DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2021-01-14 07:00:01
    • Article ID: 744555

    January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

    • Credit: Berkeley Lab

      Berkeley Lab researchers are working on ways to sequester more carbon in soil, including through agricultural practices.

    • Credit: CUBE3D

      This illustration shows two possible types of surface layers for a catalyst that performs the water-splitting reaction, the first step in making hydrogen fuel: The gray surface is lanthanum oxide, and the colorful surface is nickel oxide. A rearrangement of nickel oxide’s atoms while carrying out the reaction made it twice as efficient. Researchers hope to harness this phenomenon to make better catalysts. Lanthanum atoms are depicted in green, nickel atoms in blue, and oxygen atoms in red.

    • Credit: Thor Swift/Berkeley Lab

      A scientist works on the MALDI (matrix-assisted laser desorption/ionization) mass spectrometer at Berkeley Lab’s Molecular Foundry.

    • Credit: iStockphoto

      Residue from cigarettes can linger on indoor surfaces for years and even decades.

    Primer on Carbon Dioxide Removal Provides Vital Resource at Critical Time

    --By Julie Chao

    Scientists say that any serious plan to address climate change should include carbon dioxide removal (CDR) technologies and policies, which makes the newly launched CDR Primer an especially vital resource, says Berkeley Lab scientist Margaret Torn, one of about three dozen scientists who contributed to this document. 

    “Atmospheric CO2 concentrations are already 50% over historic natural levels – 270 ppm (parts per million) in pre-industrial times vs 414 ppm today,” said Torn. “To slow climate change and avoid its worst impacts, climate scientists tell us that we need to restore atmospheric CO2 concentrations to about 350 ppm or less. To do that, we need CDR technologies and policies to remove excess CO2 from the atmosphere.”

    Carbon dioxide removal, also often referred to as negative emissions technologies, encompasses a broad array of techniques and practices, such as geologic sequestration, direct air capture, bioenergy with carbon capture, and improved forest management. The lead editors of the CDR Primer are from the University of Pennsylvania and CarbonPlan.

    “Because there are so many different negative emissions technologies, nobody is an expert in all of them,” said Torn, a senior scientist in Berkeley Lab’s Earth and Environmental Sciences Area. “There was a need for one comprehensive document to introduce students and practitioners to all of the different options. The strength of this document is that it comprehensive, in terms of how many different approaches are covered, and that it considers technological readiness, cost, and global potentials.”

    Sequestering carbon in soil through improved agricultural practices could be an especially attractive and efficacious CDR technique, Torn said. Berkeley Lab scientists are working on how to quantify and manage root growth and how to understand and harness the soil microbiome for carbon sequestration. If it were implemented globally, it has the potential to sequester a large amount of carbon, plus it’s considered a “no regrets” strategy because increasing the amount of soil in the carbon is good for soil health anyway, she said. 

    The document, two years in the making, was supported by a number of foundations and other organizations and will be made available for free as a digital, open-source book. 

    A 1-Atom-Deep Look at a Water-Splitting Catalyst

    --By Glenn Roberts Jr.

    X-ray experiments at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) revealed an unexpected transformation in a single atomic layer of a material that contributed to a doubling in the speed of a chemical reaction – the splitting of water into hydrogen and oxygen gases. This process is a first step in producing hydrogen fuel for applications such as electric vehicles powered by hydrogen fuel cells.

    The research team, led by scientists at SLAC National Accelerator Laboratory, performed a unique X-ray technique and related analyses, pioneered at Berkeley Lab’s Advanced Light Source (ALS), to home in on the changes at the surface layer of the material. The ALS produces X-rays and other forms of intense light to carry out simultaneous experiments at dozens of beamlines.

    “There is simply no other place in the world that can do these analyses on the level that the ALS can right now,” said Slavomír Nemšák, a beamline scientist at the ALS who contributed to the study, published Jan. 11 in Nature Materials. 

    The technique they used allowed them to probe the surface of a catalyst material called lanthanum nickel oxide (LNO) that is useful in water splitting. Catalysts are used to speed up or otherwise improve the efficiency of chemical reactions. 

    The catalyst was engineered in precise layers, and was about 100 atoms thick. Samples were prepared with either a nickel-rich or a lanthanum-rich surface. The samples with the nickel-rich layers carried out the water-splitting reaction twice as fast, and the atomic structure had transformed from a cubic to hexagonal pattern in the last atomic layer. 

    “The ALS helped to reveal this difference,” Nemšák said. “This technique brought extremely precise depth-specific information on the chemical composition of the catalysts.” Computer simulations performed at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) confirmed the catalyst’s hexagonal structure would be more active and stable than the cubic structure.

    Read a related SLAC National Accelerator Laboratory press release, “Study Shows Tweaking One Layer of Atoms on a Catalyst’s Surface Can Make It Work Better,” Jan. 11, 2021. 

