DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2020-06-11 11:05:38
    • Article ID: 733007

    Physicists publish worldwide consensus of muon magnetic moment calculation

    • Credit: Photo: Reidar Hahn, Fermilab

      Today's publication by the Muon g-2 Theory Initiative marks the first time the global theoretical physics community has come together to publish a consensus value for the muon's magnetic moment. Now the world awaits the result from Fermilab's current Muon g-2 experiment, whose magnetic storage ring is pictured here.

    • Credit: Photo: Aarti Veernala

      The Muon g-2 Theory Initiative has the published worldwide consensus calculation of the value of the muon’s anomalous magnetic moment. Members of the initiative Steering Committee are Gilberto Colangelo, University of Bern; Michel Davier, University of Paris-Saclay; Simon Eidelman, Novosibirsk (not pictured); Aida El-Khadra, University of Illinois; Chrisoph Lehner, Brookhaven National Laboratory; Tsutomu Mibe, KEK (not pictured); Andreas Nyffeler, University of Mainz; Lee Roberts, Boston University; Thomas Teubner, University of Liverpool.

    • Credit: Image: Muon g-2 Theory Initiative

      Standard Model theory: The chart on the left shows the contributions to the value of the anomalous magnetic moment from the Standard Model of particles and interactions. About 99.994% comes from contributions due to the electromagnetic force while the hadronic contributions account for only 0.006% (note the blue sliver). The right chart shows the contributions to the total uncertainty in the theoretical prediction. About 99.95% of the total error in the theoretical prediction is due the uncertainties in the hadronic corrections, while, at about 0.05% of the total error, the uncertainties in the electromagnetic and electroweak contributions are negligibly small. (QED – quantum electrodynamic forces; EW – electroweak forces; HVP – hadronic vacuum polarization; HLbL – hadronic light-by-light).

    For decades, scientists studying the muon have been puzzled by a strange pattern in the way muons rotate in magnetic fields, one that left physicists wondering if it can be explained by the Standard Model — the best tool physicists have to understand the universe.

    This week, an international team of more than 170 physicists published the most reliable prediction so far for the theoretical value of the muon’s anomalous magnetic moment, which would account for its particular rotation, or precession. The magnetic moment of subatomic particles is generally expressed in terms of the dimensionless Landé factor, called g. While a number of international groups have worked separately on the calculation, this publication marks the first time the global theoretical physics community has come together to publish a consensus value for the muon's magnetic moment.

    The result differs from the most recent experimental measurement, which was performed at Brookhaven National Laboratory in 2004, but not significantly enough to unambiguously answer this question.

    Now the world awaits the result from Fermilab's current Muon g-2 experiment. In the upcoming months, physicists working on the experiment will unveil their preliminary measurement for the value. Depending on how much the Standard Model theoretical calculation differs from the upcoming experimental measurement, physicists may be one step closer to determining whether the muon’s magnetic interactions are hinting at particles or forces that have yet to be discovered.

    In the late 1960s at CERN laboratory, scientists began using a large circular magnetic ring to test the theory that described how muons should "wobble" when moving through a magnetic field. Since then, experimenters have continued to quantify that wobble, making more and more precise measurements of the muon's anomalous magnetic moment.

    The decades-long effort eventually led to an experiment at Brookhaven National Laboratory and its successor at Fermilab, as well as plans for a new experiment in Japan. At the same time, theorists worked to improve the precision of their calculations and fine-tune their predictions.

    The theoretical value of the anomalous magnetic moment of the muon, published today, is:

    a = (g-2)/2 (muon, theory) = 116 591 810(43) x 10-12

    The most precise experimental result available so far is:

    a = (g-2)/2 (muon, expmt) = 116 592 089(63) x 10-12

    Again, the slight discrepancy between the experimental measurements and the predicted value has persisted, and again it is just beneath the threshold to make a definitive statement.

    This theoretical value, published in the arXiv, is the result of over three years of work by 130 physicists from 78 institutions in 21 countries.

