The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
Argonne National Laboratory

Argonne’s 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

24-Mar-2021 3:50 PM EDT, by Argonne National Laboratory

Newswise — Dedicated to discovering and advancing next-generation scientists, the U.S. Department of Energy’s (DOE) Argonne National Laboratory recently welcomed five new Maria Goeppert Mayer Fellows to its campus, each chosen for incredible promise in his or her fields.

Katherine Harmon, Alyssa Kody, April Novak, Zhaodi Pan and Ruslan Shaydulin, who joined the laboratory late last year, are conducting a wide variety of studies alongside some of Argonne’s most accomplished researchers.

“Our five new fellows join our world-class community of talent and are making significant contributions to Argonne’s leadership in science and technology. Their efforts support the pivotal discoveries that empower our scientific mission at Argonne,” said Laboratory Director Paul K. Kearns. “We are very excited to see what their research will yield.”

“It’s thrilling to see such a talented crop of young scientists further their careers here at Argonne,” said Laboratory Director Paul K. Kearns. “We are very excited to see what their studies will yield.”

Stephen Streiffer, deputy laboratory director for science and technology, is equally enthusiastic about this latest round of Fellows.

“The scope of their work is tremendous,” he said. “We are so pleased to have them. I look forward to their success here at the lab.”

Fellows are hired as Argonne Scholars with full benefits, a highly competitive salary and a stipend for research support. They may renew their appointments on an annual basis for up to three years, with the possibility of retention.

Katherine Harmon will use her time at the laboratory to focus on quantum information science. She’ll work in the Materials Science division with the goal of developing new materials systems that will allow scientists to control quantum bits — the basic unit of quantum information — in a practical setting.

Quantum bits, or “qubits,” are notoriously hard to command. They’re extraordinarily sensitive to their surrounding environment, including the presence of other qubits, and are typically kept at ultracold temperatures to keep them stable.

“If we want to make quantum computers commercially viable, we need another way to control the quantum states,” Harmon said. And that’s where her work comes in.

One proposed method, she said, is to insert the qubits into a stack of ultrathin, layered materials. If done correctly, this can shield them, allowing them to be stored at room temperature without compromising or changing them.

“My research is to figure out how to build these layered materials,” said Harmon, who will use X-ray tools at the Advanced Photon Source (APS) to look at the nanoscale structure of the stacked materials and determine how it influences the stability of qubits. The APS is a DOE Office of Science User Facility located at Argonne.

The control of quantum states in a system will not only revolutionize computing, but it will have significant impacts on telecommunications, sensing and cryptography.

Harmon, sponsored by Stephan Hruszkewycz, a physicist at Argonne, earned her bachelor’s degree in physics from the University of California, Berkeley, in 2012 and spent the next two years as a postbaccalaureate research fellow at the National Heart, Lung, and Blood Institute, part of the National Institutes of Health. She started her PhD in applied physics at Northwestern University in 2015.

Alyssa Kody will spend her fellowship developing algorithms to operate the electric power grid of the future. She will be using the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility, to carry out her research.

“I want to contribute to solving today's most urgent energy challenges,” said Kody, who will work in the Energy Systems division alongside sponsors Daniel Molzahn, a computational engineer, and Feng Qiu, principal computational scientist.

Current grid technology, Kody said, faces numerous challenges, including the intermittency and fluctuations associated with some renewable energy sources. Wind turbines, for example, can only generate electricity when the wind is blowing and the amount of electricity will vary based on wind speed.

Kody’s research will incorporate machine learning techniques into existing control and optimization algorithms for power systems with the goal of increasing computational efficiency and scalability — as well as mitigating the impact of uncertainties.

Currently a postdoc in the Energy Systems division at Argonne, Kody earned her PhD in electrical engineering from the University of Michigan in September 2019. Her thesis was centered on developing control systems for self-powered devices.

April Novak will use high performance computing to predict the behavior of next-generation nuclear reactors, with a focus on sodium-cooled fast reactors (SFRs), which use molten sodium metal as a coolant rather than water.

