- 2019-12-03 09:00:41
- Article ID: 723388
Meet Alessandra Colli: Engineering Improvements in 3-D-printed Metals
Colli seeks to merge materials risk analysis with data collected at world-class science tools to improve safety, reliability, and opportunities in metal additive manufacturing
Colli is developing a strategy to leverage Brookhaven Lab’s materials-science capabilities and data analytics approaches to advance metal “additive manufacturing,” also known as 3-D printing. Compared with conventional metal manufacturing, 3-D printing offers great promise for building metal components with higher precision and greater reliability from the bottom up.
“When you are talking about reliability, most of the time you look at the system level—how the part performs in the field, in the real-world application,” Colli said. “We want to bring in the basic materials science—the kinds of studies we can do at the National Synchrotron Light Source II (NSLS-II) and the Center for Functional Nanomaterials (CFN) to look at material properties and defects at very small scales—along with analytical techniques being developed by our Computational Science Initiative to efficiently sift through that data.”
This approach could help scientists identify sources of material imperfections or weakness—and explore how different 3-D printing approaches or even new materials could improve a particular product.
“Industrial partners could come in and we can help them solve specific issues using the enormous capabilities of our DOE Office of Science user facilities,” Colli said.
3-D printed metals
Once used mainly for creating prototypes or models, additive manufacturing is moving into the mainstream for a range of industrial and defense applications, so much so that many industrial players address it as the next industrial revolution in manufacturing, Colli said. Using 3-D printing to manufacture precision metal engine components, high-tech filters, or even construction hinges and brackets offers ways to reduce waste of feedstock material and dramatically improve design to achieve better performance of the final product, she noted.
Instead of whittling down a larger block of metal, pouring molten material into a mold, or making separate components that must later be fastened together, 3-D printing uses a range of techniques to deposit the material layer by layer, printing only the desired object with little material wasted. The technology can create intricate objects and even allows construction from composite materials.
But to ensure durability, strength, resistance to corrosion, or other characteristics important for specific applications, it’s essential to understand not just what the manufactured part looks like and how it works in its application, but also what’s going on inside—the characteristics of the material itself.
Think about a piece that might be part of an airplane, or supporting parts for construction, part of a rocket engine or ship—these parts need extremely high reliability.
“With additive manufacturing, there can be different types of defects—residual stress that creates tension in an area where you may not want it; porosity formed by bubbles that create a weak spot where the part can break. We have a range of techniques that can see these structural characteristics and the materials’ chemical composition. And we can study them under different environmental conditions, like pressure or high heat, that when combined with certain material characteristics can cause a failure,” Colli said.
These tools can also help identify the best additive manufacturing processes for different applications, fine-tune manufacturing precision to take into account post-processing steps such as polishing or annealing, or explore new materials or combinations of materials that may improve functions.
Building collaborations
“There are lots of opportunities to grow collaborations with academic partners, industry, other departments at Brookhaven, and the user facilities here and at the other DOE Labs or research institutions around the world,” Colli said.
As an example, Colli notes one collaboration already underway among scientists in Brookhaven’s Sustainable Energy Technologies Department, Physics Department, Instrumentation Division, NSLS-II, and Obsidian AM (a small spin-off company from Yale University in Connecticut) that hopes to develop filters for cosmic microwave background radiation. These filters, designed for use in next-generation telescopes, are typically fabricated from metal as meshes or grids that get laminated together. Their job is to screen out signals from other forms of radiation so scientists can collect echoes of the radiation leftover from the Big Bang. Filtering out the “noise” will help physicists decipher details about neutrinos, dark matter, and general relativity.
“We are exploring plasma 3-D printing as a way to directly manufacture the full metamaterial for these filters. We’re starting by making sure we can print the metal part with optimal precision, but we are hoping to be able to print alternate layers of insulating material and metal grid directly using the same 3-D printing process,” Colli said.
