DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2021-02-18 20:00:07
    • Article ID: 746470

    Scientists Use Supercomputers to Study Reliable Fusion Reactor Design, Operation

    Team at Princeton Plasma Physics Laboratory employs DOE supercomputers to understand heat-load width requirements of future ITER device

    • Credit: Kwan-Liu Ma’s research group, University of California Davis; David Pugmire and Adam Malin, ORNL

      At left, ions being lost from the confined plasma and following the magnetic field lines to the material diverter plates in the gyrokinetic simulation code XGC1. At right, an XGC1 simulation of edge turbulence in DIII-D plasma, showing the plasma turbulence changing the eddy structure to isolated blobs (represented by red color) in the vicinity of the magnetic separatrix (black line).

    Nuclear fusion, the same kind of energy that fuels stars, could one day power our world with abundant, safe, and carbon-free energy. Aided by supercomputers Summit at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) and Theta at DOE’s Argonne National Laboratory (ANL), a team of scientists strives toward making fusion energy a reality.

    Fusion reactions involve two or more atomic nuclei combining to form different nuclei and particles, converting some of the atomic mass into energy in the process. Scientists are working toward building a nuclear fusion reactor that could efficiently produce heat that would then be used to generate electricity. However, confining plasma reactions that occur at temperatures hotter than the sun is very difficult, and the engineers who design these massive machines can’t afford mistakes.

    To ensure the success of future fusion devices—such as ITER, which is being built in southern France—scientists can take data from experiments performed on smaller fusion devices and combine them with massive computer simulations to understand the requirements of new machines. ITER will be the world’s largest tokamak, or device that uses magnetic fields to confine plasma particles in the shape of a donut inside, and will produce 500 megawatts (MW) of fusion power from only 50 MW of input heating power.

    One of the most important requirements for fusion reactors is the tokamak’s divertor, a material structure engineered to remove exhaust heat from the reactor’s vacuum vessel. The heat-load width of the divertor is the width along the reactor’s inner walls that will sustain repeated hot exhaust particles coming in contact with it.

    A team led by C.S. Chang at Princeton Plasma Physics Laboratory (PPPL) has used the Oak Ridge Leadership Computing Facility’s (OLCF’s) 200-petaflop Summit and Argonne Leadership Computing Facility’s (ALCF’s) 11.7-petaflop Theta supercomputers, together with a supervised machine learning program called Eureqa, to find a new extrapolation formula from existing tokamak data to future ITER based on simulations from their XGC computational code for modeling tokamak plasmas. The team then completed new simulations that confirm their previous ones, which showed that at full power, ITER’s divertor heat-load width would be more than six times wider than was expected in the current trend of tokamaks. The results were published in Physics of Plasmas.

    “In building any fusion reactor in the future, predicting the heat-load width is going to be critical to ensuring the divertor material maintains its integrity when faced with this exhaust heat,” Chang said. “When the divertor material loses its integrity, the sputtered metallic particles contaminate the plasma and stop the burn or even cause sudden instability. These simulations give us hope that ITER operation might be easier than was initially thought.”

    Using Eureqa, the team found hidden parameters that provided a new formula that not only fits the drastic increase predicted for ITER’s heat-load width at full power but also produced the same results as previous experimental and simulation data for existing tokamaks. Among the devices newly included in the study were the Alcator C-Mod, a tokamak at the Massachusetts Institute of Technology (MIT) that holds the record for plasma pressure in a magnetically confined fusion device, and the world’s largest existing tokamak, the JET (Joint European Torus) in the United Kingdom.

    “If this formula is validated experimentally, this will be huge for the fusion community and for ensuring that ITER’s divertor can accommodate the heat exhaust from the plasma without too much complication,” Chang said.

    ITER deviates from the trend 

    The Chang team’s work studying ITER’s divertor plates began in 2017 when the group reproduced experimental divertor heat-load width results from three US fusion devices on the OLCF’s former Titan supercomputer: General Atomics’ DIII-D toroidal magnetic fusion device, which has an aspect ratio similar to ITER; MIT’s Alcator C-Mod; and the National Spherical Torus Experiment, a compact low-aspect-ratio spherical tokamak at PPPL. The presence of steady “blobby”-shaped turbulence at the edge of the plasma in these tokamaks did not play a significant role in widening the divertor heat-load width.

