DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2020-08-13 10:30:46
    • Article ID: 736338

    CASL wraps up 10 years of solving nuclear problems — and hands toolbox to industry

    • Credit: ORNL

      VERA’s tools allow a virtual window inside the reactor core, down to a molecular level.

    Ten years ago, the Department of Energy put out a call for innovators to change the world of nuclear energy.

    What DOE hoped to accomplish with the then-new Energy Innovation Hubs concept was “translational research” — research and development on an accelerated timeline that could solve the problems facing the nuclear industry, not only extending the life of the current reactor fleet, but also paving the way for more efficient next-generation reactors.

    Those solutions would then go straight to industry as quickly as possible. DOE was willing to put $125 million toward a “hub” for at least five years to see that happen.

    The Oak Ridge National Laboratory-based Consortium for the Advanced Simulation of Light Water Reactors — a national collaboration of top scientists and engineers from government, academia and industry who had the privilege of making up DOE’s first Energy Innovation Hub — showed enough success that DOE renewed its funding for a second five-year period.

    The consortium wrapped in June, having solved some of the biggest nuclear reactor challenges, and is handing industry a comprehensive software suite with the tools and support to use it immediately and on an ongoing basis.

    “We’ve come through on the bet,” said former CASL director Doug Kothe.

     

    Involving industry

    Industry buy-in was a critical element of the hub’s success, said original CASL member John Turner. The Tennessee Valley Authority, Westinghouse and the Electric Power Research Institute were partners from the start.

    “That was a key part of the project, having industry involved early on, but we didn’t have to convince them how valuable this was,” Turner said. “They were coming to the table saying, ‘We need help here.’ Industry was recognizing the gaps themselves, and they respected our expertise and were motivated to collaborate with us.”

    Other partners included Idaho, Los Alamos and Sandia national laboratories; Massachusetts Institute of Technology; the University of Michigan and North Carolina State University.

    “It was an ambitious undertaking,” said Dave Kropaczek, a chief scientist with CASL who became its director in 2018 and was an early member of the industry council. “It had a huge scope. I was skeptical but curious.”

    With hundreds of scientists and engineers at the top of their field working together, the consortium set a goal to develop broad capabilities to:

    • Accurately predict and reduce instances of undesirable boiling conditions, thereby increasing fuel performance and core power. An example was departure from nucleate boiling, the point at which a steam blanket forms on the fuel rod surface, insulating it and reducing heat transfer rapidly.
    • Predict and manage “crud,” which are deposits that form on fuel rods that can shorten their efficiency and lifespan, increasing the cost of power.
    • Predict fuel pellet and cladding integrity during normal operation and postulated accident scenarios, giving power plant operators greater flexibility in when and how much power is produced.
    • Predict how neutrons interact with large reactor components to provide a guide for which materials are likely to degrade on what timeline, as well as to help reactor owners decide when to replace parts for improved performance.

    How would they do that? By developing an exceedingly accurate virtual reactor.

     

    ‘The modern era of simulation’

    The field of modeling and simulation wasn’t new to the industry; it had been part of nuclear engineering for decades.

    The challenge, though, was bridging the gap between its current capabilities and its possibilities, Turner said.

    “At the time, industry had become more followers than leaders in simulation; they were used to lower-fidelity, lower-confidence simulations,” Kothe said. “We opened their eyes to the possibilities and brought them into the modern era of simulation. We demystified the simulation technology. It wasn’t a black box; they were part of the development, and they could roll up their sleeves and go in there and see that it’s not a bunch of smoke and mirrors. They saw that this tool was for everyone and that the staffers involved were talented and committed and listened to them.”

    The stakes were high. Nuclear produces roughly 20 percent of the total U.S. power supply but more than half its carbon-free electricity. While the country’s demand for power is expected to increase by at least 25 percent by 2030, the average age of the U.S. nuclear fleet is close to 40. As of last year, 17 reactors at 16 sites were in various stages of decommissioning, yet only one new reactor has gone online in the U.S. this century. Extending the life and efficiency of these older, existing reactors meant buying time and power until the next generation of reactors is developed and put into service.

    Gil Weigand, then CASL’s startup manager, “pushed us very hard to release a Version 1 software package after only one year,” Turner said. “If we looked back, we’d probably be pretty underwhelmed with what that was. But it was still a big achievement to rise to Gil’s challenge and release a software package after only a year.”