This approach could be applied to making other layered metamaterials and composites, such as high-temperature superconductors (promising materials that carry electric current with no resistance) and magnets.
Colli is finalizing plans with professors at the North Carolina A&T State University and Rensselaer Polytechnic Institute to bring students in to learn about the various 3-D printing technologies, materials characterization tools such as x-ray diffraction, and approaches such as tensile stress testing. She is also collaborating with computational scientists to develop the tools and algorithms—many based on machine learning and other forms of “artificial intelligence”—to identify key indicators that will predict (and guide design to avoid) failure in additively manufactured metal components.
Varied background, open mind
“I’m not a materials scientist and I’m not a physicist, so to build this strategy and these collaborations, I had to learn everything too, including about the techniques; and I’m still learning,” Colli said. “My strength is to be able to understand both the small details and the big picture.”
Colli attributes her wide-scale vision to the diversity of topics she studied early in her career: electrical power engineering for her master thesis and risk analysis for her Ph.D., the former at the Polytechnic University of Milan in Italy and the latter at Delft University of Technology in The Netherlands. “Diversifying things gives perspective in terms of what you can learn and what you can see. It really opens up your mind,” she said.
She spent six years in The Netherlands developing methods to compare technological, environmental, and occupational risks of various energy technologies—fossil fuels, nuclear, and renewable energies such as solar. When she first came to Brookhaven Lab in 2011, she worked to integrate risk analysis into the economic side of evaluating energy systems.
The proximity of the Northeast Solar Energy Research Center to NSLS-II first sparked her idea that understanding material properties might help address an energy challenge: why photovoltaic solar cells sometimes crack.
“My idea was to apply my knowledge in risk analysis to reliability issues in photovoltaics. What is the impact of the different materials that make up these layered structures on the tendency of cracks to form and propagate, for example? We have the solar panels and the synchrotron right here to do the materials science testing,” she said.
In 2018, Jim Misewich, Associate Laboratory Director for Energy and Photon Sciences (EPS), asked her to develop the Lab’s strategy for metal additive manufacturing as part of the EPS Growth plan. This opportunity gave her a chance to bring her idea of correlating material properties with performance and reliability to a new challenge.
“I had to grow in my career, to go from being a scientist doing my job in the lab to develop a leadership mentality,” she said. With support from the Growth Office—including Elspeth McSweeney, Michael Cowell, and Jun Wang—she developed skills and sought professional training courses such as the Women in STEM Leadership program at Stony Brook University.
“It was a year of enormous growth,” she said. “When people believe in you and they give you a chance, you feel obligated to give something back and to be successful. Supporting other people at the Lab helps us push each other.”
Meaningful mentorship
Colli puts these philosophies into practice as she mentors students through Brookhaven Lab’s Office of Educational Programs.
“For me, research is always about teamwork. I am not the boss and you are not my slave; we work together, period. It’s a continuous exchange,” she said. “I let the students bring up ideas—have them tell me what we should do.”
Sometimes suspicious of this approach and a bit lost without a predetermined path, Colli’s students often end up with an appreciation of what it means to be part of the scientific process.
“I don’t care if they do perfect work or not. But when I see that they get engaged and they get passionate, that’s for me the best reward.”
From her own experience, she also tells them, “Don’t be afraid if you end up in a different field because that may only increase your knowledge and open up your mind in different directions.”
When she’s not developing new strategies at the Lab, Colli loves to connect with nature by hiking and especially riding her horse. “That is where I find my peace of mind,” she said.
“I really love to be on Long Island, and I love the U.S.,” she added, noting that she hopes to become a full U.S. citizen as soon as she is eligible. “I still have two years to wait for that and I’m counting the days.”
The metal additive manufacturing strategy is supported by Brookhaven Lab’s program development funds. NSLS-II and CFN are DOE Office of Science user facilities. The Computational Science Initiative is also supported by the DOE Office of Science.
Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://www.energy.gov/science/

