- 2020-12-09 17:35:46
- Article ID: 743094
Managing Ecosystem Restoration: What Does Success Look Like?
Systems ecology-based methods to advance effective large-scale restoration
By Kelsey Adkisson
As projects grow in size and complexity, so do the restoration costs. This underscores the need for a strategic approach to maximize both ecological and economic benefits.
A national team of researchers, led by Pacific Northwest National Laboratory (PNNL), evaluated large-scale restoration efforts across the country and developed criteria, techniques, and tools to determine outcomes and ultimately, maximize benefits. This work was the focus of a study published in Frontiers in Ecology and the Environment.
Measuring the outcomes of expensive ecosystem restoration efforts
Anyone flying over San Francisco Bay will see a colorful kaleidoscope of large ponds jig-sawed together along the shoreline. These current and former salt ponds are a turn-of-the-century remnant of one of the region’s historical industries. They also are a reminder of the wetlands that once spanned the region. Over two-thirds of the ponds are now combined into one of the largest restoration projects on the West Coast, exemplifying challenges with restoration of fragmented habitats.
Vast restoration projects like these are taking place across the country—along with efforts related to climate change mitigation, water quality improvement, and saving species—prompt bigger-picture questions about how to maximize benefits of large-scale regional efforts.
“Decision makers, project sponsors, and the public rightly demand a defensible method and accounting of the results of expensive projects,” said Ron Thom, an emeritus scientist at PNNL and co-author on the study.
Currently, there are few requirements for restoration practitioners to add up the cumulative benefits, so evaluating the effectiveness of restored ecosystem function is often overlooked. Historically, restoration started off as a small endeavor, and only recently is it practiced at large, regional, or landscape scales. At these scales, the complexity of ecosystems means that a simple additive approach does not adequately capture change.
While the idea of maximizing operational efficiency isn’t new—it’s a core tenet of business—what is new is the application to restoration projects across large regional areas. How do you maximize benefits and sidestep common challenges practitioners face, such as fragmented funding, conflicting goals, geographic overlap, ecological complexity, and efforts siloed by jurisdictional boundaries?
That’s the shift in thinking researchers hope to spark at the national level.
Linking together small projects for bigger ecosystem restoration benefits
The team, led by PNNL’s Heida Diefenderfer, identified synergistic effects of restoration outcomes and synthesized an ecosystem-management framework supported by techniques and a toolbox for resource managers.
This framework encourages practitioners to look beyond boundaries, across landscapes, and over time, while considering the cumulative effects of projects. For example, migratory birds nesting on the shore of the lower Missouri River can be impacted by upstream river management decisions, such as flow. This is a type of a cross boundary effect—both the migratory birds and the Missouri River span lines on a map. So, if populations were managed for only a specific portion of the river, the approach could miss the forest for the trees.
“The intent is to give environmental planners, scientists, and engineers the conceptional and decision frameworks needed to plan large-scale restoration in a way that maximizes benefits, as well as monitoring tools suitable for evaluating those benefits,” said Diefenderfer.
Another example: suppose a natural resource manager is faced with restoring salmon populations in the lower Columbia River and estuary to provide habitat for threatened and endangered salmon populations? They might be confronted with a large number of management questions, such as:
- How big of an area should be restored?
- Should it be only marshes, or should it include small rivers?
- Will other species benefit?
- How do geographic boundaries influence methods?
The research team evaluated some of the country’s major restoration programs over the past several decades seeking similarities. They also sought ways to leverage positive feedback and avoid unintended consequences, such as adverse changes to water quality during restoration.
The culmination of ecosystem restoration efforts
From the Florida Everglades, to the Columbia River, to the Northeastern coastal states, the research team noticed some common effects and defined eight types of ecological responses operating in large-scale restoration, collectively referred to as “cumulative effects.” These effects help planners and scientists plan and evaluate environmental change across landscapes, time periods, and ecological systems, like food webs.
“The ideas collected here set the stage for a new era of restoration coordinated at a larger scale, recognizing synergistic and additive effects and providing broader ecological and social benefits,” said David Burdick, director of the University of New Hampshire’s Jackson Estuarine Laboratory and coauthor on the study.
In light of the upcoming United Nations Decade of Restoration (2021-2030), with efforts such as large-scale tree planting being proposed globally to mitigate climate change, the authors reasoned that the next step scientifically is to broaden the lens. Looking across landscapes will help guide strategies to leverage cumulative effects and maximize the development of ecological and habitat functions.
Evaluating restoration outcomes with cumulative effects is the focus of “Applying Cumulative Effects to Strategically Advance Large-Scale Ecosystem Restoration,” a paper published online October 29, 2020, in Frontiers in Ecology and the Environment, a journal of the Ecological Society of America, DOI: 10.1002/fee.2274.
The research team includes PNNL’s Heida Diefenderfer, Kate Buenau, Gary Johnson (retired), and Ronald Thom (emeritus), along with Gregory Steyer, Hilary Neckles, and Neil Ganju (U.S. Geological Survey), Matthew Harwell (U.S. Environmental Protection Agency), Andrew LoSchiavo (U.S. Army Corps of Engineers), David Burdick (University of New Hampshire), Elene Trujillo (Puget Sound Partnership), John Callaway (University of San Francisco), and Robert Twilley (Louisiana State University).

