DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2020-02-10 08:55:36
    • Article ID: 726496

    CFN User Spotlight: Nik Singh Seeks Better Battery Materials

    interview with a CFN user

    • Credit: Nik Singh

      Nik Singh, a senior scientist at the Toyota Research Institute of North America, studies post-lithium-ion battery systems.

    • Credit: Nik Singh

      A graph illustrating some of the battery technologies under consideration at Toyota for current and future hybrid vehicle (HV), plug-in hybrid vehicle (PHV), and electric vehicle (EV) applications.

    • Credit: Nik Singh

      A simple example schematic of a magnesium (Mg)-ion battery.

    • Credit: ACS Applied Energy Materials, 2018, 1, 9, 4651–4661.

      A representative image highlighting the interaction between ex situ and in situ microscopy.

    • Credit: ACS Applied Energy Materials, 2018, 1, 9, 4651–4661.

      (a) An SEM image highlighting the representative areas of Spot 1 and Spot 2, from where FIB samples were processed for energy-dispersive x-ray spectroscopy (EDS) and TEM analysis. (b) An EDS spectra for the FIB samples obtained from Spot 1 and Spot 2 in (a). (c) A TEM image of the FIB sample obtained from Spot 2 in (a), displaying a variation in sample morphology/texture through the interface of deposition from the Mg foil substrate, extending into the newly deposited Mg from MMC/G4 (an electrolyte system).

    • Credit: ACS Applied Energy Materials, 2018, 1, 9, 4651–4661.

      (a) A potentiometric response captured from the operando scanning TEM (STEM) liquid electrochemistry holder upon the application of 1 mA cm−2 (at 0.5 mA·h) with a schematic representation of the holder (inset). (b) Relevant information regarding data collected during the experiment. (c) An operando TEM image taken at 0 min (0.0 mA·h) of Mg deposition time in (a). (d−f) Operando TEM images taken at 6 min (0.1 mA·h) of Mg deposition time in (a). (g−i) Operando TEM images taken at 30 min (0.5 mA·h) of Mg deposition time in (a).

    • Credit: ACS Applied Energy Materials, 2018, 1, 9, 4651–4661.

      Schematic of a rechargeable battery with a magnesium (Mg) anode (top). A close-up of the Mg anode/electrolyte interface, showing the solid electrolyte interphase and formation of Mg nanocrystals during battery operation (bottom).

    Since 2011, Nikhilendra (Nik) Singh has been a senior scientist in the Materials Research Department at the Toyota Research Institute of North America (TRINA)—a division of Toyota Motor North America Research and Development (TMNA R&D)—based in Ann Arbor, MI. His quest to find alternatives to lithium (Li)-ion batteries has brought him to the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory. He holds a PhD in chemistry from Purdue University and a bachelor’s degrees in chemistry and environmental science from Muskingum University.

    What are the missions of TMNA R&D and TRINA?

    TMNA R&D aims to bring the brightest minds in automotive exploration together to redefine the next generation of mobility. Our goal is to leverage the power of fully connected vehicles to enable people to move safely and comfortably.

    Based in Ann Arbor, MI, TMNA R&D—founded in 1977 and formerly known as the Toyota Technical Center—is the R&D arm of Toyota Motor North America. Engineers lead the development of eight Toyota models in North America, as well as prototype and concept development, including the Toyota Research Institute’s Platform 3 and 4 automated driving test vehicles. The team also leads North American tuning and development for advanced powertrains and alternative fuel vehicles, and spearheads advanced technological innovations related to materials and electronics research.

    At TMNA R&D’s Gardena, CA, campus, engineers and researchers support the implementation of hydrogen fuel cell electric vehicles (FCEVs) in North America. In addition, TMNA R&D manages the Toyota Arizona Proving Grounds and the Collaborative Safety Research Center in Ann Arbor, MI.

    TRINA was founded more than 10 years ago to conduct basic and applied research on new technology to support Toyota’s future business in mobility. TRINA’s role in the pursuit of sustainable mobility addresses four key priorities: advanced technologies, the urban environment, energy, and partnerships with government and academia. The specific research topics of interest include advanced batteries, catalysts, fuel cells, thermal management, power electronics, vehicle sensors, human-machine interfaces, smart materials, informatics, and sociotechnical systems.

    TRINA’s research spans many different technologies. What does your personal research focus on?

    My personal research focus is post-Li-ion battery systems such as multivalent ion (e.g., magnesium (Mg), zinc (Zn), calcium (Ca), and aluminum (Al)), Li-air, Li-metal-based, and all-solid-state batteries. We continue to develop next-generation batteries past Li-ion, as we believe that battery diversification is important for future electric vehicle (EV) and plug-in hybrid vehicle (PHV) applications.

