DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2020-03-19 15:05:22
    • Article ID: 728486

    Flooding the Sky: Navigating the Science of Atmospheric Rivers

    • Credit: NOAA

      This storm over the Russian River in California was driven by an atmospheric river. Every time this river flooded between 2004 and 2014, it was because of one of these “rivers in the sky.”

    Ice crashed down on the windshield of the small plane. Rain pounded the wings. Water sloshed inside important instruments.

    For most pilots, this would be a nightmare.

    But still, the plane climbed up through the clouds. It ascended more than 5,000 feet above the ocean.

    For this team, these conditions were ideal. In fact, they had been waiting for this moment.

    This aircraft, along with three other planes and a research boat, were collecting data on atmospheric rivers—large, narrow sections of the atmosphere that run from the tropics to higher latitudes. Each carries about the same amount of water vapor as liquid water flowing through the mouth of the Amazon River. Upon reaching land—especially coastal areas next to mountains—they jettison much of this moisture. That causes massive amounts of rain and snow to fall.

    The vehicles and equipment inside of them were operated by U.S. government agencies to better understand how atmospheric rivers act. The small plane spiraling up through the clouds was run by the Atmospheric Radiation Measurement (ARM) facility, a user facility managed by the Department of Energy’s (DOE) Office of Science. The other aircraft were supported by the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Aeronautics and Space Administration (NASA). There was also a research vessel from NOAA and instruments from the National Science Foundation (NSF) and DOE.

    Probing observations, satellite data, and climate models, scientists supported by the DOE’s Office of Science are exploring atmospheric rivers’ role in the water and climate cycles. But navigating through the data proved to be trickier than the scientists expected.

    Massive Rivers in the Sky

    Rivers with liquid water carve a path through the landscape. Similarly, atmospheric rivers have big impacts on their surroundings. Starting over oceans, they’re steered by the westerly winds in the subtropics and extratropics. When they reach land, they smash into the west coasts of continents. The West Coast of the United States, Western Europe, and Western South America all feel their impacts: good and bad.

    Upon landfall, atmospheric rivers often bring extreme winter storms. Every time the Russian River in California flooded from 2004 to 2014, an atmospheric river was to blame. These storms can also bring strong winds and follow-on effects like landslides.

    But they can also be a savior. Atmospheric rivers’ precipitation provides about 50 percent of the U.S. West Coast’s water supply. Sometimes called “drought-busters,” they ended up to three-quarters of the droughts in the Pacific Northwest from 1950 to 2010.

    “Atmospheric rivers are important not only for the short-term, high-impact weather events that are often garnering media attention,” said Jonathan Rutz, an atmospheric scientist at NOAA’s National Weather Service who partners with scientists supported by DOE. “They’re also critically important in the longer term because they provide a lot of the snowpack that turns into the summertime water resources that we need to get us through the year in the West.”

    Predicting if an atmospheric river will bring help or disaster—or both—is a major focus of scientists’ efforts. Knowing where and when an atmospheric river will lead to precipitation—as well as how much it will produce—can help water managers and weather forecasters better predict the future.

    Pinning down these rivers’ behavior is also essential to improving computer programs that model the climate. At the poles, they’re a major influence on whether huge amounts of snow accumulate or melt.

    “Atmospheric rivers are responsible for 90 percent of the polarward moisture transport around the globe,” said Yang Zhou, a postdoctoral researcher at DOE’s Lawrence Berkeley National Laboratory. “Which gives them a very important role in the global hydrological cycle.”

    Atmospheric rivers vary a lot from year to year and season to season. As a result, they’re hard to model. Climate change may make them even more unpredictable.

    “We may not be able to depend on [the rivers] as much as we have in the past,” said Ashley Payne, an assistant professor of climate and space sciences and engineering at the University of Michigan. Referring to the future, she said, “In addition to changes in atmospheric river intensity, we need to understand how their variability will change.”           