    “We’ve not had a theory effort like this before in which all the different evaluations are combined into a single Standard Model prediction,” said Aida El-Khadra, a physicist at the University of Illinois and co-chair of the Steering Committee for the Muon g-2 Theory Initiative, the name of the group of scientists who worked on the calculation.

    Their work builds on a single equation published in 1928 that simultaneously started the field of quantum electrodynamics and laid the foundations for the Muon g-2 experiment.

    An elegant theory

    If you were to ask physicists what they considered the most accurate and successful equation in their field, chances are more than a few would say it’s Dirac’s equation, which describes the relativistic quantum theory of the electron. Published in 1928, Dirac described the spin motion of electrons, and his equation bridged the gap between Einstein’s theory of relativity and the theory of quantum mechanics, and unintentionally predicted the existence of antimatter with only a single equation.

    Dirac was also able to calculate something called the magnetic moment of the electron, which he described as being “an unexpected bonus.”

    Electrons can be thought of as tiny spinning tops that rotate on their axis, an intrinsic property that makes each electron act like a tiny magnet. When placed in a magnetic field, such as the ones generated in particle accelerators, electrons will precess — or wobble on their axis — in a specific and predictable pattern. This wobble is an effect of the particle's magnetic moment, and it applies to more than electrons. Every electrically charged particle with ½ spin (spin is quantified in half units) behaves in the same way, including particles called muons, which have the same properties as electrons but are more than 200 times as massive.

    Dirac's equation, which did not take into account the effects of quantum fluctuations, predicted that g would equal 2. Experiment has shown that the actual value differs from that simple expectation — hence the name "muon g-2."

    Physicists now have a much better understanding of what those quantum fluctuations are and how they behave at subatomic scales, but precisely calculating how they affect the muon’s path is no easy task.

    “Calculating the effects of these quantum fluctuations at the precision level demanded by modern experiment isn’t something that one brilliant person can do alone,” El-Khadra said. “It really takes the whole village.”

    Meeting of the minds

    With so many physicists working on the latest developments to the theory around the world, El-Khadra and her colleagues at Fermilab knew the best way to facilitate interactions between the groups was to bring them all together. So, starting in 2016, El-Khadra and her colleagues in the Fermilab Theory Group, together with Brookhaven National Laboratory scientist Christoph Lehner, Theory Initiative co-chair, and several other international collaborators reached out to the leaders in the global community of physicists working on this problem to put together a new initiative, the Muon g-2 Theory Initiative. The initiative, led by a nine-person Steering Committee that includes leaders of all the major efforts in both theory and experiment, organized a series of workshops around the world, including in the U.S., Japan and Germany, the first of which was hosted at Fermilab in 2017.

    “We had some very intense discussions,” El-Khadra said, “That led to more detailed comparisons and a better understanding of the pros and cons of the various approaches.”

    The establishment of the Muon g-2 Theory Initiative was the first coherent international effort to bring together all of the parties working on the Standard Model value of the muon's anomalous magnetic moment.

    “Before this initiative began, there were a number of evaluations in the literature of the Standard Model value, each of which differed slightly from the others," said Boston University scientist Lee Roberts, co-founder of the Fermilab experiment and a member of the initiative’s Steering Committee. “The remarkable thing is that this worldwide community was able to come together and to agree on the ‘best’ value for each of the contributions to the value of the muon's magnetic moment.”

    Quantum calculations

    “Muons and other spin-½ particles are never really alone in the universe,” said Fermilab scientist Chris Polly, who is one of Muon g-2's spokespersons, along with University of Manchester physicist Mark Lancaster. “They interact with a whole entourage of particles that are constantly popping into and out of existence.”

    The two main sources of uncertainty are hadronic vacuum polarization and light-by-light scattering — in which a muon emits and reabsorbs photons after they have traveled through a bubble of quarks and gluons. Both of these factors combine to make up less than 0.01% of the effect on the muon’s wobble yet make up the main source of uncertainty in the theory calculation.

    Calculating the light-by-light scattering part of the hadronic contribution has proven to be especially difficult, and before the start of the Muon g-2 Theory Initiative, physicists had not yet produced reliable estimates of its effects. The best they could manage were rough approximations that led some to wonder whether these evaluations of the light-by-light scattering might be the source of the difference between the muon’s calculated anomalous magnetic moment and the experimentally measured value.