    The researchers then set out to prove that their XGC code, which simulates particle movements and electromagnetic fields in plasma, could predict the heat-load width on the full-power ITER’s divertor surface. The presence of dynamic edge turbulence—different from the steady blobby-shaped turbulence present in the current tokamak edge—could significantly widen the distribution of the exhaust heat, they realized. If ITER were to follow the current trend of heat-load widths in present-day fusion devices, its heat-load width would be less than a few centimeters—a dangerously narrow width, even for divertor plates made of tungsten, which boasts the highest melting point of all pure metals.

    “You don’t want to start and stop ITER or a fusion reactor too often to replace this divertor material, so it has to be able to withstand the heat load,” Chang said at the time. “Ideally, we want the hot exhaust particles to hit the surface in a much wider area so that it’s not damaged.”

    The team’s simulations on Titan in 2017 revealed an unusual jump in the trend—the full-power ITER showed a heat-load width more than six times wider than what the existing tokamaks implied. But the extraordinary finding required more investigation. How could the full-power ITER’s heat-load width deviate so significantly from existing tokamaks?

    Scientists operating the C-Mod tokamak at MIT cranked the device’s magnetic field up to ITER value for the strength of the poloidal magnetic field, which runs top to bottom to confine the donut-shaped plasma inside the reaction chamber. The other field used in tokamak reactors, the toroidal magnetic field, runs around the circumference of the donut. Combined, these two magnetic fields confine the plasma, as if winding a tight string around a donut, creating looping motions of ions along the combined magnetic field lines called gyromotions that researchers believe might smooth out turbulence in the plasma.

    Scientists at MIT then provided Chang with experimental data from the Alcator C-Mod against which his team could compare results from simulations by using XGC. With an allocation of time under the INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, the team performed extreme-scale simulations on Summit by employing the new Alcator C-Mod data using a finer grid and including a greater number of particles.

    “They gave us their data, and our code still agreed with the experiment, showing a much narrower divertor heat-load width than the full-power ITER,” Chang said. “What that meant was that either our code produced a wrong result in the earlier full-power ITER simulation on Titan or there was a hidden parameter that we needed to account for in the prediction formula.”

    Machine learning reveals a new formula

    Chang suspected that the hidden parameter might be the radius of the gyromotions, called the gyroradius, divided by the size of the machine. Chang then fed the new results to a machine learning program called Eureqa, presently owned by DataRobot, asking it to find the hidden parameter and a new formula for the ITER prediction. The program spit out several new formulas, verifying the gyroradius divided by the machine size as being the hidden parameter. The simplest of these formulas most agreed with the physics insights.

    Chang presented the findings at various international conferences last year. He was then given three more simulation cases from ITER headquarters to test the new formula. The simplest formula successfully passed the test. PPPL research staff physicists Seung-Hoe Ku and Robert Hager employed the Summit and the Theta supercomputers for these three critically important ITER test simulations. Summit is located at the OLCF, a DOE Office of Science User Facility at ORNL. Theta is located at ALCF, another DOE Office of Science User Facility, located at ANL.

    In an exciting finding, the new formula predicted the same results as the present experimental data—a huge jump in the full-power ITER’s heat-load width, with the medium-power ITER landing in between.

    “Verifying whether ITER operation is going to be difficult due to an excessively narrow divertor heat-load width was something the entire fusion community has been concerned about, and we now have hope that ITER might be much easier to operate,” Chang said. “If this formula is correct, design engineers would be able to use it in their design for more economical fusion reactors.”

    A big data problem

    Each of the team’s ITER simulations consisted of 2 trillion particles and more than 1,000 time steps, requiring most of the Summit machine and one full day or longer to complete. The data generated by one simulation, Chang said, could total a whopping 200 petabytes, eating up nearly all of Summit’s file system storage. 

    “Summit’s file system only holds 250 petabytes’ worth of data for all the users,” Chang said. “There is no way to get all this data out to the file system, and we usually have to write out some parts of the physics data every 10 or more time steps.”

    This has proven challenging for the team, who often found new science in the data that was not saved in the first simulation.

    “I would often tell Dr. Ku, ‘I wish to see this data because it looks like we could find something interesting there,’ only to discover that he could not save it,” Chang said. “We need reliable, large-compression-ratio data reduction technologies, so that’s something we are working on and are hopeful to be able to take advantage of in the future.”

