DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2020-10-16 12:25:13
    • Article ID: 740029

    Automating 2-D Material Exfoliation with Suji Park

    interview with a CFN staff researcher

    • Credit: Brookhaven National Laboratory

      Suji Park picks up particles of graphite—a form of crystalline carbon—to put them on a roller for depositing source materials. This roller is part of a semi-automated system Park built to exfoliate ultrathin 2-D materials from 3-D "parent" materials. In this case, graphite (3-D) will be exfoliated to generate graphene (2-D). The exfoliator will become part of the Quantum Material Press (QPress), an automated machine under development that consists of modules for making atomically thin 2-D materials and stacking them into layered structures with new properties. As the different modules are built, they will become available to users in the Materials Synthesis and Characterization Facility at Brookhaven Lab's Center for Functional Nanomaterials.

    • The QPress R2R exfoliation system.

    • A labeled setup of the R2R exfoliator.

    • Park is building the first part of the automated system for 2-D materials generation: the exfoliator. The exfoliator will enable the design of systematic experiments with precisely controlled environments. The other modules are a cataloger to record the locations and properties of exfoliated flakes, a library containing a database of 2-D flakes, a stacker that picks flakes up and stacks them into layers, and a characterizer that will identify the crystal structure and orientation of exfoliated flakes and layered materials. Park is also designing an automated workflow to move samples between these modules.

    Suji Park is a scientific associate in the Electronic Nanomaterials Group at the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory. Since joining the CFN in October 2019, she has been designing and building hardware for the automated exfoliation of high-quality atomically thin “flakes” from 3-D bulk materials. When these 2-D material flakes are stacked into layered structures, new electrical, optical, magnetic, and other properties can emerge. Such 2-D heterostructures could find applications in areas including catalysis, solar energy, and quantum computing. Park received a bachelor’s degree and PhD in materials science and engineering from Pohang University of Science and Technology in South Korea. She then went on to do three postdocs—one at a neutron imaging facility at the Korea Atomic Energy Research Institute, another in Stanford’s Chemical Engineering Department, and a third at the Stanford Institute for Materials and Energy Sciences at SLAC National Accelerator Laboratory.

    What characterizes 2-D materials, and why are scientists interested in them?

    2-D materials are ultrathin. They are just a few atoms thick—or even just a single atom thick! The most well-known 2-D material is graphene, which is made of sheets of carbon exfoliated from graphite. The different layers of graphite are held together by weak forces, making them easy to detach. This is why we can make 2-D single-layer flakes of graphene. By stacking flakes from different materials, we can create layered structures that are essentially new materials. This lets us tune their mechanical, optical, and electrical properties. There are exciting theoretical predictions for making quantum devices based on 2-D materials, but the bottleneck is actually making these layered materials.

    Why is flake fabrication so challenging?

    The traditional way to make 2-D materials is through mechanical exfoliation. Adhesives are repeatedly attached to and detached from a bulk crystal so that the fragments get thinner and thinner. When the materials become thin enough, the adhesives are pressed into silicon wafers to transfer the flakes onto the wafer surface. Eventually, you end up with some very small-sized monolayers.

    However, the mechanics of this exfoliation process are not very well understood. This process is laborious, has very low reproducibility, and the quality of the flakes strongly depends on who is performing the exfoliation. Because of the lack of understanding, controlling the size, shape, and other parameters of the flakes is quite difficult. People spend a lot of time to get just one perfect flake. Then, they have to repeat this process many times to build complex layered structures.

    Graphene was discovered in 2004. Why is our understanding of exfoliation mechanics still limited after all these years?

    This has been a question of mine, too. When I began researching mechanical exfoliation, I found that many scientists have simulated how mechanical exfoliation works. However, these results are limited in terms of their applicability to real-world material performance.

    Systematic experiments, in which all variables are carefully controlled, are difficult to perform because exfoliation has multiple steps. For example, if I have three possible variables—pressure, temperature, and speed—and I want to find out how speed affects the exfoliation process, I would fix the temperature and pressure and test the process for selected speeds. But for manual exfoliation, it’s not really possible to fix, or even to measure, the peeling speed. You can’t really ask a scientist to peel at a precise speed. This is a limitation of relying on human hands to make materials. Moreover, we lack statistical methods to analyze exfoliated flakes, which are difficult to see and characterize from images.

    From an engineering standpoint, reproducibility and reliability are very important. Automation can help by minimizing human engagement. These factors are the motivation behind the automated 2-D material sample preparation system that I’m building to generate consistent, high-quality flakes.

    What is involved in building this automated system?

    When I joined the CFN, a prototype exfoliator already existed as part of the first generation of a larger automated machine called the QPress, or Quantum Material Press. This exfoliator used a stamp made of a polymer (PDMS) instead of a tape to perform basic robotic motions such as pushing and pulling.

