DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2020-05-15 09:35:06
    • Article ID: 731655

    Meet the Intern Using Quantum Computing to Study the Early Universe

    Juliette Stecenko is using modern supercomputers and quantum computing platforms to perform astronomy simulations that may help us better understand where we came from.

    • Credit: Juliette Stecenko

      Juliette Stecenko worked with Michael McGuigan of the Computational Science Initiative to develop a quantum computing approach for tackling cosmological questions by breaking them into smaller problems

    • Credit: Juliette Stecenko

      Stecenko with a poster from a previous project at Brookhaven Lab on gamma ray spectroscopy, Fall 2019

    By Erika Peters

    With the help of the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Juliette Stecenko is exploring cosmology—a branch of astronomy that investigates the origin and evolution of the universe, from the Big Bang to today and into the future. As an intern through DOE’s Science Undergraduate Laboratory Internship [https://www.bnl.gov/education/programs/program.php?q=188]s (SULI) program, administered at Brookhaven by the Office of Educational Programs [https://www.bnl.gov/education/] (OEP), Stecenko is using modern supercomputers and quantum computing platforms to perform astronomy simulations that may help us better understand where we came from.

    Stecenko works under the guidance of Michael McGuigan, a computational scientist in the quantum computing group at Brookhaven’s Computational Science Initiative [https://www.bnl.gov/compsci/]. The two have been collaborating on simulating Casimir energy—a small force that two electrically neutral surfaces held a tiny distance apart will experience from quantum, atomic, or subatomic fluctuations in the vacuum of space. The vacuum energy of the universe and the Casimir pressure of this energy could be a possible explanation of the origin and evolution of the universe, as well a possible cause of its accelerated expansion.

    “Casimir energy is something scientists can measure in the laboratory and is especially important for nanoscience, or in cosmology, in the very early universe when the universe was very small,” McGuigan said.

    When looking at systems that are small, such as the early universe, this type of energy becomes much more important than it is at the macro-scales we are used to experiencing, he added.

    “The energy is inversely proportional to size,” McGuigan said.

    For the cosmological applications that Stecenko and McGuigan are studying, Casimir energy is something that is not well understood.

    “It's a form of energy that is present even if there are no charges or particles in the electromagnetic field,” McGuigan said. “We found we could simulate this on a quantum computer.” 

    Quantum computers use computer technology based on the principles of quantum theory, which explains the nature and behavior of energy and matter at the smallest scales. 

    “One of the important traits Juliette found, which wasn't known before, was that when we tried to represent this energy or any of the energies on the quantum computer, it could take an enormous number of terms,” McGuigan said.

    The “terms” McGuigan is referring to are the basic units of information on a quantum computer. On a classical computer, the “terms” are a sequence of bits—values of zero and one to represent two states (think of an on and off switch). Classical computers use those two states to makes sense of and decisions about the data scientists run through the program following a prearranged set of instructions.

    But when you enter the world of atomic and subatomic particles and other realms at small scales, things begin to behave in unexpected ways. These particles, for example, can exist in more than one state at a time. That’s where quantum computers are used to solve complex problems that are beyond the capabilities of a classical computer. Instead of bits, which conventional computers use, a quantum computer uses quantum bits—known as qubits.

    “The easiest way to understand it is this: The bits you have on a classical computer are kind of like a quarter," Stecenko said. "And when you flip a quarter, you either get heads or tails, so it's ones and zeros. But with a qubit, you can also turn that quarter. So, you have a third component of rotation. It’s not just ones and zeros, it's ones and zeros and X's and Y's, and many other things.”

    This means that a computer using qubits can store an enormous amount of information. This flexibility opens opportunities for exploring questions where the traditional laws of physics no longer apply, because qubits can represent the many possible states of the particles that make up the universe.

    In recent years, scientists have successfully developed quantum algorithms to help understand the building blocks of matter. But they’ve had a much tougher time doing the same for “force-carrier” particles called bosons.

    McGuigan and Stecenko tried applying quantum computing techniques to simulate boson interactions in cosmological models.

    “We anticipated there wouldn't be that many terms, but then when Juliette was getting in there and trying to run it, we found there’s a lot in the terms,” McGuigan said.

    This is because many bosons can occupy the same state at the same time, meaning a single state can accommodate one boson, a trillion bosons, or anything in between. That makes it tough to map bosons to qubits. 