Her goal is to develop safer, more reliable and more cost-effective reactor systems to help meet the energy demands of the future.

“To design safe reactors, it’s important to ensure that the nuclear reaction remains stable under a wide range of possible operating conditions, including unintended equipment failure or human error,” said Novak, who will work in the Computational Science division under the direction of computational scientist Paul Romano.

Novak earned her bachelor’s degree in nuclear, plasma and radiological engineering from the University of Illinois at Urbana-Champaign in 2015. She graduated with a PhD in nuclear engineering from the University of California, Berkeley, in the spring of 2020.

She spent several recent summers interning at Argonne, DOE’s Idaho National Laboratory and Terrapower, a nuclear innovation company developing a commercial SFR design.

As her career continues, Novak hopes to advance nuclear power as an important technology in a clean energy economy and to be a force for encouraging under-represented groups to pursue careers in STEM.

Zhaodi Pan, who will work in the High Energy Physics division with assistant physicist Amy Bender, will use his fellowship to try and answer fundamental questions about the universe, including how it began, how it works and how it will continue to evolve.

Of particular interest, he said, is the cosmic microwave background, or CMB, the oldest light in the universe. Pan hopes to develop millimeter-wavelength detectors for measuring the CMB and extract cosmic information from those measurements.

He was attracted to the field, in part, because of its use of cutting-edge technologies, including microfabrication, the process of fabricating miniature structures of micrometer scales and smaller; mechanical engineering; parallel computing, a type of computation where many calculations or the execution of processes are carried out simultaneously; and novel statistical analysis methods.

There is much to be learned.

“Several cornerstones of cosmology are still missing, including the understanding of dark matter, dark energy and cosmic inflation,” Pan said. “Current and next-generation experiments will push technological limits and require new data analysis tools to probe the unknowns.”

Pan earned his bachelor’s degree in physics from the University of Science and Technology of China in 2013. He earned his master’s and doctorate in physics from the University of Chicago in 2016, and 2020, respectively.

His work has already taken him to far-flung places. He assisted in developing an instrument for the third-generation camera of the South Pole Telescope (SPT-3G), a ground-based CMB camera, and spent four months on-site helping with its installation.

Pan looks forward to continuing his research into novel detector technologies and data analysis of other cosmological phenomena during the course of his fellowship.

“Argonne is the perfect place to conduct this type of research, with the advantages of available detector fabrication facilities, testing devices and computing resources,” he said.

Sponsored by Deputy Division Director Stefan Wild of the Mathematics and Computer Science division, Ruslan Shaydulin will work alongside computational mathematician Jeff Larson in the area of quantum computing, hoping to overcome the challenges associated with the limitations of near-term quantum devices. And there are numerous problems for Shaydulin to solve.

Right now, quantum computers can execute only a limited number of operations before accumulating so much error that the resulting computations are useless.

“We need to leverage this power to solve practical problems in order to jump-start new applications and better hardware, which, of course, would result in a tremendous new means for scientific discovery," he said.

Quantum devices have the potential to solve optimization problems traditional computers can’t. This is particularly true when it comes to machine learning.

“Quantum computers may be able to detect certain kinds of patterns in data with far greater ease and efficiency than even the fastest classical supercomputer,” he said.

Shaydulin earned his bachelor’s degree in physics and applied mathematics from the Moscow Institute of Physics and Technology in 2016, and a PhD in computer science from Clemson University in 2020.

Prior to joining Argonne, he interned at NASA Ames and IBM Research.

The first two years of the fellowship are funded by Argonne’s Laboratory Directed Research Development (LDRD) Program. Funding for the third year is split equally between the LDRD Program and other programs identified by the fellow and his or her sponsor.

The early career scientists say they are honored to partake in a program named for world-renowned theoretical physicist Maria Goeppert Mayer. She received the Nobel Prize in Physics in 1963 for proposing the nuclear shell model of the atomic nucleus, work she conducted at Argonne.

