million in EPSCoR Grants for Energy-Related Research

    The U.S. Department of Energy (DOE) announced a funding opportunity for up to $24 million for new grants under the Established Program to Stimulate Competitive Research (DOE EPSCoR).

    University of Kentucky Grant Seeks to Turn Coal Into Carbon Fiber

    University of Kentucky Grant Seeks to Turn Coal Into Carbon Fiber

    UK's Center for Applied Energy Research (CAER) has received a $1.8 million U.S. Department of Energy (DOE) grant to transform coal tar pitch into high-value carbon fiber for use in aircraft, automobiles, sporting goods and other high-performance materials.

    Six Berkeley Lab Scientists Named AAAS Fellows

    Six Berkeley Lab Scientists Named AAAS Fellows

    Six scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been named Fellows of the American Association for the Advancement of Science (AAAS).

    PPPL is recognized for being green

    PPPL is recognized for being green

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory was recognized by the U.S. Environmental Protection Agency for its green practices in reducing waste, energy, and water, and transportation, and for green purchasing and electronics recycling.

    Dmitri Zakharov Recognized with the 2019 Chuck Fiori Award

    Dmitri Zakharov Recognized with the 2019 Chuck Fiori Award

    The award honors Dmitri Zakharov's contributions to environmental transmission electron microscopy at Brookhaven Lab's Center for Functional Nanomaterials.

    Two Argonne projects earn Secretary of Energy Honor Awards

    Two Argonne projects earn Secretary of Energy Honor Awards

    With this year's Nobel Prize in Chemistry awarded for the development of lithium-ion batteries, directors of the Joint Center for Energy Storage Research share perspectives on the future of energy storage.

    Argonne teams up with Altair to manage use of upcoming Aurora supercomputer

    Argonne teams up with Altair to manage use of upcoming Aurora supercomputer

    Argonne National Laboratory and Altair, a global technology company, have created a new scheduling system that will be employed on the Aurora supercomputer.

    University of Maryland, Baltimore County wins DOE's 2019 CyberForce Competition(tm)

    University of Maryland, Baltimore County wins DOE's 2019 CyberForce Competition(tm)

    After a long suspenseful day, University of Maryland, Baltimore County earned the top spot as national winner of the U.S. Department of Energy's CyberForce Competition.

    In its 15th year, INCITE advances open science with supercomputer grants to 47 projects

    In its 15th year, INCITE advances open science with supercomputer grants to 47 projects

    The U.S. Department of Energy's Office of Science announced allocations of supercomputer access to 47 science projects for 2020--awarding 60 percent of the available time on some of the nation's most powerful supercomputers, with the ultimate goal of accelerating discovery and innovation. In 2020, 14 projects will run on Theta and 39 projects on Summit, where six of these projects will receive an allocation on both systems.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)





    Showing results

    0-4 Of 2215