    Chang added that staff members at both the OLCF and ALCF were critical to the team’s ability to run codes on the centers’ massive high-performance computing systems.

    “Help rendered by the OLCF and ALCF computer center staff—especially from the liaisons—has been essential in enabling these extreme-scale simulations,” Chang said.

    The team is anxiously awaiting the arrival of two of DOE’s upcoming exascale supercomputers, the OLCF’s Frontierand ALCF’s Aurora, machines that will be capable of a billion billion calculations per second, or 1018 calculations per second. The team will next include more complex physics, such as electromagnetic turbulence in a more refined grid with a greater number of particles, to verify the new formula’s fidelity further and improve its accuracy. The team also plans to collaborate with experimentalists to design experiments to further validate the electromagnetic turbulence results that will be obtained on Summit or Frontier.

    This research was supported by the DOE Office of Science Scientific Discovery through Advanced Computing program. 

    Related Publication: C. S. Chang et al., “Constructing a New Predictive Scaling Formula for ITER’s Divertor Heat-Load Width Informed by a Simulation-Anchored Machine Learning,” Physics of Plasmas 28 (2021) 022501, doi:10.1063/5.0027637.

    X
    X
    X
    • Filters

    • × Clear Filters
    To Cool Tomorrow's Buildings, Power Sector Must Grow

    To Cool Tomorrow's Buildings, Power Sector Must Grow

    New study projects electricity demand tied to cooling U.S. buildings will grow as peak temperatures rise, alongside the need for an expanded power sector.

    For Better Predictions, Researchers Evaluate Tropical Cyclone Simulation in the Energy Exascale Earth System Model

    For Better Predictions, Researchers Evaluate Tropical Cyclone Simulation in the Energy Exascale Earth System Model

    Infrastructure planning requires accurately predicting how tropical cyclones respond to environmental changes. To make those predictions, researchers use Earth system models. In this research, scientists analyzed tropical cyclones simulated by the Department of Energy's Energy Exascale Earth System Model (E3SM). They found that high resolution is critical to simulating tropical cyclones and their interactions with the ocean.

    Experts' Predictions for Future Wind Energy Costs Drop Significantly

    Experts' Predictions for Future Wind Energy Costs Drop Significantly

    Technology and commercial advancements are expected to continue to drive down the cost of wind energy, according to a survey led by Berkeley Lab of the world's foremost wind power experts. Experts anticipate cost reductions of 17%-35% by 2035 and 37%-49% by 2050, driven by bigger and more efficient turbines, lower capital and operating costs, and other advancements.

    Little swirling mysteries: New research uncovers dynamics of ultrasmall, ultrafast groups of atoms

    Little swirling mysteries: New research uncovers dynamics of ultrasmall, ultrafast groups of atoms

    Exploring and manipulating the behavior of polar vortices in material may lead to new technology for faster data transfer and storage. Researchers used the Advanced Photon Source at Argonne and the Linac Coherent Light Source at SLAC to learn more.

    From Smoky Skies to a Green Horizon: Scientists Convert Fire-Risk Wood into Biofuel

    From Smoky Skies to a Green Horizon: Scientists Convert Fire-Risk Wood into Biofuel

    Reliance on petroleum fuels and raging wildfires: Two separate, large-scale challenges that could be addressed by one scientific breakthrough. Researchers from two national laboratories have collaborated to develop a streamlined and efficient process for converting woody plant matter like forest overgrowth and agricultural waste - material that is currently burned either intentionally or unintentionally - into liquid biofuel.

    Suppression of COVID-19 Waves Reflects Time-Dependent Social Activity, Not Herd Immunity

    Suppression of COVID-19 Waves Reflects Time-Dependent Social Activity, Not Herd Immunity

    Scientists developed a new mathematical model for predicting how COVID-19 spreads, accounting for individuals' varying biological susceptibility and levels of social activity, which naturally change over time.

    Plasma device designed for consumers can quickly disinfect surfaces

    Plasma device designed for consumers can quickly disinfect surfaces

    The COVID-19 pandemic has cast a harsh light on the urgent need for quick and easy techniques to sanitize and disinfect everyday high-touch objects such as doorknobs, pens, pencils, and personal protective gear worn to keep infections from spreading.