“Receiving this award certainly gives me a lot to aspire to,” Harmon said.

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

MEDIA CONTACT
Register for reporter access to contact details
DOE-Explains
X
X
X


Filters close
Newswise: Argonne senior chemist Robert Tranter named fellow of the Combustion Institute
Released: 17-May-2021 11:40 AM EDT
Argonne senior chemist Robert Tranter named fellow of the Combustion Institute
Argonne National Laboratory

Argonne senior chemist Robert Tranter, a shockwave chemist, was named a fellow of the Combustion Institute.

Newswise:Video Embedded successful-start-of-dark-energy-spectroscopic-instrument-desi-follows-record-setting-trial-run
VIDEO
Released: 17-May-2021 9:00 AM EDT
Successful Start of Dark Energy Spectroscopic Instrument (DESI) Follows Record-Setting Trial Run
Lawrence Berkeley National Laboratory

A five-year quest to map the universe and unravel the mysteries of “dark energy” is beginning officially today, May 17, at Kitt Peak National Observatory near Tucson, Arizona. To complete its quest, the Dark Energy Spectroscopic Instrument (DESI) will capture and study the light from tens of millions of galaxies and other distant objects in the universe.

Newswise: Recycling Gives New Purpose to Spent Nuclear Fuel
Released: 14-May-2021 5:20 PM EDT
Recycling Gives New Purpose to Spent Nuclear Fuel
Pacific Northwest National Laboratory

PNNL researchers developed an innovative capability to rapidly separate, monitor, and tightly control specific uranium and plutonium ratios in real-time—an important achievement in efficiently controlling the resulting product and safeguarding nuclear material.

Newswise: Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Released: 14-May-2021 4:05 PM EDT
Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Department of Energy, Office of Science

To operate successfully, ITER and future fusion energy reactors cannot allow melting of the walls of the divertor plates that remove excess heat from the plasma in a reactor. These walls are especially at risk of melting when heat is applied to narrow areas. Now, however, an extreme-scale computing analysis indicates that turbulence will reduce that risk.

Newswise: Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Released: 14-May-2021 4:05 PM EDT
Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Department of Energy, Office of Science

To operate successfully, ITER and future fusion energy reactors cannot allow melting of the walls of the divertor plates that remove excess heat from the plasma in a reactor. These walls are especially at risk of melting when heat is applied to narrow areas. Now, however, an extreme-scale computing analysis indicates that turbulence will reduce that risk.

Newswise: Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Released: 14-May-2021 3:35 PM EDT
Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Department of Energy, Office of Science

To understand the effects of expanding biofuel production, scientists must accurately represent biofuel crops in land surface models. Using observations from biofuel plants in the Midwestern United States, researchers simulated two biofuel perennial plants, miscanthus and switchgrass. The simulations indicate these high-yield perennial crops have several advantages over traditional annual bioenergy crops—they assimilate more carbon dioxide, and they require fewer nutrients and less water.

Newswise: Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Released: 14-May-2021 3:35 PM EDT
Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Department of Energy, Office of Science

To understand the effects of expanding biofuel production, scientists must accurately represent biofuel crops in land surface models. Using observations from biofuel plants in the Midwestern United States, researchers simulated two biofuel perennial plants, miscanthus and switchgrass. The simulations indicate these high-yield perennial crops have several advantages over traditional annual bioenergy crops—they assimilate more carbon dioxide, and they require fewer nutrients and less water.

Newswise: Harvesting Light Like Nature Does
Released: 14-May-2021 2:55 PM EDT
Harvesting Light Like Nature Does
Pacific Northwest National Laboratory

A new class of bio-inspired two-dimensional (2D) hybrid nanomaterials mimic the ability of photosynthetic plants and bacteria.