    First, I wanted to understand the factors important to mechanical exfoliation. By understanding this process, I can start to control it. I began by studying pressure-sensitive adhesives, which are adhesive tapes that stick to surfaces via applied pressure, and the theoretical background of mechanical exfoliation, step by step. I found that there are factors that we can control, such as pressure, temperature, and dwell time (how long the tape is adhered on a surface). But what is the appropriate amount of pressure? How long do we need to apply that pressure? What kind of pressure application is better—pushing or rolling? Answering such questions is the first step of automation.

    To start, I upgraded the QPress exfoliator with functions to quantitatively control the temperature and pressure with various adhesives. With this setup, I could fulfill basic tests for each of these parameters and find specifications required for automation. I also tested the idea of using a roller instead of a stamp to apply pressure, temperature, and rolling speed at the same time. I tried a commercial laminator, and it actually worked! This test opened a new direction for us to consider for the automation process.

    More recently, I came up with a new design for a fully automated roll-to-roll (R2R) exfoliator, relying on the knowledge I gained from my early experiments. On the basis of this design, I built a semi-automated R2R exfoliator. With this setup, I can do systematic research to better understand the underlying mechanisms of mechanical exfoliation and find optimized conditions.

    As I explained, mechanical exfoliation is simply a combination of two steps: attachment and detachment, or peeling, of adhesives. With the early push-and-pull type of exfoliator, I could focus on the first step. However, the second step is as critical as the first. Using the R2R exfoliator, I want to control and compare important parameters in the detachment process besides temperature, pressure, and rolling speed (or dwell time). One parameter is the peeling speed and angle. For example, if you peel the tape at 45 instead of 90 degrees, the peeling force changes.

    How does the R2R exfoliator work?

    The R2R exfoliator has several components. A motorized tape unwinder continuously supplies bare pressure-sensitive adhesive tape from a reel. The tape runs over a roller for source material deposition, picking up the source materials. The tape with the source particles is located under a press roller. A sample stage moves to the left, and the roller compresses the source materials at a pressure similar to that of manual exfoliation. After the materials are compressed, we bake the sample using a heating plate installed in the sample stage. Finally, we move the sample stage to the right. The combined motion of a tape rewinder and the sample stage causes the compressed tape to peel off the sample surface. We can control the peeling speed with the sample stage and the peeling angle with an angle adjustment roller.

    What excites you most about studying a process that is still not well understood?

    Through my research, I am building an entirely new facility with unique capabilities. I am starting from a very basic understanding, progressing step by step. My role is to integrate the incremental findings and complete a big puzzle in my own creative way. It is challenging, but small improvements in understanding fundamental steps in 2-D materials fabrication will allow us to move forward and eventually complete the whole system. This system will help other researchers save time, effort, and research funds and support the creation of new 2-D materials that could be used in our daily lives. Contributing to society in this way makes me feel very good.

    Which materials are you using for the tape and which 2-D materials are you exfoliating? Are the 2-D materials limited to those of interest for quantum information science, as the QPress name suggests?

    For the purpose of machine development, I am currently using a simple commercial tape, the same that you would use in any office setting. Using commercial tapes is nice because we can easily test different kinds of adhesives. For instance, I am also studying wafer dicing tapes that are used in the semiconductor industry because they leave less residue on the wafer surface after exfoliation.

    For 2-D material exfoliation, my current target is graphene because it is the most widely studied. The project team is also trying to produce high-quality flakes from materials for which it is hard to obtain such high quality—for example, very brittle materials. Team member Young-Jae Shin is an expert in 2-D materials. With the commercial laminator, he has been testing molybdenum disulfide and tungsten disulfide, which are more brittle than graphene. I will test these materials with the R2R exfoliator after I finish testing graphene.

    Our goal is to help users exfoliate any materials that interest them. The QPress project was initially started with quantum materials in mind, given the recent emphasis on quantum information science research. However, the machine will be available to users who are looking to generate any kind of 2-D materials. Because the machine can run 24 hours a day, it saves a lot of time in generating flakes. Also, we’re planning to make a library-type database of different flakes that users can access for their research.  

    You mentioned that the exfoliator will be part of a larger automated machine, the QPress. Are you only working on the exfoliation component?

    The final QPress will have robot arms that transfer samples from the exfoliator station to cataloger, stacker, and characterization stations. This workflow will be automated. While my main focus so far has been on making the exfoliator, I’m also working on designing an automated setup for the stacker and figuring out how to combine these different modules. Achieving full automation could be difficult because different tools have different requirements in terms of sample environments, required motions, and physical space. It’s a complicated design issue.