MORE NEWS FROM
Pacific Northwest National LaboratoryParticipating Labs
- DOE Office of Science
- Argonne National Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Iowa State University, Ames Laboratory
- Brookhaven National Laboratory
- Princeton Plasma Physics Laboratory
- Lawrence Berkeley National Laboratory
- Thomas Jefferson National Accelerator Facility
- Fermi National Accelerator Laboratory (Fermilab)
- SLAC National Accelerator Laboratory

Study: X-Rays Surrounding 'Magnificent 7' May Be Traces of Sought-After Particle
A new study, led by a theoretical physicist at Berkeley Lab, suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.

Borrowing from birds, experts reduce search times for novel high-entropy alloys to seconds
Computational materials science experts at the U.S. Department of Energy's Ames Laboratory enhanced an algorithm that borrows its approach from the nesting habits of cuckoo birds, reducing the search time for new high-tech alloys from weeks to mere seconds.

January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation
January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

Pivotal discovery in quantum and classical information processing
Researchers have achieved, for the first time, electronically adjustable interactions between microwaves and a phenomenon in certain magnetic materials called spin waves. This could have application in quantum and classical information processing.

Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time
A team of researchers co-led by Berkeley Lab and Columbia University has developed a new material called avalanching nanoparticles that, when used as a microscopic probe, offers a simpler approach to taking high-resolution, real-time snapshots of a cell's inner workings at the nanoscale.

Scientists find antibody that blocks dengue virus
The research team used the Advanced Photon Source to confirm an effective antibody that prevents the dengue virus from infecting cells in mice, and may lead to treatments for this and similar diseases.

Using neural networks for faster X-ray imaging
A team of scientists from Argonne is using artificial intelligence to decode X-ray images faster, which could aid innovations in medicine, materials and energy.

The Odd Structure of ORF8: Scientists Map the Coronavirus Protein Linked to Disease Severity
A team of biologists who banded together to support COVID-19 science determined the atomic structure of a coronavirus protein thought to help the pathogen evade and dampen response from human immune cells. The structural map has laid the groundwork for new antiviral treatments and enabled further investigations into how the newly emerged virus ravages the human body.

Impacts of Climate Change on Our Water and Energy Systems: It's Complicated
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), UC Berkeley, and UC Santa Barbara have developed a science-based analytic framework to evaluate the complex connections between water and energy, and options for adaptations in response to an evolving climate.

Insights Through Atomic Simulation
A recent special issue in The Journal of Chemical Physics highlights PNNL's contributions to developing two prominent open-source software packages for computational chemistry used by scientists around the world.

Science Begins at Brookhaven Lab's New Cryo-EM Research Facility
On January 8, 2021, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory welcomed the first virtually visiting researchers to the Laboratory for BioMolecular Structure (LBMS), a new cryo-electron microscopy facility.

Two Berkeley Lab Scientists Honored with the Lawrence Award
The Department of Energy has announced that Susannah Tringe and Dan Kasen, two scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), will receive the Ernest Orlando Lawrence Award, one of DOE's highest honors. Additionally, former Berkeley Lab scientist M. Zahid Hasan was also named as one of the eight recipients.

ElastiDry Wins DOE National Pitch Competition
A panel of five judges from the Bay Area and Silicon Valley investment community chose the PNNL innovation from 10 product pitches.

Fermilab receives DOE award to develop machine learning for particle accelerators
Fermilab scientists and engineers are developing a machine learning platform to help run Fermilab's accelerator complex alongside a fast-response machine learning application for accelerating particle beams. The programs will work in tandem to boost efficiency and energy conservation in Fermilab accelerators.

Argonne earns HPCwire awards for the best use of high performance computing in energy and industry
HPCwire magazine recognizes two Argonne teams for outstanding achievement in their use of high performance computing.

Rachel Slaybaugh to Lead Berkeley Lab's Cyclotron Road
The Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has named Rachel Slaybaugh, associate professor of nuclear engineering at UC Berkeley, to lead Berkeley Lab's Cyclotron Road Division.

$2.6 million Dept. of Energy grant to fund research into solar energy and power grids
A team of researchers from Binghamton University, State University of New York has been selected to receive $2.6 million from the U.S. Department of Energy Solar Energy Technologies Office (SETO) to develop ways to reliably support higher amounts of solar power on the grid.

Experiment to Precisely Measure Electrons Moves Forward
The MOLLER experiment at DOE's Jefferson Lab is one step closer to carrying out an experiment to gain new insight into the forces at work inside the heart of matter through probes of the humble electron. The experiment has just received a designation of Critical Decision 1, or CD-1, from the DOE, which is a greenlight to move forward in design and prototyping of equipment.

Physicists Hong Qin and Ahmed Diallo recognized for outstanding research at PPPL
Theoretical and experimental physicists receive PPPL awards for standout research in 2020.

Scientists collaborate on public-private partnership to facilitate the development of commercial fusion energy
Article describes PPPL work in coordination with MIT's Plasma Science and Fusion Center and Commonwealth Fusion Systems, a start-up spun out of MIT that is developing a unique tokamak fusion device called "SPARC."

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Graduate students gather virtually for summer school at PPPL
Princeton Plasma Physics Laboratory

Virtual internships for physics students present challenges, build community
Princeton Plasma Physics Laboratory

Blocking the COVID-19 Virus's Exit Strategy
Brookhaven National Laboratory

From Nashville to New Hampshire, PPPL's student interns do research, attend classes and socialize from their home computers
Princeton Plasma Physics Laboratory

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
Princeton Plasma Physics Laboratory

Chicago Public School students go beyond coding and explore artificial intelligence with Argonne National Laboratory
Argonne National Laboratory

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory
Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory
Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory
Showing results
0-6 Of 2215