    “With bosons, the question isn’t whether the qubit represents an occupied or unoccupied state, but rather, how many qubits are needed to represent the boson state,” McGuigan said.

    The large number of terms led Stecenko to make a discovery. Instead of running an algorithm for a system of 12 bosons, their algorithms could be broken up into smaller problems: two algorithms for six bosons that could then be added together.

    “It’s kind of like divide and conquer,” McGuigan said. “We can divide the problem and run the calculation a few times to get a complete answer. This is a new strategy that nobody's really tried—parallel quantum computing.”

    This computing approach may change how scientists tackle other simulations that involve a large number of terms.

    “Cosmology is something that has always interested people since the beginning of time— looking up and finding out what's out there—but studying these questions can have broader impact,” McGuigan said. “If you build a very, very fast computer to try to understand cosmology, that very fast computing technique can be used, for example, to sift through the 3-D structures of proteins to discover new therapeutic drugs.”

    From the SULI program to beyond

    Stecenko graduated from Rutgers University in 2019, where she double majored in astrophysics and physics.

    “My focus in undergrad was mainly astrophysics,” Stecenko said. “I did research with Eric Gawiser, Professor in the Department of Physics & Astronomy at Rutgers, and I worked on studying the clustering of Lyman-alpha emitting galaxies.”

    That got her hooked on studying cosmology.

    “In the fall I'm going to attend the University of Connecticut for the Ph.D. program in physics,” she said.

    “In the past, my experience with cosmological research has mostly been experimental—looking at datasets and using those datasets as opposed to creating simulations, and it was based on my on previous knowledge. This internship gave me a different way of looking at cosmology that can expand what I know I'm able to do as a physicist—in my graduate education, and after that as well.”

    Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science [https://energy.gov/science].

    Follow @BrookhavenLab on Twitter or find us on Facebook.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

     

     

    X
    X
    X
    • Filters

    • × Clear Filters
    New Science Behind Algae-based Flip-flops

    New Science Behind Algae-based Flip-flops

    UC San Diego researchers formulated polyurethane foams, made from algae oil, to meet commercial specifications for midsole shoes and the foot-bed of flip-flops. Their latest result, in a series of recent research publications, offers a complete solution to the plastics problem--at least for polyurethanes.

    Horizon31 startup licenses ORNL global communication system for drones

    Horizon31 startup licenses ORNL global communication system for drones

    Horizon31, LLC, of Knoxville, Tenn., has exclusively licensed a novel communication system that allows users to reliably operate unmanned vehicles such as drones from anywhere in the world using only an internet connection.

    A Closer Look at Water-Splitting's Solar Fuel Potential

    A Closer Look at Water-Splitting's Solar Fuel Potential

    Scientists at Berkeley Lab and the Joint Center for Artificial Photosynthesis (JCAP) have gained important new insight into how the performance of a promising semiconducting thin film can be optimized at the nanoscale for renewable energy technologies such as solar fuels.

    Poison control: Chasing the antidote

    Poison control: Chasing the antidote

    A fast-acting antidote to mitigate the effects of organophosphate poisoning requires a reactivator that can effectively and efficiently cross the blood-brain barrier, bind loosely to the enzyme, chemically snatch the poison and then leave quickly. Oak Ridge National Laboratory is using neutron diffraction data towards improving a novel reactivator design.

    Promising new research identifies innovative approach for controlling defects in 3D printing

    Promising new research identifies innovative approach for controlling defects in 3D printing

    Argonne scientists use temperature data to tune -- and fix -- defects in 3D-printed metallic parts.

    Turning carbon dioxide into liquid fuel

    Turning carbon dioxide into liquid fuel

    University reports a new electrocatalyst that converts carbon dioxide and water into ethanol with very high energy efficiency, high selectivity for the desired final product and low cost.

    Interpreting the Human Genome's Instruction Manual

    Interpreting the Human Genome's Instruction Manual

    Berkeley Lab bioscientists are part of a nationwide research project, called ENCODE, that has generated a detailed atlas of the molecular elements that regulate our genes. This enormous resource will help all human biology research moving forward.