    But theorists are now confident that they can lay these doubts to rest. Thanks to heroic efforts in recent years within the theory community, not just one, but two independent evaluations are now available, each with reliably estimated uncertainties, which are included in the total error of the Standard Model prediction listed above.

    “We’ve now quantified the light-by-light scattering contribution to the extent that it can no longer be used as an explanation to save the Standard Model if the experimental value turns out to differ significantly from the theoretical prediction,” said Brookhaven National Laboratory physicist Christoph Lehner, Theory Initiative co-chair.

    And with so much riding on the line, El-Khadra and other members of the Theory Initiative have left nothing to chance.

    “We have strongly emphasized the importance of including evaluations based on several different methods in our construction of the Standard Model prediction of the anomalous magnetic moment of the muon,” El-Khadra said. “Because if we find that the Fermilab experiment's measurement is inconsistent with the Standard Model, we want to be sure.”

    The Fermilab Muon g-2 experiment is supported by the DOE Office of Science.

    Fermilab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

    X
    X
    X
    • Filters

    • × Clear Filters
    AI software enables real-time 3D printing quality assessment

    AI software enables real-time 3D printing quality assessment

    Oak Ridge National Laboratory researchers have developed artificial intelligence software for powder bed 3D printers that assesses the quality of parts in real time, without the need for expensive characterization equipment.

    A Shining Example of Nature Leading the Way

    A Shining Example of Nature Leading the Way

    From oil refining to automobile pollution-control devices to the bulk of pharmaceuticals, platinum-group metals are the go-to choice for facilitating chemical reactions. It's been that way for decades. But a new review article in the August 14 issue of the journal Science, led by first author Morris Bullock of Pacific Northwest National Laboratory, provides a road map toward greater use of Earth-abundant metals, which would reduce cost and environmental impact.

    UChicago scientists discover way to make quantum states last 10,000 times longer

    UChicago scientists discover way to make quantum states last 10,000 times longer

    Scientists discovered a simple modification that allows quantum systems to stay operational 10,000 times longer than previous systems.

    SLAC scientists invent low-cost emergency ventilator and share the design for free

    SLAC scientists invent low-cost emergency ventilator and share the design for free

    Researchers at the Department of Energy's SLAC National Accelerator Laboratory have invented an emergency ventilator that could help save the lives of patients suffering from COVID-19, the disease caused by novel coronavirus SARS-CoV-2.

    Scientists propose method for eliminating damaging heat bursts in fusion device

    Scientists propose method for eliminating damaging heat bursts in fusion device

    Researchers discover a technique for widening the windows of plasma current to enhance suppression of edge localized modes (ELMs) that can damage tokamak facilities.

    A team of international physicists join forces in hunt for sterile neutrinos

    A team of international physicists join forces in hunt for sterile neutrinos

    The MINOS+ and Daya Bay neutrino experiments combine results to produce most stringent test yet for the existence of sterile neutrinos.

    Explosive nuclear astrophysics

    Explosive nuclear astrophysics

    An international team has made a key discovery related to "presolar grains" found in some meteorites. This discovery has shed light on stellar explosions and the origin of chemical elements. It has also provided a new method for astronomical research.

    Aug. 2020 Science Snapshots

    Aug. 2020 Science Snapshots

    *Subtropical weather phenomenon likely to bring greater rainfall - and drought - by 2100 *A Q&A with scientist Bin Wang on how Berkeley Lab is helping cities prepare for a major shift in our transportation and grid sectors *Berkeley Lab founder, cyclotron inventor, and Nobel laureate Ernest Lawrence, honored with a Memorial Highway in his home state.

    New Science Behind Algae-based Flip-flops

    New Science Behind Algae-based Flip-flops

    UC San Diego researchers formulated polyurethane foams, made from algae oil, to meet commercial specifications for midsole shoes and the foot-bed of flip-flops. Their latest result, in a series of recent research publications, offers a complete solution to the plastics problem--at least for polyurethanes.