    Four years after that first release when CASL’s Virtual Environment for Reactor Applications, or VERA, accurately simulated the 2016 startup of TVA’s Watts Bar Unit 2 — the only reactor to go online in the U.S. in the 21st century — it became obvious that the project would have a permanent impact on the industry.

    “Early in CASL, everyone involved established a strong vision for the program with aggressive challenge problems that drove development,” said Jess Gehin, who was initially a focus area leader and became CASL’s second director. “Hard decisions were made on research directions that resulted in delivery of game-changing capabilities that showed that modern modeling and simulation capabilities can deliver significant predictive and application improvements over the engineering tools in use at the time.”

     

    VERA’s major milestone

    VERA is a suite of software codes based on reactor physics, thermal hydraulics, chemistry and fuel performance that allows insight into every part of a reactor — down to individual fuel pellets.

    A typical pressurized water reactor contains 193 fuel assemblies, nearly 51,000 fuel rods and 18 million fuel pellets. VERA can simultaneously simulate all processes in a reactor core: the heating and changing phases of coolant as it flows, the fission of fuel and changes to fuel as it is depleted. It can look at individual components to accurately predict the power cycle and fuel performance.

    “We developed a virtual simulation technology that could pretty convincingly tackle the problem, that could simulate the physical phenomena and give us engineering insight as to why these problems were happening and how to ameliorate them,” Kothe said. “We put the entire reactor into a computer.”

    Its value became apparent when it produced a near-perfect blind prediction of the six-month startup of TVA’s Watts Bar 2 reactor, which went online in 2016.

    “Until the virtual reactor showed that it could match reactor data, everybody bought into the potential, but the industry had difficulty envisioning how it could be applied to solve real-life problems,” Kothe said.

    ORNL’s Andrew Godfrey , who served as deputy focus area leader for advanced modeling applications, took the lead on that simulation, which has expanded to accurately simulate more than 200 fuel cycles, representing two-thirds of the U.S. operating reactor fleet.

    “It was a major milestone and was better than what the industry was using,” Turner said, “and that’s what we promised to do in the original proposal.”

    VERA has also accurately modeled next-generation reactor types, including the Westinghouse AP1000 and the NuScale Small Modular Reactor, and it can simulate a reactor even after shutdown, predicting the behavior of the fuel inside over its entire lifetime. CASL team members are now leveraging the knowledge gained from VERA toward simulating other types of reactors, including molten salt reactors.

     

    Taking VERA to industry

    Over the course of a decade, leadership and researchers changed within CASL. Kothe, who left at the halfway mark to direct the Exascale Computing Project and was replaced by Gehin, estimated that 250 people were involved with the consortium in any given year, with 750 or more of the “best and brightest minds” involved throughout the lifetime of the project.

    “At the start of CASL, I underestimated the challenge of integrating teams from broadly different disciplines to achieve a focused outcome,” said Gehin, now chief scientist of the Nuclear Science and Technology Directorate at Idaho National Laboratory. “We could not have delivered on the development of VERA without the contributions of every talented person who worked in CASL to create a modern light water reactor modeling and simulation environment. I’m most proud of the development of this exceptional team of researchers that delivered on the vision set forward for CASL.”

    The VERA software went through several iterations as CASL worked out a way to perform software development across several different labs, solving issues of code ownership and copyrights.

    But the end goal — to deliver VERA to industry — remained unchanged. Now, as the program winds down, the consortium, led by Kropaczek, is doing that.

    “Our industry council of advisers said, ‘We want software that is used and useful,’” Kropaczek said. “It’s not enough to just be a research code that only a few people can run. It has to be highly intuitive.”

    That also meant removing barriers. Last year, CASL worked to ensure VERA is in Nuclear Quality Assurance-1 compliance, the gold-standard rating for the nuclear industry. This involved adapting procedures, increasing documentation, writing detailed manuals and training people to control the software.

    Then there was the barrier of access to high-performance computing resources. In February 2019, in preparation for CASL’s upcoming transition to the VERA Users’ Group, the consortium trained 35 people from the nuclear industry and the Nuclear Regulatory Commission to use the software suite. Users can access the software suite through a new DOE Office of Nuclear Energy high-performance computer at Idaho National Laboratory, called Sawtooth, that provides cloud supercomputing focused on nuclear energy simulations.

    “This is not a code you can run on your laptop,” Kropaczek said.