    For my research, I work as part of a team at Toyota, both locally and internationally, partnering with battery research groups in the United States and Japan.

    Explain the different components of a battery and how a battery works. Which part(s) of the battery do you target for your studies?  

    In general, batteries are composed of three primary components: a cathode, or the positive electrode of the battery; an anode, or the negative electrode of battery; and an electrolyte, or the material located between the anode and cathode that makes the battery work by promoting movement of ions or charge from the cathode to the anode and vice-versa.

    A battery is essentially a device capable of storing electrical energy in the form of chemical energy. The chemical reactions, which occur at the electrodes (cathode and anode), create a flow of electricity when a load is added to the battery.

    At TRINA, we research all aspects of batteries. However, I specifically study anode and electrolyte components and their interfaces.

    The Toyota Prius—a Latin word meaning “coming before”—was the first mass-produced hybrid electric vehicle, launched in 1997 in Japan and released worldwide in 2000. Several all-electric, hybrid electric, and plug-in hybrid electric vehicles have since entered the market, but they have not been adopted on a widespread scale. What are some of the reasons why these vehicles have not become mainstream? 

    The decision to buy one vehicle over another one is an extremely complex one that considers factors such as cost, performance, style, and utility. The environmental impact of a vehicle is certainly an item on that list, but it isn’t the top concern for a lot of consumers. Also, sometimes it just takes time for a new technology to fully make its way into the market. Cars have been around for a long time, and the gasoline engine is a well-known technology that people are comfortable with. But, the greatest impact is likely the relatively low cost of gasoline over the past decade since the beginning of the fracking revolution. The sales of hybrid and other electrified powertrains correlate very strongly with gas prices, historically.

    Toyota has sold more than 14 million hybrid electric vehicles (HEVs) globally, and more than 3.6 million in North America. Although industry demand for cars versus trucks has shifted, we are seeing signs that consumers agree that there remains a place for hybrid electrics, with an increase in demand for vehicles like the RAV4 Hybrid. In 2018, we sold 48,124 RAV4 Hybrids, making it our second most popular hybrid behind the Prius family, which sold 87,590. With the inevitable increases in fuel prices in the future, the hybrid electric powertrain remains a part of our core powertrain strategy and will ultimately bring more buyers into the hybrid space.

    Toyota will continue to benefit from a balanced portfolio that meets the needs of all our customers. In 2018, Toyota hybrid sales (excluding Prius Prime and Mirai) accounted for nearly 44 percent of overall U.S. hybrid sales. In 2018, more than nine percent of our sales were made up of HEVs, plug-in electric vehicles (PEVs) and FCEVs. We anticipate that figure to grow to more than 15 percent by 2020.

    What will it take to make more cost-effective and energy-efficient electric vehicles? How far out are we from those advances?

    Like many products, for energy-efficient electric vehicles to become more ubiquitous, many technologies need to come together. In this case, we need higher-energy-density batteries (to improve range), more compact power electronics, improvements in motor technology, and a charging mechanism and infrastructure that customers will accept.  All of these technologies also need to get cheaper. Fortunately, there are a lot of smart people all over the world chipping away at these problems every day. As for when this will all come to fruition, that is hard to predict. Some analysts think the electric revolution is just a decade away. Others believe it might take 30 years or more.

    As evidenced by the number of electrified vehicles we have sold, the efficiency is already being experienced by a wide variety of consumers. And, as technology continues to improve and advance, we expect greater efficiency to proliferate to all of our product segments. In fact, by 2025, our global goal is for an electrified option (hybrid, plug-in hybrid, hydrogen fuel cell electric, or battery electric) to be available on all Toyota and Lexus models. By 2025, approximately 50 percent (5.5 million) of our new vehicles sold per year globally will be electrified in some form.    

    Li-ion batteries have dominated the electric vehicle space, but they have their limitations. What are some of the other battery materials of interest to Toyota? 

    It is believed that energy storage systems will play a pivotal role in future energy production, grid storage, and transportation demands. Since the commercialization of Li-ion batteries in the 1990s, incremental improvements to the performance of Li-ion batteries via alterations to battery energy density, capacity, and cycle life have paved the pathway to their use in electric vehicles today. For transportation applications, improvements in driving range and space (not occupied by batteries) within electric vehicles remain of paramount focus. From a battery materials perspective, one way to improve both driving range and space is to use battery materials that exhibit improved volumetric energy density in comparison to commercial Li-ion batteries. Prime candidates for such improved volumetric energy densities are alternative multivalent ion systems, such as the ones I mentioned before.