Newswise: 050721-ber-earths-atomosphere.jpg?itok=-W-tcpvH
Released: 14-May-2021 2:50 PM EDT
Scientists Check the Math for Improved Models of Liquids and Gases in Earth’s Atmosphere
Department of Energy, Office of Science

Discretization is the process of converting continuous models and variables, such as wind speed, into discrete versions to make equations that are compatible with computer analysis. Energy consistent discretization ensures that the method does not have any inaccurate sources of energy that can lead to unstable and unrealistic simulations. In this research, scientists provided a discretization for equations used by global models of the Earth’s atmosphere.

Newswise: 050721-ber-earths-atomosphere.jpg?itok=-W-tcpvH
Released: 14-May-2021 2:50 PM EDT
Scientists Check the Math for Improved Models of Liquids and Gases in Earth’s Atmosphere
Department of Energy, Office of Science

Discretization is the process of converting continuous models and variables, such as wind speed, into discrete versions to make equations that are compatible with computer analysis. Energy consistent discretization ensures that the method does not have any inaccurate sources of energy that can lead to unstable and unrealistic simulations. In this research, scientists provided a discretization for equations used by global models of the Earth’s atmosphere.

View More
Newswise: Argonne senior chemist Robert Tranter named fellow of the Combustion Institute
Released: 17-May-2021 11:40 AM EDT
Argonne senior chemist Robert Tranter named fellow of the Combustion Institute
Argonne National Laboratory

Argonne senior chemist Robert Tranter, a shockwave chemist, was named a fellow of the Combustion Institute.

Newswise:Video Embedded successful-start-of-dark-energy-spectroscopic-instrument-desi-follows-record-setting-trial-run
VIDEO
Released: 17-May-2021 9:00 AM EDT
Successful Start of Dark Energy Spectroscopic Instrument (DESI) Follows Record-Setting Trial Run
Lawrence Berkeley National Laboratory

A five-year quest to map the universe and unravel the mysteries of “dark energy” is beginning officially today, May 17, at Kitt Peak National Observatory near Tucson, Arizona. To complete its quest, the Dark Energy Spectroscopic Instrument (DESI) will capture and study the light from tens of millions of galaxies and other distant objects in the universe.

Newswise: Recycling Gives New Purpose to Spent Nuclear Fuel
Released: 14-May-2021 5:20 PM EDT
Recycling Gives New Purpose to Spent Nuclear Fuel
Pacific Northwest National Laboratory

PNNL researchers developed an innovative capability to rapidly separate, monitor, and tightly control specific uranium and plutonium ratios in real-time—an important achievement in efficiently controlling the resulting product and safeguarding nuclear material.

Newswise: Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Released: 14-May-2021 4:05 PM EDT
Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Department of Energy, Office of Science

To operate successfully, ITER and future fusion energy reactors cannot allow melting of the walls of the divertor plates that remove excess heat from the plasma in a reactor. These walls are especially at risk of melting when heat is applied to narrow areas. Now, however, an extreme-scale computing analysis indicates that turbulence will reduce that risk.

Newswise: Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Released: 14-May-2021 4:05 PM EDT
Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Department of Energy, Office of Science

To operate successfully, ITER and future fusion energy reactors cannot allow melting of the walls of the divertor plates that remove excess heat from the plasma in a reactor. These walls are especially at risk of melting when heat is applied to narrow areas. Now, however, an extreme-scale computing analysis indicates that turbulence will reduce that risk.

Newswise: Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Released: 14-May-2021 3:35 PM EDT
Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Department of Energy, Office of Science

To understand the effects of expanding biofuel production, scientists must accurately represent biofuel crops in land surface models. Using observations from biofuel plants in the Midwestern United States, researchers simulated two biofuel perennial plants, miscanthus and switchgrass. The simulations indicate these high-yield perennial crops have several advantages over traditional annual bioenergy crops—they assimilate more carbon dioxide, and they require fewer nutrients and less water.