MORE NEWS FROM
Brookhaven National LaboratoryParticipating Labs
- DOE Office of Science
- Argonne National Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Iowa State University, Ames Laboratory
- Brookhaven National Laboratory
- Princeton Plasma Physics Laboratory
- Lawrence Berkeley National Laboratory
- Thomas Jefferson National Accelerator Facility
- Fermi National Accelerator Laboratory (Fermilab)
- SLAC National Accelerator Laboratory

Argonne's debt to 2019 Nobel Prize for lithium-ion battery
A roar of approval rang out at the U.S. Department of Energy's (DOE's) Argonne National Laboratory upon the announcement in October that John B. Goodenough, M. Stanley Whittingham and Akira Yoshino had won the 2019 Nobel Prize in Chemistry. On December 10th in Stockholm, they received this highly coveted prize for their major contributions to the invention of the lithium-ion battery, which is a long-standing major focus of research at Argonne.

Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries
At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.

New Function for Plant Enzyme Could Lead to Green Chemistry
Scientists at Brookhaven National Laboratory have discovered a new function in a plant enzyme that could inspire the design of new chemical catalysts. The enzyme catalyzes, or initiates, one of the cornerstone chemical reactions needed to synthesize a wide array of organic molecules, including those found in lubricants, cosmetics, and those used as raw materials for making plastics.

Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins
Scientists at Berkeley Lab are the first to use cryo-EM (cryogenic electron microscopy), a Nobel Prize-winning technique originally designed to image proteins in solution, to image atomic changes in a synthetic soft material.

Argonne Collaboration Shows Benefits of Better Corn Residue Management Strategies
Sustainable corn stover removal can maintain soil carbon stock, according a new Argonne-led study.

Study Sheds Light on the Really Peculiar 'Normal' Phase of High-Temperature Superconductors
Experiments at SLAC and Stanford probe the normal state more accurately than ever before and discover an abrupt shift in the behavior of electrons in which they suddenly give up their individuality and behave like an electron soup.

Scientists devise catalyst that uses light to turn carbon dioxide to fuel
In a recent study from Argonne, scientists have used sunlight and a catalyst largely made of copper to transform carbon dioxide to methanol.

Science Snapshots - microbiome matchmakers, solid-liquid interfaces, undersea earthquakes
Science Snapshots from Berkeley Lab

SLAC scientists invent a way to see attosecond electron motions with an X-ray laser
Researchers at the Department of Energy's SLAC National Accelerator Laboratory have invented a way to observe the movements of electrons with powerful X-ray laser bursts just 280 attoseconds, or billionths of a billionth of a second, long.

Bank on it: Gains in one type of force produced by fusion disruptions are offset by losses in another
Simulations show that halo currents can serve as a proxy for the total force produced by vertical disruptions.

James Wilson Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran, experienced federal administrator, and active member of the Princeton community
James W. Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran with a long career in public service, who died Aug. 6. A memorial service in his honor will be held Dec. 21.
Department of Energy to Provide $24 Million in EPSCoR Grants for Energy-Related Research
The U.S. Department of Energy (DOE) announced a funding opportunity for up to $24 million for new grants under the Established Program to Stimulate Competitive Research (DOE EPSCoR).

University of Kentucky Grant Seeks to Turn Coal Into Carbon Fiber
UK's Center for Applied Energy Research (CAER) has received a $1.8 million U.S. Department of Energy (DOE) grant to transform coal tar pitch into high-value carbon fiber for use in aircraft, automobiles, sporting goods and other high-performance materials.

Six Berkeley Lab Scientists Named AAAS Fellows
Six scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been named Fellows of the American Association for the Advancement of Science (AAAS).

PPPL is recognized for being green
The U.S. Department of Energy's Princeton Plasma Physics Laboratory was recognized by the U.S. Environmental Protection Agency for its green practices in reducing waste, energy, and water, and transportation, and for green purchasing and electronics recycling.

Dmitri Zakharov Recognized with the 2019 Chuck Fiori Award
The award honors Dmitri Zakharov's contributions to environmental transmission electron microscopy at Brookhaven Lab's Center for Functional Nanomaterials.

Two Argonne projects earn Secretary of Energy Honor Awards
With this year's Nobel Prize in Chemistry awarded for the development of lithium-ion batteries, directors of the Joint Center for Energy Storage Research share perspectives on the future of energy storage.

Argonne teams up with Altair to manage use of upcoming Aurora supercomputer
Argonne National Laboratory and Altair, a global technology company, have created a new scheduling system that will be employed on the Aurora supercomputer.

University of Maryland, Baltimore County wins DOE's 2019 CyberForce Competition(tm)
After a long suspenseful day, University of Maryland, Baltimore County earned the top spot as national winner of the U.S. Department of Energy's CyberForce Competition.

In its 15th year, INCITE advances open science with supercomputer grants to 47 projects
The U.S. Department of Energy's Office of Science announced allocations of supercomputer access to 47 science projects for 2020--awarding 60 percent of the available time on some of the nation's most powerful supercomputers, with the ultimate goal of accelerating discovery and innovation. In 2020, 14 projects will run on Theta and 39 projects on Summit, where six of these projects will receive an allocation on both systems.

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory

Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory

Introducing Graduate Students Across the Globe to Photon Science
Brookhaven National Laboratory

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
Department of Energy, Office of Science

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
SLAC National Accelerator Laboratory

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
University of Virginia Darden School of Business

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
California State University, Channel Islands

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
Fermi National Accelerator Laboratory (Fermilab)
Showing results
0-4 Of 2215