DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2021-03-22 17:05:36
    • Article ID: 748285

    Explosive Origins of 'Secondary' Ice—and Snow

    Definitive, real-world evidence for "freezing fragmentation" of drizzle as a major source of ice in slightly supercooled clouds has important implications for forecasting weather and climate

    • Credit: ARM user facility

      Data collected at the Department of Energy's Atmospheric Radiation Measurement (ARM) atmospheric observatory in Utqiagvik (Barrow), Alaska, indicate that shattering drizzle droplets play a major role in the formation of "secondary" ice in mixed-phase clouds. The results will improve how these cloud processes are represented in computational models used to forecast climate and local snowfall.

    • Secondary ice generated at temperatures warmer than -10°C preferentially grows into slender, needle-shaped ice crystals. The way in which this shape alters the polarization of a radar signal enables the secondary ice to be identified and measured from ground-based, remote-sensing instrumentation.

    • Brookhaven Lab atmospheric scientists Andrew Vogelmann, Edward Luke, Fan Yang, and Pavlos Kollias explored the origins of secondary ice—and snow.

    • This graph shows how the amount of ice multiplication in clouds is affected by fast-falling "rimer" ice particle velocity and drizzle drop size. Red on the rainbow scale represents the highest amounts of ice multiplication being generated through secondary ice processes. The skewing of the ice multiplication amounts to the right side of the graph indicates that drizzle drop diameter plays a more significant role than rimer velocity in generating ice multiplication.

    • Credit: ARM user facility

      Weather balloons launched throughout the study period provided data on local temperature, humidity, and other atmospheric conditions. By matching those data with Doppler radar measurements that are sensitive to the size, shape, and movement of ice and water particles in clouds, scientists were able to identify the conditions responsible for explosive ice multiplication events.

    UPTON, NY—Where does snow come from? This may seem like a simple question to ponder as half the planet emerges from a season of watching whimsical flakes fall from the sky—and shoveling them from driveways. But a new study on how water becomes ice in slightly supercooled Arctic clouds may make you rethink the simplicity of the fluffy stuff. The study, published by scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory in the Proceedings of the National Academy of Sciences, includes new direct evidence that shattering drizzle droplets drive explosive “ice multiplication” events. The findings have implications for weather forecasts, climate modeling, water supplies—and even energy and transportation infrastructure.

    “Our results shed new light on prior lab-experiment-based understanding about how supercooled water droplets—water that’s still liquid below its freezing point—turn into ice and eventually snow,” said Brookhaven Lab atmospheric scientist Edward Luke, the lead author on the paper. The new results, from real-world long-term cloud radar and weather-balloon measurements in mixed-phase clouds (composed of liquid water and ice) at temperatures between 0 and -10 degrees Celsius (32 and 14° Fahrenheit), provide evidence that freezing fragmentation of drizzle drops is important to how much ice will form and potentially fall from these clouds as snow.

    “Now climate models and the weather forecast models used to determine how much snow you’ll have to shovel can make a leap forward by using much more realistic physics to simulate ‘secondary’ ice formation,” Luke said.

    What is secondary ice?

    Precipitating snow from supercooled clouds usually originates from “primary” ice particles, which form when water crystallizes on select tiny specks of dust or aerosols in the atmosphere, known as ice-nucleating particles. However, at slightly supercooled temperatures (i.e., 0 to -10°C), aircraft observations have shown that clouds can contain far more ice crystals than can be explained by the relatively few ice-nucleating particles present. This phenomenon has puzzled the atmospheric research community for decades. Scientists have thought that the explanation is “secondary” ice production, in which the additional ice particles are generated from other ice particles. But catching the process in action in the natural environment has been difficult.

    Previous explanations for how secondary ice forms relied mainly on laboratory experiments and limited, short-term aircraft-based sampling flights. A common understanding that came out of several lab experiments was that relatively big, fast-falling ice particles, called rimers, can “collect” and freeze tiny, supercooled cloud droplets—which then produce more tiny ice particles, called splinters. But it turns out that such “rime splintering” isn’t nearly the whole story.