    VERA has now been commercially licensed, which Kropaczek said demonstrates that people recognize its worth. In the coming months, he expects more than a dozen companies to procure VERA licenses. In addition, 400 test and evaluation licenses have been issued to individuals around the world.

    “This wasn’t just a researcher program,” he said. “It produced something tangible that we see as having value for specific applications of interest to the nuclear industry.”

     

    Lessons learned

    In the end, CASL’s legacy is twofold. The VERA software suite, with its VERA Users’ Group providing support and improvements, will likely be used for decades and become a springboard for future nuclear modeling and simulation programs.

    “We showed that high-performance computing, putting the best models and algorithms into the computer to emulate the reactor, really does give you very high confidence results as to what’s going on,” Kothe said. “Because of CASL, you can design reactors in the computer with high enough confidence that when you go to build the reactor, you’re really confirming the design.”

    But, he added, CASL also demonstrated that putting time and money toward a multipronged issue will attract people who can solve it — a model for research that has been replicated with the Energy Innovation Hubs and beyond.

    “The bet that CASL delivered on was that if you have an important national problem and enough stable funding to go after that problem for multiple years, with multiple institutions, then you’re going to attract the best and the brightest to solve that problem,” Kothe said.

    CASL, in terms of size and impact, was a first for nuclear energy, Turner said.

    “We were the first hub out of the gate, and a lot of people were watching, so we had a lot to prove,” he said. “We were able to give a good return on taxpayer money.”

    CASL was supported by DOE’s Office of Nuclear Energy.

    UT-Battelle manages ORNL for the DOE Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://www.energy.gov/science.

     

    X
    X
    X
    • Filters

    • × Clear Filters
    Not Your Average Refinery

    Not Your Average Refinery

    PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.

    Supercooled Water Is a Stable Liquid, Scientists Show for the First Time

    Supercooled Water Is a Stable Liquid, Scientists Show for the First Time

    First-ever measurements provide evidence that supercooled liquid water exists in two distinct structures that co-exist and vary in proportion dependent on temperature

    New Calculation Refines Comparison of Matter with Antimatter

    New Calculation Refines Comparison of Matter with Antimatter

    An international collaboration of theoretical physicists has published a new calculation relevant to the search for an explanation of the predominance of matter over antimatter in our universe. The new calculation gives a more accurate prediction for the likelihood with which kaons decay into a pair of electrically charged pions vs. a pair of neutral pions.

    Digging into soil organic matter

    Digging into soil organic matter

    A new study found patterns in how soil organic matter forms across a wide range of climate types. Understanding how soils break down or preserve organic matter is important because organic matter plays a central role in the kind of services soils can provide, such as whether they make good agricultural soils or if they can sequester carbon to slow climate change.

    Quirky Response to Magnetism Presents Quantum Physics Mystery

    Quirky Response to Magnetism Presents Quantum Physics Mystery

    The search is on to discover new states of matter, and possibly new ways of encoding, manipulating, and transporting information. One goal is to harness materials' quantum properties for communications that go beyond what's possible with conventional electronics. Topological insulators--materials that act mostly as insulators but carry electric current across their surface--provide some tantalizing possibilities. Scientists at Brookhaven Lab describe one such material that should be right just right for making qubits. But this material doesn't obey the rules.

    High-precision electrochemistry: The new gold standard in fuel cell catalyst development

    High-precision electrochemistry: The new gold standard in fuel cell catalyst development

    As part of an international collaboration, scientists at Argonne National Laboratory have made a pivotal discovery that could extend the lifetime of fuel cells that power electric vehicles by eliminating the dissolution of platinum catalysts.

    Scientists probe the chemistry of a single battery electrode particle both inside and out

    Scientists probe the chemistry of a single battery electrode particle both inside and out

    Cracks and chemical reactions on a battery particle's surface can sap its ability to store and release energy. Scientists probed a single charged particle the size of a red blood cell to see how interior and surface damage influence each other.

    Quantum light squeezes the noise out of microscopy signals

    Quantum light squeezes the noise out of microscopy signals

    Researchers at Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

    Exploring Oxidative Pathways in Nuclear Fuel

    Exploring Oxidative Pathways in Nuclear Fuel

    An international team used PNNL microscopy to answer questions about how uranium dioxide--used in nuclear power plants--might behave in long-term storage.

    Researchers find unexpected electrical current that could stabilize fusion reactions

    Researchers find unexpected electrical current that could stabilize fusion reactions

    PPPL scientists have found that electrical currents can form in ways not known before. The novel findings could give researchers greater ability to bring the fusion energy that drives the sun and stars to Earth.