    A particularly promising avenue among these systems has been batteries based on Mg metal, which exhibits a high negative reduction potential (resulting in a large voltage window), lower cost based on its relative abundance in comparison to Li, potential battery safety advantages due to the absence of dendrite growth during battery operation (dendrites are spiny metal projections that grow from an electrode’s surface and can short circuit the battery and in some cases cause fires), and a significant advantage in volumetric energy density over existing Li-ion battery graphite anodes. To date, the best performing Mg battery system remains the one demonstrated by Aurbach et. Al. in 2000, which coupled a “Chevrel phase” cathode and an Mg anode.

    In order to develop post-Li-ion energy storage systems, you need tools to synthesize and characterize the materials. What capabilities exist at Toyota?

    Toyota’s global research activity and investment is huge. Here in North America, our research division has state-of-the-art research labs that enable us to fabricate, analyze, and evaluate new devices and materials. In addition to our in-house work, our research team is currently engaged in dozens of collaborative research projects throughout North America to evaluate and develop the most cutting-edge technologies.

    How did you come to conduct research at the CFN?

    I came to learn of the CFN via interactions with Eric Stach, former group leader of Electron Microscopy at the CFN and now a professor of materials science and engineering at the University of Pennsylvania. I met Eric while I was doing my PhD at Purdue, where he was a professor at the time. We interacted over microscopy-related work and classes, and I reached out to him again once he was at Brookhaven Lab. Because of our interactions with Eric and the great instrumentation available at the CFN for ex situ and in situ transmission electron microscopy (TEM), we decided to submit a user proposal.

    Here at TRINA, we do not have TEM capabilities, especially those related to in situ TEM, wherein the CFN Electron Microscopy Group excels. At the CFN, we primarily used the FEI Talos for both our ex situ and in situ TEM experiments, and the focused-ion beam (FIB) scanning electron microscope (SEM) in the cleanroom for certain sample preparation.

    What information about your battery materials does TEM provide?

    TEM is a very versatile and powerful tool for materials science. Very simply, a TEM operates by focusing and transmitting a high-energy electron beam through a very thin sample. As a result of the interactions between the electrons from the beam and the atoms of the sample, one can observe and image features like crystal structure, grain boundaries, and dislocations within the sample. TEMs can be outfitted with very powerful analytical tools such as energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) systems, which can provide chemical analysis of the sample alongside the imaging analysis. Chemical composition and identification information are critical to investigations of new material properties.

    We can conduct in situ experiments on battery materials at the CFN by using specially designed in situ TEM holders made by Hummingbird Scientific (a company that Eric Stach co-founded). These holders allow us to recreate model experiments that imitate processes and mechanisms happening in real batteries while allowing us to image and chemically analyze them in real time. Through such studies, we can observe the growth of layers at material interfaces and the composition and defects of these layers—all of which can strongly govern the performance of battery materials. For our work at the CFN, we used an in situ liquid electrochemistry holder, which allowed us to observe the deposition of materials like Li and Mg from liquid electrolytes within the TEM. We were able to identify specific characteristics about the interfaces formed between these materials and the electrolytes from which they were electrochemically deposited.

    How did your interactions with Eric—and any other CFN staff members—impact your experience as a CFN user?

    In addition to Eric, we worked with Huolin Xin, Kim Kisslinger, and Jing Li. Eric was a co-principal investigator on all of the project work conducted at the CFN and was critical in planning our experiments to extract the information we were seeking—the mechanism by which specific Mg battery electrolyte systems deposit Mg during battery operation. This planning in turn allowed both Eric and Huolin to best operate the microscope for our experiments to continuously collect good relevant data. Kim and Jing were very involved from a standpoint of support with microscope operation, sample preparation, and both ex situ and in situ data collection.

    Complementary capabilities for battery material characterization exist at Brookhaven’s National Synchrotron Light Source II (NSLS-II)—another DOE Office of Science User Facility. Could your research benefit from these capabilities?

    We are always interested in being able to use advanced analysis techniques to further our understanding of the materials and systems we research. TEM is one such example. The capabilities of a light source like NSLS-II would be great to add to the analysis realm of our research work. One of our major focus areas with analysis techniques has always been to find complementary techniques that bridge length scales. TEM provides down to atomic resolution but is unable to realistically analyze materials larger than micron size, while x-ray synchrotron techniques can image from nanometer to millimeter scales. Such complementary information allows us to understand focused phenomena in a material at very high resolution and tie them to phenomena occurring at much larger length scales—all the way up to a device itself.