    My goals by the end of this year are to complete the fully automated R2R exfoliator, make the R2R exfoliator a functional part of the QPress, and build the first prototype of the automated stacker.

    It sounds like building the exfoliator and integrating it into a multicomponent system requires a combination of 2-D materials knowledge and mechanical design expertise. How are you applying your knowledge and experience to this project?

    My PhD was in materials science and engineering. For my thesis, I used a synchrotron x-ray microscope to study wetting on polymers. During my postdoc at Stanford, I continued using the synchrotron x-ray microscope to study the fluid dynamics of tear films on soft contact lenses.

    When I went to SLAC, I changed my career path. I started studying microstructural changes in solid crystals through ultrafast electron diffraction. I was slightly involved in 2-D material studies, mostly on the experimental side rather than data analysis. Because I was a joint postdoc at Stanford and SLAC, my role was split between maintenance and user support of the electron diffraction facility and my own research. I was frequently involved in the development of new functions at the facility. For example, I designed an upgraded version of a vacuum chamber and manipulator system. So, over the years, I have become used to diving into new areas. As a result, I’m more open-minded and less fearful of taking on new and challenging projects.

    Though my field of expertise is not 2-D materials, my unique background in materials science, fluid mechanics, and soft-matter physics and my hands-on experience is very useful in terms of building a facility for 2-D material exfoliation. For example, the adhesives used in mechanical exfoliation are polymers. What I researched during my PhD is the wetting property of polymers, or how they contact liquid surfaces. The exfoliation process is related to wetting but for solid flakes instead of liquids. So, I can apply my expertise related to the mechanics to understand interface phenomena between adhesives and flakes.

    What led you to pursue studies in materials science and engineering and a career in scientific research?

    I have liked science and math my entire life. Initially, I wanted to be a high school math teacher. But I realized that being a scientist was more aligned with my goal of making a general impact on the world. I chose materials science because materials are the fundamental elements accelerating technology development. I’m very excited to see what 2-D materials emerge from the QPress and how they are applied to new technologies.

    Interested in using QPress capabilities at the CFN? Submit a user proposal through the online proposal system. The next deadline is September 30. If you have questions about becoming a CFN user or partnering with Park or other CFN scientists, please contact CFN Assistant Director for Strategic Partnerships Priscilla Antunez at (631) 344-6186 or pantunez@bnl.gov.

    Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

    Follow @BrookhavenLab on Twitter or find us on Facebook.

     

    X
    X
    X
    • Filters

    • × Clear Filters
    A first-of-its-kind catalyst mimics natural processes to break down plastic and produce valuable new products

    A first-of-its-kind catalyst mimics natural processes to break down plastic and produce valuable new products

    A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

    A new approach boosts lithium-ion battery efficiency and puts out fires, too

    A new approach boosts lithium-ion battery efficiency and puts out fires, too

    This new technology addresses two major goals of battery research: extending the driving range of electric vehicles and reducing the danger that laptops, cell phones and other devices will burst into flames.

    Berkeley Lab Scientists Contribute to New Exploration of Higgs Boson Interactions

    Berkeley Lab Scientists Contribute to New Exploration of Higgs Boson Interactions

    A new analysis, featuring important contributions by Berkeley Lab scientists, strongly supports the hypothesis that the Higgs boson interacts with muons, which are heavier siblings of electrons and the lightest particles yet to reveal evidence for these interactions.

    New Algorithm Sharpens Focus of World's Most Powerful Microscopes

    New Algorithm Sharpens Focus of World's Most Powerful Microscopes

    Scientists have shown that an algorithm added to image processing software can improve the resolution and accuracy of cryo-electron microscopes, which are one of the most crucial tools in microbiology and medical research.

    An Electrical Trigger Fires Single, Identical Photons

    An Electrical Trigger Fires Single, Identical Photons

    The precisely controlled photon source, made from an atomically thin semiconducting material, could aid the development of advanced quantum communication

    First detailed look at how molecular Ferris wheel delivers protons to cellular factories

    First detailed look at how molecular Ferris wheel delivers protons to cellular factories

    All cells with nuclei, from yeast to humans, use molecular machines called protons to regulate the acidity of compartments called organelles where various types of work are done. A new study reveals a key step in how these Ferris wheel-like pumps operate.

    Argonne develops unprecedented long-term wildfire prediction model

    Argonne develops unprecedented long-term wildfire prediction model

    Wildfire indices and high-resolution climate models combine to produce a detailed historical analysis of wildfire events across the U.S. and suggest the potential for more severe and frequent fires in the latter half of the century.