Newswise: Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Released: 14-May-2021 3:35 PM EDT
Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Department of Energy, Office of Science

To understand the effects of expanding biofuel production, scientists must accurately represent biofuel crops in land surface models. Using observations from biofuel plants in the Midwestern United States, researchers simulated two biofuel perennial plants, miscanthus and switchgrass. The simulations indicate these high-yield perennial crops have several advantages over traditional annual bioenergy crops—they assimilate more carbon dioxide, and they require fewer nutrients and less water.

Newswise: Harvesting Light Like Nature Does
Released: 14-May-2021 2:55 PM EDT
Harvesting Light Like Nature Does
Pacific Northwest National Laboratory

A new class of bio-inspired two-dimensional (2D) hybrid nanomaterials mimic the ability of photosynthetic plants and bacteria.

Newswise: 050721-ber-earths-atomosphere.jpg?itok=-W-tcpvH
Released: 14-May-2021 2:50 PM EDT
Scientists Check the Math for Improved Models of Liquids and Gases in Earth’s Atmosphere
Department of Energy, Office of Science

Discretization is the process of converting continuous models and variables, such as wind speed, into discrete versions to make equations that are compatible with computer analysis. Energy consistent discretization ensures that the method does not have any inaccurate sources of energy that can lead to unstable and unrealistic simulations. In this research, scientists provided a discretization for equations used by global models of the Earth’s atmosphere.

Newswise: 050721-ber-earths-atomosphere.jpg?itok=-W-tcpvH
Released: 14-May-2021 2:50 PM EDT
Scientists Check the Math for Improved Models of Liquids and Gases in Earth’s Atmosphere
Department of Energy, Office of Science

Discretization is the process of converting continuous models and variables, such as wind speed, into discrete versions to make equations that are compatible with computer analysis. Energy consistent discretization ensures that the method does not have any inaccurate sources of energy that can lead to unstable and unrealistic simulations. In this research, scientists provided a discretization for equations used by global models of the Earth’s atmosphere.

View More
Newswise: Argonne senior chemist Robert Tranter named fellow of the Combustion Institute
Released: 17-May-2021 11:40 AM EDT
Argonne senior chemist Robert Tranter named fellow of the Combustion Institute
Argonne National Laboratory

Argonne senior chemist Robert Tranter, a shockwave chemist, was named a fellow of the Combustion Institute.

Newswise:Video Embedded successful-start-of-dark-energy-spectroscopic-instrument-desi-follows-record-setting-trial-run
VIDEO
Released: 17-May-2021 9:00 AM EDT
Successful Start of Dark Energy Spectroscopic Instrument (DESI) Follows Record-Setting Trial Run
Lawrence Berkeley National Laboratory

A five-year quest to map the universe and unravel the mysteries of “dark energy” is beginning officially today, May 17, at Kitt Peak National Observatory near Tucson, Arizona. To complete its quest, the Dark Energy Spectroscopic Instrument (DESI) will capture and study the light from tens of millions of galaxies and other distant objects in the universe.

Newswise: Recycling Gives New Purpose to Spent Nuclear Fuel
Released: 14-May-2021 5:20 PM EDT
Recycling Gives New Purpose to Spent Nuclear Fuel
Pacific Northwest National Laboratory

PNNL researchers developed an innovative capability to rapidly separate, monitor, and tightly control specific uranium and plutonium ratios in real-time—an important achievement in efficiently controlling the resulting product and safeguarding nuclear material.

Newswise: Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Released: 14-May-2021 4:05 PM EDT
Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Department of Energy, Office of Science

To operate successfully, ITER and future fusion energy reactors cannot allow melting of the walls of the divertor plates that remove excess heat from the plasma in a reactor. These walls are especially at risk of melting when heat is applied to narrow areas. Now, however, an extreme-scale computing analysis indicates that turbulence will reduce that risk.

Newswise: Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Released: 14-May-2021 4:05 PM EDT
Not Just Disturbance: Turbulence Protects Fusion Reactor Walls
Department of Energy, Office of Science

To operate successfully, ITER and future fusion energy reactors cannot allow melting of the walls of the divertor plates that remove excess heat from the plasma in a reactor. These walls are especially at risk of melting when heat is applied to narrow areas. Now, however, an extreme-scale computing analysis indicates that turbulence will reduce that risk.