    Cybersecurity in the Blue Economy

    Cybersecurity in the Blue Economy

    More than two-thirds of the Earth's surface is covered by the oceans and seas. Over the next decade, these vast waters are expected to add $3 trillion to the global economy by generating electricity using marine renewable energy (MRE) devices. These "blue economy" technologies harness power across waves, tides, and currents that could reduce the carbon footprint from energy production and provide grid stability to remote coastal communities.

    The Scoop on Hyperloop

    The Scoop on Hyperloop

    PNNL researchers investigate innovative transportation system's impact on the electric grid

    Better solutions for making hydrogen may lie just at the surface

    Better solutions for making hydrogen may lie just at the surface

    A new study uncovers insight into a promising type of material for splitting water, perovskite oxides.


    • Filters

    • × Clear Filters

    Department of Energy to Provide $2 Million for Traineeship in Isotope R&D and Production

    Today, the U.S. Department of Energy (DOE) announced up to $2 million to establish a traineeship program to advance workforce development in the field of isotope production, processing, and associated research, with preference to minority serving institutions.

    Department of Energy to Provide $10 Million for Research on Data Reduction for Science

    Today, the U.S. Department of Energy (DOE) announced $10 million for foundational research to address the challenges of managing and processing the increasingly massive data sets produced by today's scientific instruments, facilities, and supercomputers in order to facilitate more efficient analysis.

    ORNL's Honeycutt, Horvath Named SME 2021 Outstanding Young Manufacturing Engineers

    ORNL's Honeycutt, Horvath Named SME 2021 Outstanding Young Manufacturing Engineers

    Andrew Honeycutt and Nick Horvath, machine tool researchers at Oak Ridge National Laboratory, have been selected to receive the 2021 Geoffrey Boothroyd Outstanding Young Manufacturing Engineer Award from SME, the professional manufacturing engineering association.

    Department of Energy to Provide $25 Million toward Development of a Quantum Internet

    Today the U.S. Department of Energy (DOE) announced a plan to provide $25 million for basic research toward the development of a quantum internet.

    Media Advisory - U.S. Secretary of Energy and Other Leading Experts Talk Preparation for the Effects of Climate Change

    Media Advisory - U.S. Secretary of Energy and Other Leading Experts Talk Preparation for the Effects of Climate Change

    The escalating effects of climate change are evident across our country, from the damaging 2020 western wildfire season to February's southern deep freeze. The need has never been greater for a national strategy that combines the long-term goal of a 100% clean energy future with immediate, science-driven actions to help all communities overcome the effects of climate change.

    Department of Energy to Provide $5 Million to Advance Workforce Development for High Energy Physics Instrumentation

    Today, the U.S. Department of Energy (DOE) announced plans to provide $5 million to support a DOE traineeship program to address workforce needs in high energy physics instrumentation.

    DOE Awards $110 Million to Small Businesses Pursuing Scientific, Clean Energy, and Climate Solutions

    The U.S. Department of Energy (DOE) today announced awards totaling $110 million for diverse small businesses working on scientific, clean energy, and climate solutions for the American people.

    Teachers Invited to Participate in Virtual Science Activities Night

    Teachers Invited to Participate in Virtual Science Activities Night

    Elementary and middle school teachers are invited to register now to participate in the annual Virginia Region II Teacher Night hosted by the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility on April 14, 2021. The fully virtual event will allow educators to see demonstrations of new methods for teaching physical science concepts and safely meet and interact with their colleagues, all while they pick up one recertification point from the comfort of their own homes. Advance registration is required, and the event is open to all upper elementary and middle school teachers of physical science.

    DOE Announces $29 Million for Ultramodern Data Analysis Tools

    The U.S. Department of Energy (DOE) today announced $29 million to develop new tools to analyze massive amounts of scientific information, including artificial intelligence, machine learning, and advanced algorithms.

    Argonne's 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

    Argonne's 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

    The Department of Energy's Argonne National Laboratory is proud to welcome five new FY21 Maria Goeppert Mayer Fellows to campus, each chosen for their incredible promise in their respective fields.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate students gather virtually for summer school at PPPL
    Monday October 05, 2020, 04:45 PM

    Graduate students gather virtually for summer school at PPPL

    Princeton Plasma Physics Laboratory

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory





    Showing results

    0-6 Of 2215