    Study Finds 'Missing Link' in the Evolutionary History of Carbon-Fixing Protein Rubisco

    Study Finds 'Missing Link' in the Evolutionary History of Carbon-Fixing Protein Rubisco

    The discovery of a primitive form of rubisco, a photosynthetic enzyme, will help scientists understand how carbon-fixing organisms led to the planet's oxygenation and how modern

    Story Tips: Remote population counting, slowing corrosion and turning down the heat

    Story Tips: Remote population counting, slowing corrosion and turning down the heat

    ORNL story tips: Remote population counting, slowing corrosion and turning down the heat

    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

    Researchers generated genome sequences for nearly 600 green millet plants and released a very high-quality reference S. viridis genome sequence Analysis of these plant genome sequences also led them to identify for the first time in wild populations a gene related to seed dispersal.


    • Filters

    • × Clear Filters
    Who Will Get the Prize for Better Hurricane Monitoring?

    Who Will Get the Prize for Better Hurricane Monitoring?

    The Ocean Observing Prize seeks competitors for an incentive prize program to help inventors advance new concepts for marine energy technologies that can power ocean observing systems. This phase focuses on observing platforms that host instruments that can provide better data regarding hurricane formation.

    Berkeley Lab Names Noel Bakhtian to Lead New Energy Storage Center

    Berkeley Lab Names Noel Bakhtian to Lead New Energy Storage Center

    Berkeley Lab has appointed Noel Bakhtian, previously a senior policy adviser in the White House Office of Science and Technology (OSTP) and currently director of the Center for Advanced Energy Studies (CAES) at Idaho National Laboratory, as its inaugural director of the Berkeley Lab Energy Storage Center.

    CERN Senior Fellow Dorota Grabowska Receives Leona Woods Lectureship Award

    CERN Senior Fellow Dorota Grabowska Receives Leona Woods Lectureship Award

    Dorota Grabowska, a senior fellow in the department of theoretical physics at CERN, Europe's particle physics laboratory, has been named a recipient of the Leona Woods Distinguished Postdoctoral Lectureship Award. The award was established by the physics department at the U.S. Department of Energy's Brookhaven National Laboratory in honor of renowned physicist Leona Woods to celebrate the scientific accomplishments of outstanding female physicists and physicists from other under-represented minority groups, including the LGBTQ community--and to promote diversity and inclusion in the department.

    Process to recover metals from batteries licensed by Momentum Technologies

    Process to recover metals from batteries licensed by Momentum Technologies

    Momentum Technologies Inc., a Dallas, Texas-based materials science company that is focused on extracting critical metals from electronic waste, has licensed an Oak Ridge National Laboratory process for recovering cobalt and other metals from spent lithium-ion batteries.

    PPPL physicist wins third place at Innovation Forum for advanced liquid centrifuge invention

    PPPL physicist wins third place at Innovation Forum for advanced liquid centrifuge invention

    Physicist Erik Gilson won third place at the Princeton University Keller Center's 15th Annual Innovation Forum for his invention with a team of PPPL researchers of an advanced liquid centrifuge.

    Oak Ridge National Laboratory, UT's Tony Schmitz elected to ASPE College of Fellows

    Oak Ridge National Laboratory, UT's Tony Schmitz elected to ASPE College of Fellows

    Tony Schmitz, joint faculty researcher in machining and machine tools at Oak Ridge National Laboratory, and mechanical, aerospace and biomedical engineering professor at the University of Tennessee, Knoxville, has been elected to the College of Fellows of the American Society for Precision Engineering.

    Coming Down the Pike: Long-Haul Trucks Powered by Hydrogen Fuel Cells

    Coming Down the Pike: Long-Haul Trucks Powered by Hydrogen Fuel Cells

    The Department of Energy has announced several major investments to take hydrogen fuel cells to the next level, and Lawrence Berkeley National Laboratory (Berkeley Lab) is set to play a leading role in providing the scientific expertise to help realize DOE's ambitious goals.

    Media Advisory: Epic Arctic Science Mission End Briefing

    Journalists are invited to join an October 12 Zoom media briefing with U.S. scientists and agency experts involved in the yearlong international research expedition MOSAiC: Multidisciplinary Drifting Observatory for the Study of Arctic Climate.

    Jennifer Doudna Wins 2020 Nobel Prize in Chemistry

    Jennifer Doudna Wins 2020 Nobel Prize in Chemistry

    Biochemist Jennifer Doudna, a professor at UC Berkeley and faculty scientist at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), is co-winner of the 2020 Nobel Prize in Chemistry for "the development of a method for genome editing."

    Path-setting theoretical physicist Elena Belova elected an APS Fellow

    Path-setting theoretical physicist Elena Belova elected an APS Fellow

    Profile of PPPL physicist Elena Belova, a pioneer in developing hybrid simulation codes in fusion and space plasmas, who has been elected a Fellow of the American Physical Society.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory





    Showing results

    0-4 Of 2215