    • Filters

    • × Clear Filters
    Key Partners Mark Launch of Electron-Ion Collider Project

    Key Partners Mark Launch of Electron-Ion Collider Project

    U.S. Department of Energy (DOE) Undersecretary for Science Paul Dabbar, leaders from DOE's Brookhaven National Laboratory (Brookhaven Lab) and Thomas Jefferson National Accelerator Facility (Jefferson Lab), and elected officials from New York State and Virginia today commemorated the start of the Electron-Ion Collider project.

    Fermilab scientist Vladimir Shiltsev elected to Academia Europaea

    Fermilab scientist Vladimir Shiltsev elected to Academia Europaea

    Widely recognized for his work in accelerator beam physics, Shiltsev is one of 361 individuals elected to Academia Europaea, which promotes a wider appreciation of the value of European scholarship and research.

    PPPL physicist Hutch Neilson receives award for decades of leadership on national and international fusion experiments

    PPPL physicist Hutch Neilson receives award for decades of leadership on national and international fusion experiments

    Hutch Neilson, a physicist at PPPL who is head of ITER Projects, has received the 2020 Institute of Electrical and Electronics Engineers' (IEEE) Nuclear & Plasma Sciences Society (NPSS) Merit Award for decades of achievements, including collaborations with fusion experiments around the world from the Wendelstein 7-X (W7-X) stellarator in Germany to the international ITER experiment in the south of France.

    Virtual internships for physics students present challenges, build community

    Virtual internships for physics students present challenges, build community

    Summer is usually the time when student interns flock to PPPL to learn about fusion and plasma physics at a national laboratory. But because of the coronavirus pandemic, this year's students participated virtually from their homes around the country.

    Argonne cuts ribbon on expanded Materials Engineering Research Facility to enhance nation's future manufacturing competitiveness

    Argonne cuts ribbon on expanded Materials Engineering Research Facility to enhance nation's future manufacturing competitiveness

    Leaders from DOE and Argonne cut the ribbon on a new era of manufacturing -- science and technology that will accelerate commercialization of complex materials and chemicals critically important to U.S. competitiveness.

    DOE provides $21 million to advance diagnostics on the flagship fusion facility at PPPL

    DOE provides $21 million to advance diagnostics on the flagship fusion facility at PPPL

    New funding will upgrade key diagnostics on the National Spherical Tokamak Experiment-Upgrade, the flagship facility at PPPL.

    Lead Lab Selected for Next-Generation Cosmic Microwave Background Experiment

    Lead Lab Selected for Next-Generation Cosmic Microwave Background Experiment

    The largest collaborative undertaking yet to explore the relic light emitted by the infant universe has taken a step forward with the U.S. DOE's selection of Berkeley Lab to lead the partnership of national labs, universities, and other institutions that are joined in the effort to carry out the DOE roles and responsibilities.

    Jonathan Jarvis wins prestigious DOE award for development of next-generation particle beam cooling and control

    Jonathan Jarvis wins prestigious DOE award for development of next-generation particle beam cooling and control

    This award, totaling $2.5 million, will fund the development of a faster particle beam cooling method as well as the implementation of machine learning advancements to optimally control the system.

    Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing, Northwestern University, Ames Laboratory, NASA, INFN and additional partners

    Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing, Northwestern University, Ames Laboratory, NASA, INFN and additional partners

    Fermilab has been selected to lead one of five national centers to bring about transformational advances in quantum information science as a part of the U.S. National Quantum Initiative. The initiative provides the new Superconducting Quantum Materials and Systems Center -- based at Fermilab and comprising 20 partner institutions -- $115 million over five years with the goal of building and deploying a beyond-state-of-the-art quantum computer based on superconducting technologies. The center will also develop new quantum sensors, which could lead to the discovery of the nature of dark matter and other elusive subatomic particles.

    SLAC and Stanford join Q-NEXT national quantum center

    SLAC and Stanford join Q-NEXT national quantum center

    Q-NEXT will bring together nearly 100 world-class researchers from three national laboratories, 10 universities and 10 leading U.S. technology companies with the single goal of developing the science and technology to control and distribute quantum information. These activities, along with a focus on rapid commercialization of new technologies, will support the emerging "quantum economy" and ensure that the U.S. remains at the forefront in this rapidly advancing field.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory





    Showing results

    0-4 Of 2215