    In April 2019, Toyota announced that it will offer free access to nearly 24,000 of its hybrid vehicle patents through 2030. How do you think this open access will impact the development and adoption of electric vehicles? 

    We made this decision based on a desire to accelerate the proliferation of electrified vehicles in order to contribute to reductions in carbon dioxide (CO2) emissions. Toyota has long considered environmental issues a top-priority management issue and has undertaken development and sales of HEVs and FCEVs from an early stage.

    Toyota has set challenging targets for reducing CO2 emissions. On the basis of a strong belief that environment-friendly vehicles will contribute to the environment only if they come into widespread use, we are taking proactive measures to promote the development and sales of electrified vehicles, centered on our core vehicle electrification technologies, such as the motors, batteries, and power conditioning units (PCUs) (inverters) cultivated through HEV development. In addition, we are striving to share technologies and systems in accordance with our stance that environmental technologies should not be monopolized.

    Toyota will provide fee-based technical support to other manufacturers developing and selling electrified vehicles when they use Toyota's motors, batteries, PCUs, electronic control units, and other vehicle electrification system technologies as part of their powertrain systems.

    It is an exciting time for battery R&D. What do you enjoy most about being at the cutting edge of this field?

    Research to me is exciting because it allows me to creatively solve problems that can directly impact our future. Being able to one day make an impact on our scientific and general society would be quite an accomplishment.

    Materials science spans many different disciplines. What led you to study battery materials, and when did your interest in science and more specifically chemistry first begin?

    My interest in science certainly began in my childhood. My parents were both significantly involved with academia, fostering an environment where I grew up exposed to multiple facets of science. My general interest in chemistry began during my undergraduate days, where I chose chemistry as a collaborative track to environmental science.

    During my undergraduate days, my simultaneous interests in chemistry and environmental science led me to consider ways to bridge the two subjects in sustainable ways. One obvious path here was the energy field. Working on battery materials gave me an avenue to research and progress energy storage, which can provide sustainable alternatives to traditional technologies.

    Interested in becoming a CFN user? Submit a proposal through the online proposal system: https://cfnproposals.bnl.gov. If you have questions about using CFN facilities or partnering with CFN scientists, please contact CFN Assistant Director for Strategic Partnerships Priscilla Antunez at (631) 344-6186 or pantunez@bnl.gov

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://energy.gov/science.

    Follow @BrookhavenLab on Twitter or find us on Facebook.

    X
    X
    X
    • Filters

    • × Clear Filters
    Scientists See Energy Gap Modulations in a Cuprate Superconductor

    Scientists See Energy Gap Modulations in a Cuprate Superconductor

    Scientists studying high-Tc superconductors at the U.S. Department of Energy's Brookhaven National Laboratory have definitive evidence for the existence of a state of matter known as a pair density wave--first predicted by theorists some 50 years ago. Their results show that this phase coexists with superconductivity in a well-known bismuth-based copper-oxide superconductor.

    Uncertain Climate Future Could Disrupt Energy Systems

    Uncertain Climate Future Could Disrupt Energy Systems

    An international team of scientists has published a new study proposing an optimization methodology for designing climate-resilient energy systems and to help ensure that communities will be able to meet future energy needs given weather and climate variability. Their findings were recently published in Nature Energy.

    Argonne and CERN weigh in on the origin of heavy elements

    Argonne and CERN weigh in on the origin of heavy elements

    Nuclear physicists from Argonne National Laboratory led an international physics experiment conducted at CERN that utilizes novel techniques developed at Argonne to study the nature and origin of heavy elements in the universe.

    A new explanation for sudden collapses of heat in plasmas can help create fusion energy on Earth

    A new explanation for sudden collapses of heat in plasmas can help create fusion energy on Earth

    PPPL researchers find that jumbled magnetic fields in the core of fusion plasmas can cause the entire plasma discharge to suddenly collapse.

    Nanocages Trap and Separate Elusive Noble Gases

    Nanocages Trap and Separate Elusive Noble Gases

    Researchers have discovered how two-dimensional nanoscale cages trap some noble gases. These cages can trap atoms of argon, krypton, and xenon at above freezing temperatures. Noble gases are hard to trap using other methods because they condense at temperatures far below freezing.

    Parker Spiral Created in the Laboratory for the First Time Ever

    Parker Spiral Created in the Laboratory for the First Time Ever

    The Sun is a spinning ball of plasma that generates its own magnetic field. As the Sun spews out plasma, it generates solar wind that pulls the Sun's magnetic field along with it, twisting the magnetic field into what is called a Parker spiral. A recent experiment recreated this interaction at a small scale in the laboratory.