Newswise: Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Released: 14-May-2021 3:35 PM EDT
Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Department of Energy, Office of Science

To understand the effects of expanding biofuel production, scientists must accurately represent biofuel crops in land surface models. Using observations from biofuel plants in the Midwestern United States, researchers simulated two biofuel perennial plants, miscanthus and switchgrass. The simulations indicate these high-yield perennial crops have several advantages over traditional annual bioenergy crops—they assimilate more carbon dioxide, and they require fewer nutrients and less water.

Newswise: Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Released: 14-May-2021 3:35 PM EDT
Enhancing Land Surface Models to Grow Perennial Bioenergy Crops
Department of Energy, Office of Science

To understand the effects of expanding biofuel production, scientists must accurately represent biofuel crops in land surface models. Using observations from biofuel plants in the Midwestern United States, researchers simulated two biofuel perennial plants, miscanthus and switchgrass. The simulations indicate these high-yield perennial crops have several advantages over traditional annual bioenergy crops—they assimilate more carbon dioxide, and they require fewer nutrients and less water.

Newswise: Harvesting Light Like Nature Does
Released: 14-May-2021 2:55 PM EDT
Harvesting Light Like Nature Does
Pacific Northwest National Laboratory

A new class of bio-inspired two-dimensional (2D) hybrid nanomaterials mimic the ability of photosynthetic plants and bacteria.

Newswise: 050721-ber-earths-atomosphere.jpg?itok=-W-tcpvH
Released: 14-May-2021 2:50 PM EDT
Scientists Check the Math for Improved Models of Liquids and Gases in Earth’s Atmosphere
Department of Energy, Office of Science

Discretization is the process of converting continuous models and variables, such as wind speed, into discrete versions to make equations that are compatible with computer analysis. Energy consistent discretization ensures that the method does not have any inaccurate sources of energy that can lead to unstable and unrealistic simulations. In this research, scientists provided a discretization for equations used by global models of the Earth’s atmosphere.

Newswise: 050721-ber-earths-atomosphere.jpg?itok=-W-tcpvH
Released: 14-May-2021 2:50 PM EDT
Scientists Check the Math for Improved Models of Liquids and Gases in Earth’s Atmosphere
Department of Energy, Office of Science

Discretization is the process of converting continuous models and variables, such as wind speed, into discrete versions to make equations that are compatible with computer analysis. Energy consistent discretization ensures that the method does not have any inaccurate sources of energy that can lead to unstable and unrealistic simulations. In this research, scientists provided a discretization for equations used by global models of the Earth’s atmosphere.

View More

Spotlight

Graduate students gather virtually for summer school at PPPL
Mon, 05 Oct 2020 15:45:57 EST

Graduate students gather virtually for summer school at PPPL

Princeton Plasma Physics Laboratory

Virtual internships for physics students present challenges, build community
Tue, 15 Sep 2020 15:35:30 EST

Virtual internships for physics students present challenges, build community

Princeton Plasma Physics Laboratory

Blocking the COVID-19 Virus's Exit Strategy
Mon, 31 Aug 2020 15:05:12 EST

Blocking the COVID-19 Virus's Exit Strategy

Brookhaven National Laboratory

Summer Students Tackle COVID-19
Mon, 31 Aug 2020 14:35:39 EST

Summer Students Tackle COVID-19

Brookhaven National Laboratory

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
Fri, 17 Apr 2020 16:25:17 EST

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

Princeton Plasma Physics Laboratory

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Tue, 24 Sep 2019 15:05:51 EST

Barbara Garcia: A first-generation college student spends summer doing research at PPPL

Princeton Plasma Physics Laboratory

Argonne organization’s scholarship fund blazes STEM pathway
Tue, 17 Sep 2019 16:05:11 EST