    The new results from the Arctic show that larger supercooled water droplets, classified as drizzle, play a much more important role in producing secondary ice particles than commonly thought.

    “When an ice particle hits one of those drizzle drops, it triggers freezing, which first forms a solid ice shell around the drop,” explained Fan Yang, a co-author on the paper. “Then, as the freezing moves inward, the pressure starts to build because water expands as it freezes. That pressure causes the drizzle drop to shatter, generating more ice particles.”

    The data show that this “freezing fragmentation” process can be explosive.

    “If you had one ice particle triggering the production of one other ice particle, it would not be that significant,” Luke said. “But we’ve provided evidence that, with this cascading process, drizzle freezing fragmentation can enhance ice particle concentrations in clouds by 10 to 100 times—and even 1,000 on occasion!

    “Our findings could provide the missing link for the mismatch between the scarcity of primary ice-nucleating particles and snowfall from these slightly supercooled clouds.”

    Millions of samples

    The new results hinge upon six years of data gathered by an upward-pointing millimeter-wavelength Doppler radar at the DOE Atmospheric Radiation Measurement (ARM) user facility’s North Slope of Alaska atmospheric observatory in Utqiagvik (formerly Barrow), Alaska. The radar data are complemented by measurements of temperature, humidity, and other atmospheric conditions collected by weather balloons launched from Utqiagvik throughout the study period.

    Brookhaven Lab atmospheric scientist and study co-author Pavlos Kollias, who is also a professor in the Atmospheric Sciences Division at Stony Brook University, was crucial to the collection of this millimeter-wavelength radar data in a way that made it possible for the scientists to deduce how secondary ice was formed.

    “ARM has pioneered the use of short-wavelength cloud radars since the 1990s to better understand clouds’ microphysical processes and how those affect weather on Earth today. Our team led the optimization of their data sampling strategy so information on cloud and precipitation processes like the one presented in this study can be obtained,” Kollias said. 

    The radar’s millimeter-scale wavelength makes it uniquely sensitive to the sizes of ice particles and water droplets in clouds. Its dual polarization provides information about particle shape, allowing scientists to identify needlelike ice crystals—the preferential shape of secondary ice particles in slightly supercooled cloud conditions. Doppler spectra observations recorded every few seconds provide information on how many particles are present and how fast they fall toward the ground. This information is critical to figuring out where there are rimers, drizzle, and secondary ice particles.

    Using sophisticated automated analysis techniques developed by Luke, Yang, and Kollias, the scientists scanned through millions of these Doppler radar spectra to sort the particles into data buckets by size and shape—and matched the data with contemporaneous weather-balloon observations on the presence of supercooled cloud water, temperature, and other variables. The detailed data mining allowed them to compare the number of secondary ice needles generated under different conditions: in the presence of just rimers, rimers plus drizzle drops, or just drizzle.

    “The sheer volume of observations allows us for the first time to lift the secondary ice signal out of the ‘background noise’ of all the other atmospheric processes taking place—and quantify how and under what circumstances secondary ice events happen,” Luke said.

    The results were clear: Conditions with supercooled drizzle drops produced dramatic ice multiplication events, many more than rimers.

    Short- and long-term impacts

    These real-world data give the scientists the ability to quantify the “ice multiplication factor” for various cloud conditions, which will improve the accuracy of climate models and weather forecasts.

    “Weather prediction models can’t handle the full complexity of the cloud microphysical processes. We need to economize on the computations, otherwise you’d never get a forecast out,” said Andrew Vogelmann, another co-author on the study. “To do that, you have to figure out what aspects of the physics are most important, and then account for that physics as accurately and simply as possible in the model. This study makes it clear that knowing about drizzle in these mixed-phase clouds is essential.”

    Besides helping you budget how much extra time you’ll need to shovel your driveway and get to work, a clearer understanding of what drives secondary ice formation can help scientists better predict how much snow will accumulate in watersheds to provide drinking water throughout the year. The new data will also help improve our understanding of how long clouds will stick around, which has important consequences for climate.