    A Storm of Data Analysis

    There were only a handful of papers in the years after researchers first described atmospheric rivers in the 1990s. But the field exploded in the last decade. In 2015 alone, there were more than 200 scientific papers that mentioned them.

    “There were a few studies in the mid-2000s that really caught a lot of attention,” said Ruby Leung, a Battelle fellow at DOE’s Pacific Northwest National Laboratory and the chief scientist on the Energy Exascale Earth System Model (E3SM) project. Those studies underlined both atmospheric rivers’ international nature and big impacts. “It caught the attention of water managers. A much broader community became interested in this.”

    Much of the research explores existing satellite data. A recent study by Zhou and her colleague looked at how atmospheric rivers’ initial location over the Pacific Ocean influences their characteristics. The team tracked the life cycle, intensity, and path of every atmospheric river from 1979 to 2019. They found 24 atmospheric rivers hit the West Coast on average each winter. Tracking the rivers’ patterns can help water managers predict where they will appear before they even form.

    Other research examines how best to represent and predict atmospheric rivers in computer models. A 2015 study by Leung’s team showed that as scientists increased the spatial detail in the most current Earth system model at the time, the model predicted fewer atmospheric rivers. But that’s not what was happening in real life.  The model was overly sensitive because it was having trouble describing where moisture and subtropical winds were moving. This analysis helped scientists improve the model’s accuracy.

    Researchers also use models to explore the relationships between atmospheric rivers and their effects. “We’re interested in what kind of large-scale atmospheric conditions are present when atmospheric rivers occur because it’s easier to look at how those conditions change in simulations,” said Naomi Goldenson, a researcher at the University of California, Los Angeles (UCLA). She used climate models to determine the relationship between atmospheric rivers and mountain snowpack in the Northwest U.S. A large number of winter-season atmospheric rivers resulted in more snowpack in the high and cold Sierra Nevada and Rocky Mountains. In contrast, those large numbers of rivers resulted in less snowpack in the wetter, lower Cascade Mountains.

    Field observation campaigns allow scientists to discover new insights that aren’t available from existing data. The CalWater 2015 field campaign that ARM participated in was particularly thorough. It provided scientists with a rather unusual view of atmospheric rivers.

    “It was quite fun. I am mostly a modeler who usually works in front of a computer,” said Leung, who rode in one of the flights. “That was an experience for me trying to see what I’m actually trying to model with computer code.”

    A Flood of Definitions

    Even in research, there can be too much of a good thing.

    As more researchers dove into studying atmospheric rivers, they discovered there was no quantitative definition. So researchers developed their own. But there are a lot of variables you can choose from. Even the main variable—how much water vapor an atmospheric river is moving per meter per second—can be defined in many ways. The measurement depends on which area within the long, narrow band of moisture one even calls an atmospheric river.

    The community ended up with a jumble of definitions. Those resulted in conflicting results. Three separate studies said that atmospheric rivers caused between 15 to 35 percent of California’s precipitation—a huge range. Navigating through the data became challenging.

    “I would be talking about an orange and I’d be talking to someone who was talking about an apple, but we were talking about atmospheric rivers,” said Payne. “We had no baseline to compare our results.”

    But the differences offered an opportunity to work together.

    “It combines the weather and climate communities,” said Goldenson. “We don’t always speak the exact same language or the same priorities or the way we approach the problem. That’s both a challenge and a benefit.”

    Chasing Down a Set of Solutions

    Tackling the problem, the community launched the Atmospheric River Tracking Method Intercomparison Project (ARTMIP). The project is creating a framework that will help scientists compare methods of identifying and tracking atmospheric rivers. That framework will enable scientists and stakeholders to choose the right method for their application. Scientists have embraced the collaboration.

    “It’s a really friendly environment and everyone’s willing to discuss,” said Zhou. “The ARTMIP project is not a competition for the best method.”    

    So far, the project has tested 20 different approaches on a baseline data set. For each three-hour time period in the data, the project pinpoints if a method says whether or not there is an atmospheric river present along the California coast. Which measurements the techniques used led to big differences in the number of atmospheric rivers they identified.