    Horizon31 startup licenses ORNL global communication system for drones

    Horizon31 startup licenses ORNL global communication system for drones

    Horizon31, LLC, of Knoxville, Tenn., has exclusively licensed a novel communication system that allows users to reliably operate unmanned vehicles such as drones from anywhere in the world using only an internet connection.


    • Filters

    • × Clear Filters
    Workshop aimed at encouraging women and minority students to consider careers in plasma physics goes online

    Workshop aimed at encouraging women and minority students to consider careers in plasma physics goes online

    A dozen undergraduate students spent the afternoon doing experiments aimed at teaching them some fundamentals about electromagnets through PPPL's Undergraduate Workshop in Plasma Physics.

    Wayne State receives DOE grant to develop catalysts for renewable energy generation

    Wayne State receives DOE grant to develop catalysts for renewable energy generation

    This research will focus on the development of efficient electrochemical systems for energy generation and storage. The proposed work will have a significant impact on the development of efficient energy conversion systems.

    Natalie Roe Named Berkeley Lab's Associate Director for Physical Sciences

    Natalie Roe Named Berkeley Lab's Associate Director for Physical Sciences

    Natalie Roe, who joined Lawrence Berkeley National Laboratory (Berkeley Lab) as a postdoctoral fellow in 1989 and has served as Physics Division director since 2012, has been named the Lab's Associate Laboratory Director (ALD) for the Physical Sciences Area. Her appointment was approved by the University of California. The announcement follows an international search.

    Brookhaven Lab Partners in New $40 M Research Center to Convert Sunlight to Liquid Fuels

    Brookhaven Lab Partners in New $40 M Research Center to Convert Sunlight to Liquid Fuels

    UPTON, NY--The U.S. Department of Energy (DOE) has announced $40M in funding over five years for a new research center aimed at developing hybrid photoelectrodes for converting sunlight into liquid fuels. Chemists from DOE's Brookhaven National Laboratory will be key partners in this effort, dubbed the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), which will be led by the University of North Carolina at Chapel Hill (UNC) and includes additional collaborators at Emory University, North Carolina State University, the University of Pennsylvania, and Yale.

    Fermilab scientist Laura Fields receives $2.5 million DOE award to study beams of shape-shifting ghost particles

    Fermilab scientist Laura Fields receives $2.5 million DOE award to study beams of shape-shifting ghost particles

    Laura Fields has won an Early Career Research Award from the Department of Energy to help physicists better understand the composition of neutrino beams used by Fermilab experiments. Her work will help gather and validate results that could shed light on why the universe consists of something rather than nothing.

    Summer Sundays Go Virtual

    Summer Sundays Go Virtual

    rookhaven Lab is moving its Summer Sunday program to an online format for 2020. Over three Sundays this summer, the Lab will host a series of live, virtual events for everyone to interact with the Lab in a new way. Each event will feature a guided tour of a Brookhaven Lab facility followed by a live Q&A with a panel comprised of the facility's scientists.

    Geothermal Brines Could Propel California's Green Economy

    Geothermal Brines Could Propel California's Green Economy

    Deep beneath the surface of the Salton Sea, a shallow lake in California's Imperial County, sits an immense reserve of critical metals that, if unlocked, could power the state's green economy for years to come. These naturally occurring metals are dissolved in geothermal brine, a byproduct of geothermal energy production. Now the race is on to develop technology to efficiently extract one of the most valuable metals from the brine produced by the geothermal plants near the Salton Sea: lithium.

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    The Department of Energy's Oak Ridge National Laboratory has licensed two additive manufacturing-related technologies that aim to streamline and ramp up production processes to Knoxville-based Magnum Venus Products, Inc., a global manufacturer of fluid movement and product solutions for industrial applications in composites and adhesives.

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    The Department of Energy has awarded $60 million to a new solar fuels initiative - called the Liquid Sunlight Alliance (LiSA) - led by Caltech in close partnership with Berkeley Lab. LiSA will build on the foundational work of the Joint Center for Artificial Photosynthesis (JCAP).

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Profile of PPPL winner of APS Dawson Award for outstanding achievement in plasma physics research.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215