Physics Data Processing on NERSC Supercomputer Dramatically Cuts Reconstruction Time

In a recent demonstration project, physicists from Brookhaven National Laboratory and Berkeley Lab used the Cori supercomputer at the National Energy Research Scientific Computing Center to reconstruct data collected from a nuclear physics experiment, an advance that could dramatically reduce the time it takes to make detailed data available for scientific discoveries.

From 100,000 to 8: Representing Complex Aerosol Patterns with Far Fewer Particles

Study shows how aerosols interacting with clouds can be accurately captured by sparse set of representative particles.

Berkeley Lab Report Calls for Industry Attention to Ensuring Grid Reliability

In light of changes in how electricity is being both generated and consumed, the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has written a new report analyzing challenges facing the nation's electric grid and making recommendations for ensuring continued reliability.

Missing Link to Novel Superconductivity Revealed at Ames Laboratory

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered a state of magnetism that may be the missing link to understanding the relationship between magnetism and unconventional superconductivity.

Smooth Sailing: PPPL Develops an Integrated Approach to Understand How to Better Control Plasma Instabilities

PPPL physicist Francesca Poli and coauthors recently published findings that describe an approach that for the first time simultaneously simulates the plasma, the magnetic islands, and the feedback control from waves that provide so-called electron cyclotron heating and current drive.

Neutron Study of Glaucoma Drugs Offers Clues About Enzyme Targets for Aggressive Cancers

A team of researchers from ORNL's Energy and Transportation Science Division is using neutron imaging to study particulate filters that collect harmful emissions in vehicles. A better understanding of how heat treatments and oxidation methods can remove layers of soot and ash from these filters could lead to improved fuel-efficiency.

Researchers Identify Gene That Improves Plant Growth and Conversion to Biofuels

A research team led by the University of Georgia has discovered that manipulation of the same gene in poplar trees and switchgrass produced plants that grow better and are more efficiently converted to biofuels.

Solving the Dark Energy Mystery: A New Assignment for a 45-Year-Old Telescope

Today, the dome closes on the previous science chapters of the 4-meter Mayall Telescope in Arizona so that it can prepare for its new role in creating the largest 3-D map of the universe. This map could help to solve the mystery of dark energy, which is driving the accelerating expansion of the universe.

Captured Electrons Excite Nuclei to Higher Energy States

For the first time, scientists demonstrated a long-theorized nuclear effect called nuclear excitation by electron capture. This advance tests theoretical models that describe how nuclear and atomic realms interact and may also provide new insights into how star elements are created.

Your Gadget's Next Power Supply? Your Body

Searching for a power outlet may soon become a thing of the past. Instead, devices will receive electricity from a small metallic tab that, when attached to the body, is capable of generating electricity from bending a finger and other simple movements. That's the idea behind a collaborative research project led by University at Buffalo and Institute of Semiconductors (IoP) at Chinese Academy of Science (CAS).

GM Revs up Diesel Combustion Modeling on Titan Supercomputer

Grover and GM colleagues Jian Gao, Venkatesh Gopalakrishnan, and Ramachandra Diwakar are using the Titan supercomputer at the Oak Ridge Leadership Computing Facility to improve combustion models for diesel passenger car engines with an ultimate goal of accelerating innovative engine designs while meeting strict emissions standards.

Particle Interactions Calculated on Titan Support the Search for New Physics Discoveries

Nuclear physicists are using the nation's most powerful supercomputer, Titan, at the Oak Ridge Leadership Computing Facility (OLCF) to study particle interactions important to energy production in the Sun and stars and to propel the search for new physics discoveries. The research team using Titan, including principal investigator William Detmold of the Massachusetts Institute of Technology (MIT), is calculating proton-proton fusion--a process that powers the Sun and other stars in which two protons fuse to form a deuteron--and double beta decay, a rare process which occurs when an unstable nucleus decays by emitting two electrons with or without neutrinos (subatomic particles with near-zero mass).

