logo
Latest News
    What's MER? It's a Way to Measure Quantum Materials, and It's Telling US New and Interesting Things

    What's MER? It's a Way to Measure Quantum Materials, and It's Telling US New and Interesting Things

    Experimental physicists have combined several measurements of quantum materials into one in their ongoing quest to learn more about manipulating and controlling the behavior of them for possible applications. They even coined a term for it-- Magneto-elastoresistance, or MER.

    Scientists pioneer new generation of semiconductor neutron detector

    Scientists pioneer new generation of semiconductor neutron detector

    In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

    Connecting the dots in the sky could shed new light on dark matter

    Connecting the dots in the sky could shed new light on dark matter

    Astrophysicists have come a step closer to understanding the origin of a faint glow of gamma rays covering the night sky. They found that this light is brighter in regions that contain a lot of matter and dimmer where matter is sparser - a correlation that could help them narrow down the properties of exotic astrophysical objects and invisible dark matter.

    Nano-objects of Desire: Assembling Ordered Nanostructures in 3-D

    Nano-objects of Desire: Assembling Ordered Nanostructures in 3-D

    A new DNA-programmable nanofabrication platform organizes inorganic or biological nanocomponents in the same prescribed ways.

    New computer code could reach fusion faster

    New computer code could reach fusion faster

    Scientists often make progress by coming up with new ways to look at old problems. That has happened at PPPL, where physicists have used a simple insight to capture the complex effects of many high-frequency waves in a fusion plasma.

    Scientists observe ultrafast birth of radicals

    Scientists observe ultrafast birth of radicals

    An international team of researchers have, for the first time, glimpsed the ultrafast process of proton transfer following ionization of liquid water, shedding light on how radical cations separate from their electron partners, neutralize and subsequently drift about creating damage.

    An Out-of-the-Box Attack on Diabetes

    An Out-of-the-Box Attack on Diabetes

    A protein newly identified as important in type 1 diabetes can delay onset of the disease in diabetic mice, providing a new target for prevention and treatment in people, according to research led by scientists at the U.S. Department of Energy's Pacific Northwest National Laboratory and Indiana University School of Medicine.

    The CUORE Underground Experiment Narrows the Search for Rare Particle Process

    The CUORE Underground Experiment Narrows the Search for Rare Particle Process

    The largest set of data yet from an underground experiment called CUORE sets more stringent limits on a theoretical ultra-rare particle process known as neutrinoless double-beta decay that could help to explain the abundance of matter over antimatter in the universe.

    Story Tips: Weather days, grid balance and scaling reactors

    Story Tips: Weather days, grid balance and scaling reactors

    From the Department of Energy's Oak Ridge National Laboratory, January 2020

    Exploring the ​"dark side" of a single-crystal complex oxide thin film

    Exploring the ​"dark side" of a single-crystal complex oxide thin film

    A new study offers a nanoscopic view of complex oxides, which have great potential for advanced microelectronics.

    Polluted Wastewater in the Forecast? Try A Solar Umbrella

    Polluted Wastewater in the Forecast? Try A Solar Umbrella

    Evaporation ponds, commonly used in many industries to manage wastewater, can occupy a large footprint and often pose risks to birds and other wildlife, yet they're an economical way to deal with contaminated water. Now researchers at Berkeley Lab have demonstrated a way to double the rate of evaporation by using solar energy and taking advantage of water's inherent properties, potentially reducing their environmental impact. The study is reported in the journal Nature Sustainability.

    ORNL researchers advance performance benchmark for quantum computers

    ORNL researchers advance performance benchmark for quantum computers

    Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.

    Powder, not gas: A safer, more effective way to create a star on Earth

    Powder, not gas: A safer, more effective way to create a star on Earth

    PPPL scientists have found that sprinkling a type of powder into fusion plasma could aid in harnessing the ultra-hot gas within a tokamak facility to produce heat to create electricity without producing greenhouse gases or long-term radioactive waste.

    Science Snapshots From Berkeley Lab

    Science Snapshots From Berkeley Lab

    This edition of Science Snapshots highlights the discovery of an investigational cancer drug that targets tumors caused by mutations in the KRAS gene, the development of a new library of artificial proteins that could accelerate the design of new materials, and new insight into the natural toughening mechanism behind adult tooth enamel.

    Advancing information processing with exceptional points and surfaces

    Advancing information processing with exceptional points and surfaces

    Researchers have for the first time detected an exceptional surface based on measurements of exceptional points. These points are modes that exhibit phenomenon with possible practical applications in information processing.

    Playing the angles with dramatic effect

    Playing the angles with dramatic effect

    Researchers report the most complete model to date concerning the transition from metal to insulator in correlated oxides. These oxides have fascinated scientists because of their many attractive electronic and magnetic properties.

    Scientists discover how proteins form crystals that tile a microbe's shell

    Scientists discover how proteins form crystals that tile a microbe's shell

    Many microbes wear beautifully patterned crystalline shells. Now scientists have zoomed in on the very first step in microbial shell-building: nucleation, where squiggly proteins crystallize into sturdy building blocks. The results help explain how the shells assemble themselves so quickly.

    Neutrons optimize high efficiency catalyst for greener approach to biofuel synthesis

    Neutrons optimize high efficiency catalyst for greener approach to biofuel synthesis

    Researchers led by the University of Manchester used neutron scattering at Oak Ridge National Laboratory in the development of a catalyst that converts biomass into liquid fuel with remarkably high efficiency and provides new possibilities for manufacturing renewable energy-related materials.

    Batten down the hatches: Preventing heat leaks to help create a star on Earth

    Batten down the hatches: Preventing heat leaks to help create a star on Earth

    PPPL physicists have identified a method by which instabilities can be tamed and heat can be prevented from leaking from fusion plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

    Quenching Water Scarcity with a Good Pore

    Quenching Water Scarcity with a Good Pore

    Researchers at UC San Diego and MIT linked theory and experiment to move closer to developing materials that address global water scarcity.

    Simulations Attempt to Reconstruct One of the Most Explosive Events in the Universe: A Neutron Star Merger

    Simulations Attempt to Reconstruct One of the Most Explosive Events in the Universe: A Neutron Star Merger

    A team led by scientists that included Berkeley Lab researchers has simulated the formation of a disc of matter, a giant burst of ejected matter, and the startup of energetic jets in the aftermath of a merger by two neutron stars.

    Tiny Quantum Sensors Watch Materials Transform Under Pressure

    Tiny Quantum Sensors Watch Materials Transform Under Pressure

    Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

    Scientists harvest energy from light using bio-inspired artificial cells

    Scientists harvest energy from light using bio-inspired artificial cells

    By replicating biological machinery with non-biological components, scientists have created artificial cells that convert light into chemical energy.

    Argonne's debt to 2019 Nobel Prize for lithium-ion battery

    Argonne's debt to 2019 Nobel Prize for lithium-ion battery

    A roar of approval rang out at the U.S. Department of Energy's (DOE's) Argonne National Laboratory upon the announcement in October that John B. Goodenough, M. Stanley Whittingham and Akira Yoshino had won the 2019 Nobel Prize in Chemistry. On December 10th in Stockholm, they received this highly coveted prize for their major contributions to the invention of the lithium-ion battery, which is a long-standing major focus of research at Argonne.

    Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries

    Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries

    At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.