    Ultrafast lasers probe elusive chemistry at the liquid-liquid interface

    Ultrafast lasers probe elusive chemistry at the liquid-liquid interface

    Real-time measurements captured by researchers at the Department of Energy's Oak Ridge National Laboratory provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

    Dark Energy Survey census of the smallest galaxies hones the search for dark matter

    Dark Energy Survey census of the smallest galaxies hones the search for dark matter

    Scientists on the Dark Energy Survey have used observations of the smallest known galaxies to better understand dark matter, the mysterious substance that makes up 85% of the matter in the universe. The smallest galaxies can contain hundreds to thousands of times more dark matter than normal visible matter, making them ideal laboratories for studying this mysterious substance. By performing a rigorous census of small galaxies surrounding our Milky Way, scientists on the Dark Energy Survey have been able to constrain the fundamental particle physics that governs dark matter.

    Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    ORNL Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion


    • Filters

    • × Clear Filters
    Wayne State receives DOE grant to develop catalysts for renewable energy generation

    Wayne State receives DOE grant to develop catalysts for renewable energy generation

    This research will focus on the development of efficient electrochemical systems for energy generation and storage. The proposed work will have a significant impact on the development of efficient energy conversion systems.

    Natalie Roe Named Berkeley Lab's Associate Director for Physical Sciences

    Natalie Roe Named Berkeley Lab's Associate Director for Physical Sciences

    Natalie Roe, who joined Lawrence Berkeley National Laboratory (Berkeley Lab) as a postdoctoral fellow in 1989 and has served as Physics Division director since 2012, has been named the Lab's Associate Laboratory Director (ALD) for the Physical Sciences Area. Her appointment was approved by the University of California. The announcement follows an international search.

    Brookhaven Lab Partners in New $40 M Research Center to Convert Sunlight to Liquid Fuels

    Brookhaven Lab Partners in New $40 M Research Center to Convert Sunlight to Liquid Fuels

    UPTON, NY--The U.S. Department of Energy (DOE) has announced $40M in funding over five years for a new research center aimed at developing hybrid photoelectrodes for converting sunlight into liquid fuels. Chemists from DOE's Brookhaven National Laboratory will be key partners in this effort, dubbed the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), which will be led by the University of North Carolina at Chapel Hill (UNC) and includes additional collaborators at Emory University, North Carolina State University, the University of Pennsylvania, and Yale.

    Fermilab scientist Laura Fields receives $2.5 million DOE award to study beams of shape-shifting ghost particles

    Fermilab scientist Laura Fields receives $2.5 million DOE award to study beams of shape-shifting ghost particles

    Laura Fields has won an Early Career Research Award from the Department of Energy to help physicists better understand the composition of neutrino beams used by Fermilab experiments. Her work will help gather and validate results that could shed light on why the universe consists of something rather than nothing.

    Summer Sundays Go Virtual

    Summer Sundays Go Virtual

    rookhaven Lab is moving its Summer Sunday program to an online format for 2020. Over three Sundays this summer, the Lab will host a series of live, virtual events for everyone to interact with the Lab in a new way. Each event will feature a guided tour of a Brookhaven Lab facility followed by a live Q&A with a panel comprised of the facility's scientists.

    Geothermal Brines Could Propel California's Green Economy

    Geothermal Brines Could Propel California's Green Economy

    Deep beneath the surface of the Salton Sea, a shallow lake in California's Imperial County, sits an immense reserve of critical metals that, if unlocked, could power the state's green economy for years to come. These naturally occurring metals are dissolved in geothermal brine, a byproduct of geothermal energy production. Now the race is on to develop technology to efficiently extract one of the most valuable metals from the brine produced by the geothermal plants near the Salton Sea: lithium.

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    The Department of Energy's Oak Ridge National Laboratory has licensed two additive manufacturing-related technologies that aim to streamline and ramp up production processes to Knoxville-based Magnum Venus Products, Inc., a global manufacturer of fluid movement and product solutions for industrial applications in composites and adhesives.

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    The Department of Energy has awarded $60 million to a new solar fuels initiative - called the Liquid Sunlight Alliance (LiSA) - led by Caltech in close partnership with Berkeley Lab. LiSA will build on the foundational work of the Joint Center for Artificial Photosynthesis (JCAP).

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Profile of PPPL winner of APS Dawson Award for outstanding achievement in plasma physics research.

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Bob May's career-long aspiration has been to keep people from all walks of life and in different work environments safe from radiation in the workplace. Now, the deputy director of Environment, Safety and Health at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has been honored for his dedication to the field by being named a fellow of the Health Physics Society.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215