    A Chemical Extreme in the Periodic Table Is Revealed

    A Chemical Extreme in the Periodic Table Is Revealed

    Understanding how a small, gas-phase molecule containing an actinide atom reacts with other molecules helps us understand the chemistry of heavy elements. This study identified an extreme in the chemical behavior of curium, which lies at the center of the actinide series on the periodic table.

    New Technique Looks for Dark Matter Traces in Dark Places

    New Technique Looks for Dark Matter Traces in Dark Places

    A new study by scientists at Berkeley Lab, UC Berkeley, and the University of Michigan - published online this week in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

    Quantum Effect Triggers Unusual Material Expansion

    Quantum Effect Triggers Unusual Material Expansion

    New research conducted in part at Brookhaven Laboratory may bring a whole new class of chemical elements into a materials science balancing act for designing alloys for aviation and other applications.

    Upgrading Biomass with Selective Surface-Modified Catalysts

    Upgrading Biomass with Selective Surface-Modified Catalysts

    Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.


    • Filters

    • × Clear Filters
    Argonne's Paul Dickman honored with nuclear waste management achievement award

    Argonne's Paul Dickman honored with nuclear waste management achievement award

    Paul Dickman has been named a Waste Management Symposium Fellow for 2020.

    Using Fiber Optics to Advance Safe and Renewable Energy

    Using Fiber Optics to Advance Safe and Renewable Energy

    Fiber optic cables, it turns out, can be incredibly useful scientific sensors. Researchers at Lawrence Berkeley National Laboratory have studied them for use in carbon sequestration, groundwater mapping, earthquake detection, and monitoring of Arctic permafrost thaw. Now they have been awarded new grants to develop fiber optics for two novel uses: monitoring offshore wind operations and underground natural gas storage.

    Brookhaven Lab's Lijun Wu Receives 2020 Chuck Fiori Award

    Brookhaven Lab's Lijun Wu Receives 2020 Chuck Fiori Award

    For the past 20 years, Wu has been advancing quantitative electron diffraction to study batteries, catalysts, and other energy materials.

    Jefferson Lab Temporarily Suspends Operations

    Jefferson Lab Temporarily Suspends Operations

    In an effort to minimize the risk to the Jefferson Lab workforce and in keeping with recommendations from national, state, and local authorities, the Department of Energy's Thomas Jefferson National Accelerator Facility is temporarily suspending operations.

    Department of Energy to Provide $60 Million for Science Computing Teams

    The U.S. Department of Energy (DOE) announced a plan to provide $60 million to establish multidisciplinary teams to develop new tools and techniques to harness supercomputers for scientific discovery.

    Fermilab, UNICAMP and Sao Paulo Research Foundation collaborate on major international projects for neutrino research

    Fermilab, UNICAMP and Sao Paulo Research Foundation collaborate on major international projects for neutrino research

    Under a new agreement, the University of Campinas and the Sao Paulo Research Foundation will play important roles in the Long-Baseline Neutrino Facility and the international Deep Underground Neutrino Experiment, hosted by Fermilab.

    New $21.4 million U.S.-Israel center aims to develop water-energy technologies

    New $21.4 million U.S.-Israel center aims to develop water-energy technologies

    A U.S.-Israel team that includes researchers from the U.S. Department of Energy's Argonne National Laboratory has received $21.4 million to develop new technologies to help solve global water challenges.

    Argonne's Valerii Vinokur awarded Fritz London Prize

    Argonne's Valerii Vinokur awarded Fritz London Prize

    Valerii Vinokur, a senior scientist and distinguished fellow at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has been awarded the Fritz London Memorial Prize for his work in condensed matter and theoretical physics.

    Register to Join a Special April 16 Media Tour of a Telescope Instrument that Will Create a 3D Map of Millions of Galaxies

    Register to Join a Special April 16 Media Tour of a Telescope Instrument that Will Create a 3D Map of Millions of Galaxies

    Members of the media are invited to attend a mid-April dedication of the Dark Energy Spectroscopic Instrument (DESI), which is scheduled to begin its five-year mission to construct a 3D map of the universe in the coming months.

    Department of Energy to Provide $100 Million for Solar Fuels Research

    The U.S. Department of Energy (DOE) announced a plan to provide up to $100 million over five years for research on artificial photosynthesis for the production of fuels from sunlight.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands





    Showing results

    0-4 Of 2215