Lithium -- It's Not Just for Batteries: The Powdered Metal Can Reduce Instabilities in Fusion Plasmas, Scientists Find

Scientists have found that lithium powder can eliminate instabilities known as edge-localized modes (ELMs) when used to coat a tungsten plasma-facing component called the "divertor."

Researchers Demonstrate First Experimental Evidence for Superionic Ice

A research team from Lawrence Livermore National Laboratory, the University of California, Berkeley and the University of Rochester have provided the first experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.

Farm Sunshine, Not Cancer: Replacing Tobacco Fields with Solar Arrays

Michigan Tech researchers contend that tobacco farmers could increase profits by converting their land to solar farms, which in turn provides renewable energy generation.

Team Develops New Type of Powerful Battery

A multi-institution team of scientists led by Texas A&M University chemist Sarbajit Banerjee has discovered an exceptional metal-oxide magnesium battery cathode material, moving researchers one step closer to delivering batteries that promise higher density of energy storage on top of transformative advances in safety, cost and performance in comparison to their ubiquitous lithium-ion (Li-ion) counterparts.

Scientists Discover 'Chiral Phonons' - Atomic Rotations in a 2-D Semiconductor Crystal

A research team has found the first evidence that a shaking motion in the structure of an atomically thin material possesses a naturally occurring circular rotation that could become the building block for a new form of information technology and molecular-scale machines.

Tracking Microbial Diversity Through the Terrestrial Subsurface

In Nature Microbiology, DOE Joint Genome Institute researchers partnered with a team led by University of California, Berkeley's Jill Banfield and University of Calgary's Cathy Ryan to investigate samples collected at Utah's Crystal Geyser over one of its complex, five-day eruption cycles.

Study of Salts in Water Causing Stir

A pair of Argonne scientists uncover fresh insights about the structure of saltwater.

Story Tips From the Department of Energy's Oak Ridge National Laboratory, February 2018

* ORNL research says quantum computers will use much less energy than current supercomputers, a potential cost benefit to equipment manufacturers and data centers * ORNL creates supertough renewable plastic with improved manufacturability. * A new ORNL system will help builders and home designers select the best construction materials for long-term moisture durability.

New MXene Materials Could Capture Wasted Frictional Energy From Smartphones, and More

Imagine that every time you tapped out a message on your smartphone, it would create electric power instead of sapping your phone's battery. That scenario could one day be a reality, according to a researcher at Missouri University of Science and Technology.

Magnetic Trick Triples the Power of SLAC's X-Ray Laser

Scientists at the Department of Energy's SLAC National Accelerator Laboratory have discovered a way to triple the amount of power generated by the world's most powerful X-ray laser. The new technique, developed at SLAC's Linac Coherent Light Source (LCLS), will enable researchers to observe the atomic structure of molecules and ultrafast chemical processes that were previously undetectable at the atomic scale.

Gene Enhancers Are Important Despite Apparent Redundancy

Scientists answered a long-standing question about the role of enhancers. And by better linking the genomic complement of an organism with its expressed characteristics, their work offers new insights that further the growing field of systems biology, which seeks to gain a predictive understanding of living systems.

Columbia Engineers Develop Flexible Lithium Battery for Wearable Electronics

Columbia Engineering researchers have developed a prototype of a high-performance flexible lithium-ion battery that demonstratesconcurrentlyboth good flexibility and high energy density. The battery is shaped like the human spine and allows remarkable flexibility, high energy density, and stable voltage no matter how it is flexed or twisted. The device could help advance applications for wearable electronics. (Advanced Materials.)

Applying Machine Learning to the Universe's Mysteries

Berkeley Lab physicists and their collaborators have demonstrated that computers are ready to tackle the universe's greatest mysteries - they used neural networks to perform a deep dive into data simulating the subatomic particle soup that may have existed just microseconds after the big bang.