    “More ice particles generated by secondary ice production will have a huge impact on precipitation, solar radiation (how much sunlight clouds reflect back into space), the water cycle, and the evolution of mixed-phase clouds,” Yang said.

    Cloud lifetime is particularly important to the climate in the Arctic, Luke and Vogelmann noted, and the Arctic climate is very important to the overall energy balance on Earth.

    “Mixed-phase clouds, which have both supercooled liquid water and ice particles in them, can last for weeks on end in the Arctic,” Vogelmann said. “But if you have a whole bunch of ice particles, the cloud can get cleared out after they grow and fall to the ground as snow. Then you’ll have sunlight able to go straight through to start heating up the ground or ocean surface.”

    That could change the seasonality of snow and ice on the ground, causing melting and then even less reflection of sunlight and more heating.

    “If we can predict in a climate model that something is going to change the balance of ice formation, drizzle, and other factors, then we’ll have a better ability to anticipate what to expect in future weather and climate, and possibly be better prepared for these impacts,” Luke said.

    Maximilian Maahn, now at Leipzig University, was an additional co-author on this study. At the time of the study, he was affiliated with the Cooperative Institute for Research in Environmental Sciences, a partnership between the National Oceanic and Atmospheric Administration (NOAA) and the University of Colorado Boulder.

    The study was funded by the DOE Office of Science (Atmospheric System Research—ASR) and NOAA. The ARM user facility is supported by the DOE Office of Science (BER).

    Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://www.energy.gov/science/

    Follow @BrookhavenLab on Twitter or find us on Facebook.

     

    X
    X
    X
    • Filters

    • × Clear Filters
    Supernovae Twins Open Up New Possibilities for Precision Cosmology

    Supernovae Twins Open Up New Possibilities for Precision Cosmology

    Cosmologists have found a way to double the accuracy of measuring distances to supernova explosions - one of their tried-and-true tools for studying the mysterious dark energy that is making the universe expand faster and faster.

    First nanoscale look at a reaction that limits the efficiency of generating clean hydrogen fuel

    First nanoscale look at a reaction that limits the efficiency of generating clean hydrogen fuel

    Transitioning to a hydrogen economy will require massive production of cheap, clean hydrogen gas for fuel and chemical feedstocks. New tools allow scientists to zoom in on a catalytic reaction that's been a bottleneck in efforts to generate hydrogen from water more efficiently.

    First Detailed Look at How Charge Transfer Distorts a Molecule's Structure

    First Detailed Look at How Charge Transfer Distorts a Molecule's Structure

    When light hits certain molecules, it dislodges electrons and creates areas of positive and negative charge. An X-ray free-electron laser study has directly observed how this charge transfer affects a molecule's structure for the first time.

    Suitable Spawning Habitat Awaits Salmon

    Suitable Spawning Habitat Awaits Salmon

    Scientists at PNNL and the Confederated Tribes of the Colville Reservation identify acres of spawning habitat in the Upper Columbia River.

    Story tips: Stealthy air leak detection, carbon to chemicals and recycling goes large

    Story tips: Stealthy air leak detection, carbon to chemicals and recycling goes large

    ORNL story tips: Stealthy air leak detection, carbon to chemicals and recycling goes large

    Blueprint for a robust quantum future

    Blueprint for a robust quantum future

    Researchers at Argonne National Laboratory, the University of Chicago and scientific organizations in Japan, Korea and Hungary have established an invaluable resource for those looking to discover new quantum systems.

    Science Snapshots From Berkeley Lab

    Science Snapshots From Berkeley Lab

    Science Snapshots From Berkeley Lab - Water purification, infant-warming device, cuff-based heart disease monitor, ancient magnetic fields

    Mapping the Electronic States in an Exotic Superconductor

    Mapping the Electronic States in an Exotic Superconductor

    Scientists mapped the electronic states in an exotic superconductor. The maps point to the composition range necessary for topological superconductivity, a state that could enable more robust quantum computing.