    “As far as I’m aware, there’s nothing else like this that’s ever been done before,” said Rutz.

    But they also found that the methods weren’t as different as they first seemed. Most of them measured the same features. Instead, their dissimilarities came from how strict or broad their definition was. Strict definitions mainly identified strong atmospheric rivers. Broad definitions counted weaker ones as well. Each type of model had its own advantages and disadvantages, depending on the situation.

    Researchers are already putting these conclusions into practice. A study by Leung and her team examined atmospheric rivers’ characteristics that cause extreme precipitation on the U.S. West Coast. Comparing six different methods identified by ARTMIP, they saw three different types of atmospheric rivers: short-duration and low-intensity ones, short-duration and high-intensity ones, and long-duration ones. The more restrictive methods only identified the high-intensity rivers. As a result, they were better at predicting extreme precipitation. Based on the analysis, the scientists found a way to identify seven to 10 days in advance which atmospheric rivers could cause extreme precipitation on the West Coast.

    Now, the ARTMIP group is developing a scale from one to five that categorizes atmospheric rivers. It’s based on the amount of water vapor the rivers transport and their life cycle.

    While the new definitions will be helpful, it’s the researchers’ collaboration—whether in the sky or conference rooms—that will allow them to effectively make their way through these rivers.

    “It’s bringing together people who are approaching this problem from different angles,” said Goldenson. “I find that to be the most valuable in terms of potential for advancing our understanding even more than just comparing the raw numbers.”

     

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.

    X
    X
    X
    • Filters

    • × Clear Filters
    Argonne researchers create active material out of microscopic spinning particles

    Argonne researchers create active material out of microscopic spinning particles

    Argonne researchers have created a new kind of self-healing active material out of "microspinners," which self-assemble under a magnetic field to form a lattice.

    Global Environmental Changes Leading to Shorter, Younger Trees

    Global Environmental Changes Leading to Shorter, Younger Trees

    Ongoing environmental changes are transforming forests worldwide, resulting in shorter and younger trees. Researchers found that a range of factors, including rising temperatures and carbon dioxide levels, have caused a dramatic decrease in the age and stature of forests.

    Researchers use ALCF resources to model the spread of COVID-19

    Researchers use ALCF resources to model the spread of COVID-19

    Argonne researchers lead highly detailed COVID-19 modeling efforts to understand how the virus spreads through populations.

    Return of the Blob: Scientists find surprising link to troublesome turbulence at the edge of fusion plasmas

    Return of the Blob: Scientists find surprising link to troublesome turbulence at the edge of fusion plasmas

    Correlation discovered between magnetic turbulence in fusion plasmas and troublesome blobs at the plasma edge.

    Novel insight reveals topological tangle in unexpected corner of the universe

    Novel insight reveals topological tangle in unexpected corner of the universe

    In a recent theoretical study, scientists discovered the presence of the Hopfion topological structure in nano-sized particles of ferroelectrics -- materials with promising applications in microelectronics and information technology.

    New insights into the dynamic edge of fusion plasmas could help capture the power that drives the sun and stars

    New insights into the dynamic edge of fusion plasmas could help capture the power that drives the sun and stars

    Unique PPPL simulations reveal new understanding of the highly complex edge of fusion plasmas.

    Researchers capture the coordinated dance between electrons and nuclei in a light-excited molecule

    Researchers capture the coordinated dance between electrons and nuclei in a light-excited molecule

    Using SLAC's high-speed "electron camera," scientists simultaneously captured the movements of electrons and nuclei in a light-excited molecule. This marks the first time this has been done with ultrafast electron diffraction, which scatters a powerful beam of electrons off materials to pick up tiny molecular motions.