    New Research Technique Sheds Light on Least Understood Part of Lithium Batteries

    --By Julie Chao

    One of the aspects of lithium-ion batteries least understood by scientists has now been elucidated by a new research approach, opening the door to major improvements in battery performance, according to a new study by Berkeley Lab scientists.

    Their study, recently published in the journal Joule, used a technique developed by Berkeley Lab battery scientists in the Energy Technologies Area to illustrate the structures of large organic molecules generated during battery operation. These molecules are known to reside in a part of the battery called the solid-electrolyte interphase (SEI) layer, which is poorly understood but has a critical impact on battery performance.

    “The findings reveal a new dimension of chemical composition inside lithium-ion batteries and enables a new direction for rational engineering of the battery’s electrolyte system,” said lead author Chen Fang, a postdoctoral researcher in Berkeley Lab’s Energy Technologies Area.

    The researchers used a unique technique of “on-electrode chromatography” coupled with matrix-assisted laser desorption/ionization (MALDI) diagnostic capability at Berkeley Lab’s Molecular Foundry to separate and illustrate the structures of large organic molecules generated during battery operation. On-electrode chromatography allows the separation of organic molecules on the surface of the electrode. MALDI is typically used to characterize biomolecules such as proteins and peptides.

    This coupled approach, used successfully for the first time in battery research, is highly adoptable as it uses commercially available instrumentation. It will allow scientists to precisely, quickly, and conveniently identify the molecules in the battery, including their structures and weight distributions.

    Designing a better electrolyte system will enable next-generation batteries, said battery scientist Gao Liu, the study’s corresponding author. “The current electrolyte system works very well at ambient temperatures and with existing battery chemistries,” he said. “However, the current electrolytes do not work well with the high energy density batteries, high-voltage batteries, or batteries working in extreme cold and with extreme fast charging.”

    Yi Liu of the Molecular Foundry was also a corresponding author. 

    Ozone Generators May Help Remediate Contamination Caused by Thirdhand Smoke

    --By Julie Chao

    In 10 years of studying thirdhand smoke, which is the toxic cigarette residue that clings to virtually all indoor surfaces for months or years, Berkeley Lab scientist Hugo Destaillats said the most frequent question he hears from the public is how to remediate property where a smoker once lived.

    Remediation companies frequently use ozone generators to eliminate odors from mold, tobacco, and fire damage, blasting homes with high levels of ozone. But scant research has been done to assess its effectiveness in removing toxic residues, or identify any associated risks. So Destaillats and colleagues from Berkeley Lab’s Indoor Environment Group designed a room-sized chamber study to determine the effects of ozonation on the concentration of chemical compounds typically found in thirdhand smoke. 

    Funded by the University of California’s Tobacco Related Diseases Research Program and recently published in the journal Environmental Research, the study found that ozonation can remove tobacco contaminants that were adsorbed on materials, but it also caused a burst of contaminants when the generator is running. Particles remained airborne for a period of a few hours. The study highlighted the need to specify a safe re-entry time after ozonation, which should be performed in unoccupied spaces.

    “Ozone could remove nicotine and polycyclic aromatic hydrocarbons (PAHs) that had adsorbed onto fabrics after smoking, but our study shows that people need to wait a few hours after the generator has run and allow the space to be ventilated before going back inside,” he said.

    This study was conducted on freshly generated thirdhand smoke. Next, the researchers will look at materials that have been contaminated for much longer periods of time – on the order of years. “There are a lot of deep reservoirs for tobacco contaminants in the home. Gypsum, the main component of dry wall, is very porous and has a large capacity for indoor contaminants,” Destaillats said. “Nicotine can be stored in dry wall for quite some time. Same with carpets.”

    X
    X
    X
    • Filters

    • × Clear Filters
    Study: X-Rays Surrounding 'Magnificent 7' May Be Traces of Sought-After Particle

    Study: X-Rays Surrounding 'Magnificent 7' May Be Traces of Sought-After Particle

    A new study, led by a theoretical physicist at Berkeley Lab, suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.

    Borrowing from birds, experts reduce search times for novel high-entropy alloys to seconds

    Borrowing from birds, experts reduce search times for novel high-entropy alloys to seconds

    Computational materials science experts at the U.S. Department of Energy's Ames Laboratory enhanced an algorithm that borrows its approach from the nesting habits of cuckoo birds, reducing the search time for new high-tech alloys from weeks to mere seconds.

    January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

    January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

    January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

    Pivotal discovery in quantum and classical information processing

    Pivotal discovery in quantum and classical information processing

    Researchers have achieved, for the first time, electronically adjustable interactions between microwaves and a phenomenon in certain magnetic materials called spin waves. This could have application in quantum and classical information processing.

    Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time

    Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time

    A team of researchers co-led by Berkeley Lab and Columbia University has developed a new material called avalanching nanoparticles that, when used as a microscopic probe, offers a simpler approach to taking high-resolution, real-time snapshots of a cell's inner workings at the nanoscale.

    Scientists find antibody that blocks dengue virus

    Scientists find antibody that blocks dengue virus

    The research team used the Advanced Photon Source to confirm an effective antibody that prevents the dengue virus from infecting cells in mice, and may lead to treatments for this and similar diseases.