Argonne organization’s scholarship fund blazes STEM pathway

Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Fri, 13 Sep 2019 10:30:34 EST

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

Brookhaven National Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Fri, 30 Aug 2019 09:00:26 EST

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Thu, 01 Aug 2019 11:05:23 EST

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

Princeton Plasma Physics Laboratory

Creating a diverse pipeline
Fri, 19 Jul 2019 12:05:33 EST

Creating a diverse pipeline

Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Mon, 08 Jul 2019 14:00:16 EST

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Mon, 20 May 2019 11:05:42 EST

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Mon, 13 May 2019 10:05:46 EST

Integrating Scientific Computing into Science Curricula

Brookhaven National Laboratory

Students from Minnesota and Massachusetts Win DOE’s 29th National Science Bowl®
Mon, 29 Apr 2019 13:05:21 EST

Students from Minnesota and Massachusetts Win DOE’s 29th National Science Bowl®

Department of Energy, Office of Science

Young Women’s Conference in STEM seeks to change the statistics one girl at a time
Thu, 28 Mar 2019 14:05:07 EST

Young Women’s Conference in STEM seeks to change the statistics one girl at a time

Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Tue, 12 Mar 2019 16:05:09 EST

Students team with Argonne scientists and engineers to learn about STEM careers

Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
Wed, 13 Feb 2019 14:05:35 EST

Lynbrook High wins 2019 SLAC Regional Science Bowl competition

SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Thu, 24 Jan 2019 13:05:29 EST

Equipping the next generation for a technological revolution

Argonne National Laboratory

Chemistry intern inspired by Argonne’s real-world science
Fri, 18 Jan 2019 17:05:40 EST

Chemistry intern inspired by Argonne’s real-world science

Argonne National Laboratory

Chasing a supernova
Fri, 18 Jan 2019 16:05:20 EST

Chasing a supernova

Argonne National Laboratory

Argonne intern streamlines the beamline
Tue, 08 Jan 2019 14:05:01 EST

Argonne intern streamlines the beamline

Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Thu, 11 Oct 2018 15:00:00 EST

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Wed, 03 Oct 2018 18:05:41 EST

Innovating Our Energy Future

Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
Tue, 02 Oct 2018 14:05:36 EST

Physics graduate student takes her thesis research to a Department of Energy national lab

University of Alabama at Birmingham

“Model” students enjoy Argonne campus life
Fri, 21 Sep 2018 12:05:48 EST

“Model” students enjoy Argonne campus life

Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Thu, 06 Sep 2018 12:05:58 EST

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Tue, 04 Sep 2018 10:30:12 EST

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

The Gridlock State
Fri, 31 Aug 2018 17:05:07 EST

The Gridlock State

California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Fri, 31 Aug 2018 13:05:55 EST

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Fri, 24 Aug 2018 10:05:27 EST

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Students affected by Hurricane Maria bring their research to SLAC
Wed, 22 Aug 2018 12:05:42 EST

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Wed, 22 Aug 2018 09:05:24 EST

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Changing How Buildings Are Made
Mon, 20 Aug 2018 11:05:19 EST

Changing How Buildings Are Made

Washington University in St. Louis

CSUMB Selected to Host Architecture at Zero Competition in 2019
Thu, 16 Aug 2018 11:05:02 EST

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Fri, 20 Jul 2018 14:00:00 EST

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter ’82 Career Development Professor
Thu, 19 Jul 2018 16:00:00 EST

Professor Miao Yu Named the Priti and Mukesh Chatter ’82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Tue, 03 Jul 2018 10:05:10 EST

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Argonne welcomes <em>The Martian</em> author Andy Weir
Fri, 29 Jun 2018 17:05:17 EST

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Mon, 18 Jun 2018 08:55:34 EST

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Fri, 15 Jun 2018 09:00:41 EST

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Thu, 07 Jun 2018 14:05:50 EST

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Showing results

0-6 Of 50
close
8.19981