    New computer model helps brings the sun into the laboratory

    New computer model helps brings the sun into the laboratory

    Every day, the sun ejects large amounts of a hot particle soup known as plasma toward Earth where it can disrupt telecommunications satellites and damage electrical grids. Now, scientists have made a discovery that could lead to better predictions of this space weather.

    Watching the Evolution of Nanostructures in Thin Films

    Watching the Evolution of Nanostructures in Thin Films

    Scientists have found a way to turn X-ray fluorescence into an ultra-high position-sensitive probe to measure nanostructures in thin films. The fluorescence reveals the evolution of nanostructures in real time with nearly atomic-level resolution, something no other technique has achieved. This allows scientists to watch nanostructures in thin films evolve with unprecedented precision and design thin films for new applications.


    • Filters

    • × Clear Filters

    Department of Energy Announces $10 Million for Research on Quantum Information Science and Nuclear Physics

    Today, the U.S. Department of Energy (DOE) announced $10 million for interdisciplinary research in Quantum Information Science (QIS) and nuclear physics.

    ORNL's Sergei Kalinin elected Fellow of the Microscopy Society of America

    ORNL's Sergei Kalinin elected Fellow of the Microscopy Society of America

    Sergei Kalinin, a scientist and inventor at the Department of Energy's Oak Ridge National Laboratory, has been elected a Fellow of the Microscopy Society of America professional society.

    DOE Awards $17.3 Million for Student and Faculty Research Opportunities and to Foster Workforce Diversity

    The U.S. Department of Energy (DOE) today announced $17.3 million for college internships, research opportunities, and research projects that connect talented science, technology, engineering, and math (STEM) students and faculty with the world-class resources at DOE's National Laboratories.

    DOE's Office of Science Graduate Student Research (SCGSR) Program selects 78 outstanding U.S. graduate students

    The Department of Energy's (DOE's) Office of Science has selected 78 graduate students representing 26 states for the Office of Science Graduate Student Research (SCGSR) program's 2020 Solicitation 2 cycle.

    Department of Energy Announces $11 Million for Research on Quantum Information Science for Fusion Energy Sciences

    Today, the U.S. Department of Energy (DOE) announced $11 million for ten projects in Quantum Information Science (QIS) with relevance to fusion and plasma science.

    Katrin Heitmann elected spokesperson for LSST Dark Energy Science Collaboration

    Katrin Heitmann elected spokesperson for LSST Dark Energy Science Collaboration

    Argonne's Katrin Heitmann has been elected the scientific spokesperson for the LSST Dark Energy Science Collaboration. This collaboration will address fundamental questions about the evolution of the universe with data from the Rubin Observatory.

    Department of Energy to Provide $2 Million for Traineeship in Isotope R&D and Production

    Today, the U.S. Department of Energy (DOE) announced up to $2 million to establish a traineeship program to advance workforce development in the field of isotope production, processing, and associated research, with preference to minority serving institutions.

    Department of Energy to Provide $10 Million for Research on Data Reduction for Science

    Today, the U.S. Department of Energy (DOE) announced $10 million for foundational research to address the challenges of managing and processing the increasingly massive data sets produced by today's scientific instruments, facilities, and supercomputers in order to facilitate more efficient analysis.

    ORNL's Honeycutt, Horvath Named SME 2021 Outstanding Young Manufacturing Engineers

    ORNL's Honeycutt, Horvath Named SME 2021 Outstanding Young Manufacturing Engineers

    Andrew Honeycutt and Nick Horvath, machine tool researchers at Oak Ridge National Laboratory, have been selected to receive the 2021 Geoffrey Boothroyd Outstanding Young Manufacturing Engineer Award from SME, the professional manufacturing engineering association.

    Department of Energy to Provide $25 Million toward Development of a Quantum Internet

    Today the U.S. Department of Energy (DOE) announced a plan to provide $25 million for basic research toward the development of a quantum internet.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate students gather virtually for summer school at PPPL
    Monday October 05, 2020, 04:45 PM

    Graduate students gather virtually for summer school at PPPL

    Princeton Plasma Physics Laboratory

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory





    Showing results

    0-6 Of 2215