    Using neural networks for faster X-ray imaging

    Using neural networks for faster X-ray imaging

    A team of scientists from Argonne is using artificial intelligence to decode X-ray images faster, which could aid innovations in medicine, materials and energy.

    The Odd Structure of ORF8: Scientists Map the Coronavirus Protein Linked to Disease Severity

    The Odd Structure of ORF8: Scientists Map the Coronavirus Protein Linked to Disease Severity

    A team of biologists who banded together to support COVID-19 science determined the atomic structure of a coronavirus protein thought to help the pathogen evade and dampen response from human immune cells. The structural map has laid the groundwork for new antiviral treatments and enabled further investigations into how the newly emerged virus ravages the human body.

    Impacts of Climate Change on Our Water and Energy Systems: It's Complicated

    Impacts of Climate Change on Our Water and Energy Systems: It's Complicated

    Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), UC Berkeley, and UC Santa Barbara have developed a science-based analytic framework to evaluate the complex connections between water and energy, and options for adaptations in response to an evolving climate.

    Insights Through Atomic Simulation

    Insights Through Atomic Simulation

    A recent special issue in The Journal of Chemical Physics highlights PNNL's contributions to developing two prominent open-source software packages for computational chemistry used by scientists around the world.


    • Filters

    • × Clear Filters
    Science Begins at Brookhaven Lab's New Cryo-EM Research Facility

    Science Begins at Brookhaven Lab's New Cryo-EM Research Facility

    On January 8, 2021, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory welcomed the first virtually visiting researchers to the Laboratory for BioMolecular Structure (LBMS), a new cryo-electron microscopy facility.

    Two Berkeley Lab Scientists Honored with the Lawrence Award

    Two Berkeley Lab Scientists Honored with the Lawrence Award

    The Department of Energy has announced that Susannah Tringe and Dan Kasen, two scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), will receive the Ernest Orlando Lawrence Award, one of DOE's highest honors. Additionally, former Berkeley Lab scientist M. Zahid Hasan was also named as one of the eight recipients.

    ElastiDry Wins DOE National Pitch Competition

    ElastiDry Wins DOE National Pitch Competition

    A panel of five judges from the Bay Area and Silicon Valley investment community chose the PNNL innovation from 10 product pitches.

    Fermilab receives DOE award to develop machine learning for particle accelerators

    Fermilab receives DOE award to develop machine learning for particle accelerators

    Fermilab scientists and engineers are developing a machine learning platform to help run Fermilab's accelerator complex alongside a fast-response machine learning application for accelerating particle beams. The programs will work in tandem to boost efficiency and energy conservation in Fermilab accelerators.

    Argonne earns HPCwire awards for the best use of high performance computing in energy and industry

    Argonne earns HPCwire awards for the best use of high performance computing in energy and industry

    HPCwire magazine recognizes two Argonne teams for outstanding achievement in their use of high performance computing.

    Rachel Slaybaugh to Lead Berkeley Lab's Cyclotron Road

    Rachel Slaybaugh to Lead Berkeley Lab's Cyclotron Road

    The Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has named Rachel Slaybaugh, associate professor of nuclear engineering at UC Berkeley, to lead Berkeley Lab's Cyclotron Road Division.

    $2.6 million Dept. of Energy grant to fund research into solar energy and power grids

    $2.6 million Dept. of Energy grant to fund research into solar energy and power grids

    A team of researchers from Binghamton University, State University of New York has been selected to receive $2.6 million from the U.S. Department of Energy Solar Energy Technologies Office (SETO) to develop ways to reliably support higher amounts of solar power on the grid.

    Experiment to Precisely Measure Electrons Moves Forward

    Experiment to Precisely Measure Electrons Moves Forward

    The MOLLER experiment at DOE's Jefferson Lab is one step closer to carrying out an experiment to gain new insight into the forces at work inside the heart of matter through probes of the humble electron. The experiment has just received a designation of Critical Decision 1, or CD-1, from the DOE, which is a greenlight to move forward in design and prototyping of equipment.

    Physicists Hong Qin and Ahmed Diallo recognized for outstanding research at PPPL

    Physicists Hong Qin and Ahmed Diallo recognized for outstanding research at PPPL

    Theoretical and experimental physicists receive PPPL awards for standout research in 2020.

    Scientists collaborate on public-private partnership to facilitate the development of commercial fusion energy

    Scientists collaborate on public-private partnership to facilitate the development of commercial fusion energy

    Article describes PPPL work in coordination with MIT's Plasma Science and Fusion Center and Commonwealth Fusion Systems, a start-up spun out of MIT that is developing a unique tokamak fusion device called "SPARC."


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate students gather virtually for summer school at PPPL
    Monday October 05, 2020, 04:45 PM

    Graduate students gather virtually for summer school at PPPL

    Princeton Plasma Physics Laboratory

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory





    Showing results

    0-6 Of 2215