    Untangling a key step in photosynthetic oxygen production

    Untangling a key step in photosynthetic oxygen production

    Researchers zeroed in on a key step in photosynthesis in which a water molecule moves in to bridge manganese and calcium atoms in the catalytic complex that splits water to produce breathable oxygen. What they learned brings them one step closer to obtaining a complete picture of this natural process, which could inform the next generation of artificial photosynthetic systems that produce clean and renewable energy from sunlight and water. Their results were published in the Proceedings of the National Academy of Sciences today.

    Platinum-free catalysts could make cheaper hydrogen fuel cells

    Platinum-free catalysts could make cheaper hydrogen fuel cells

    Argonne scientists studied platinum-free catalysts for important fuel cell reactions. The research provides understanding of the mechanisms that make the catalysts effective, and it could inform production of more efficient and cost-effective catalysts.

    Electrons Break Rotational Symmetry in Exotic Low-Temp Superconductor

    Electrons Break Rotational Symmetry in Exotic Low-Temp Superconductor

    This odd behavior may promote the material's ability upon cooling to perfectly conduct electricity in a way unexplained by standard theories.


    • Filters

    • × Clear Filters
    Lehigh University graduate student wins DOE award to conduct thesis research at PPPL

    Lehigh University graduate student wins DOE award to conduct thesis research at PPPL

    Article profiles Vincent Graber, his research interests and thesis plans.

    Lograsso named Critical Materials Institute Director

    Lograsso named Critical Materials Institute Director

    Dr. Thomas Lograsso has been named director of the U.S. Department of Energy's Critical Materials Institute (CMI) at Ames Laboratory.

    Renowned scientist to head new research for plasma applications in industry and quantum information science

    Renowned scientist to head new research for plasma applications in industry and quantum information science

    The Princeton Plasma Physics Laboratory has appointed David Graves, an internationally known chemical engineer, to head a new research enterprise that will explore plasma applications in semiconductor manufacturing and the next generation of super-fast quantum computers.

    Argonne physicist Giulia Galli earns two top honors for outstanding research and leadership

    Argonne physicist Giulia Galli earns two top honors for outstanding research and leadership

    Galli elected to both the American Academy of Arts and Sciences and the National Academy of Sciences.

    Brookhaven Biochemist Receives Prestigious Award for Plant Lipid Research

    Brookhaven Biochemist Receives Prestigious Award for Plant Lipid Research

    Jantana Keereetaweep, a biochemistry research associate in the biology department at the U.S. Department of Energy's Brookhaven National Laboratory, has been awarded the Paul K. Stumpf Award for her research on plant lipids (fats and oils). The award, given every two years, recognizes the contributions of a promising early-career scientist in honor of Stumpf, who was a world leader and pioneer in the study of plant lipid biochemistry.

    ORNL's Brian Post named SME Young Engineer of the Year

    ORNL's Brian Post named SME Young Engineer of the Year

    Brian Post, a researcher in large-scale additive manufacturing at Oak Ridge National Laboratory, has been selected as a recipient of the 2020 Outstanding Young Manufacturing Engineer Award by the Society of Mechanical Engineers (SME).

    Fourth cohort of 6 innovators selected for Chain Reaction Innovations program

    Fourth cohort of 6 innovators selected for Chain Reaction Innovations program

    Six new innovators will be joining Chain Reaction Innovations (CRI), the entrepreneurship program at the U.S. Department of Energy's (DOE) Argonne National Laboratory, as part of the elite program's fourth cohort.

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Graduate student in plasma physics at the Princeton Plasma Physics Laboratory has won a highly selective honorific fellowship from Princeton University.

    U.S. Department of Energy's INCITE program seeks proposals for 2021

    U.S. Department of Energy's INCITE program seeks proposals for 2021

    The INCITE program is now seeking proposals for high-impact, computationally intensive research projects that require the power and scale of DOE's leadership-class supercomputers.

    Argonne's Paul Dickman honored with nuclear waste management achievement award

    Argonne's Paul Dickman honored with nuclear waste management achievement award

    Paul Dickman has been named a Waste Management Symposium Fellow for 2020.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business





    Showing results

    0-4 Of 2215