X-Ray Scientists Create Tiny, Super-Thin Sheets of Flowing Water that Shimmer Like Soap Bubbles

A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory turned tiny liquid jets that carry samples into the path of an X-ray beam into thin, free-flowing sheets, 100 times thinner than any produced before. They're so thin that X-rays pass through them unhindered, so images of the samples they carry come out clear.

A Novel Method for Comparing Plant Genes

Researchers develop a method of identifying gene expression patterns in drought-resistant plants.

Balancing Nuclear and Renewable Energy

Argonne researchers explore the benefits of adjusting the output of nuclear power plants according to the changing supply of renewable energy such as wind and solar power.

Nuclear Radiation Detecting Device Could Lead to New Homeland Security Tool

A Northwestern University and Argonne National Laboratory research team has developed an exceptional next-generation material for nuclear radiation detection that could provide a significantly less expensive alternative to detectors now in commercial use. Specifically, the high-performance material is used in a device that can detect gamma rays, weak signals given off by nuclear materials, and can easily identify individual radioactive isotopes. Potential uses include more widespread detectors for nuclear weapons and materials as well as applications in biomedical imaging, astronomy and spectroscopy.

A Game Changer: Protein Clustering Powered by Supercomputers

New algorithm lets biologists harness massively parallel supercomputers to make sense of a protein "data deluge."

LLNL Maps Out Deployment of Carbon Capture and Sequestration for Ethanol Production

To better understand the near-term commercial potential for capturing and storing atmospheric carbon dioxide (CO2), researchers from Lawrence Livermore National Laboratory have mapped out how CO2 might be captured from existing U.S. ethanol biorefineries and permanently stored (or sequestered) underground.

Neutrons Provide Insights into Increased Performance for Hybrid Perovskite Solar Cells

Neutron scattering at Oak Ridge National Laboratory has revealed, in real time, the fundamental mechanisms behind the conversion of sunlight into energy in hybrid perovskite materials. A better understanding of this behavior will enable manufacturers to design solar cells with significantly increased efficiency.

Liquid Cell Transmission Electron Microscopy Makes a Window Into the Nanoscale

From energy materials to disease diagnostics, new microscopy techniques can provide more nuanced insight. Researchers first need to understand the effects of radiation on samples, which is possible with a new device that holds tightly sealed liquid cell samples for transmission electron microscopy.

Nanoparticle Breakthrough Could Capture Unseen Light for Solar Energy Conversion

An international team, led by Berkeley Lab scientists, has demonstrated a breakthrough in the design and function of nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into usable energy.

New Testing of Model Improves Confidence in the Performance of ITER

Article describes effect of ion and electron heating on multiscale turbulence in fusion plasmas.

Study Recommends Strong Role for National Labs in 'Second Laser Revolution'

A new study calls for the U.S. to step up its laser R&D efforts to better compete with major overseas efforts to build large, high-power laser systems, and notes progress and milestones at the Department of Energy's Berkeley Lab Laser Accelerator (BELLA) Center and other sites.

Wood Formation Model To Fuel Progress in Bioenergy, Paper, New Applications

Need stronger timber, better biofuel or new sources of green chemicals? A systems biology model built on decades of NC State research will accelerate progress on engineering trees for specific needs.

Researchers Achieve HD Video Streaming at 10,000 Times Lower Power

Engineers at the University of Washington have developed a new HD video streaming method that doesn't need to be plugged in. Their prototype skips the power-hungry components and has something else, like a smartphone, process the video instead.

Lawrence Livermore Issues Combined State-by-State Energy and Water Use Flow Charts

For the first time, Lawrence Livermore National Laboratory (LLNL) has issued state-by-state energy and water flow charts in one location so that analysts and policymakers can find all the information they need in one place.

Battery's Hidden Layer Revealed

An international team led by Argonne National Laboratory makes breakthrough in understanding the chemistry of the microscopically thin layer that forms between the liquid electrolyte and solid electrode in lithium-ion batteries. The results are being used in improving the layer and better predicting battery lifetime.

Ramp Compression of Iron Provides Insight into Core Conditions of Large Rocky Exoplanets

A team of researchers from Lawrence Livermore National Laboratory (LLNL), Princeton University, Johns Hopkins University and the University of Rochester have provided the first experimentally based mass-radius relationship for a hypothetical pure iron planet at super-Earth core conditions. This discovery can be used to evaluate plausible compositional space for large, rocky exoplanets, forming the basis of future planetary interior models, which in turn can be used to more accurately interpret observation data from the Kepler space mission and aid in identifying planets suitable for habitability.

Getting Magnesium Ions to Pick Up the Pace

Magnesium ions move very fast to enable a new class of battery materials.

Valleytronics Discovery Could Extend Limits of Moore's Law

Research appearing today in Nature Communications finds useful new information-handling potential in samples of tin(II) sulfide (SnS), a candidate "valleytronics" transistor material that might one day enable chipmakers to pack more computing power onto microchips. 

Scientists Use Machine Learning to Speed Discovery of Metallic Glass

SLAC and its collaborators are transforming the way new materials are discovered. In a new report, they combine artificial intelligence and accelerated experiments to discover potential alternatives to steel in a fraction of the time.

Seeing How Next-Generation Batteries Power-Up

Scientists directly see how the atoms in a magnesium-based battery fit into the structure of electrodes.

A Heavyweight Solution for Lighter-Weight Combat Vehicles

Researchers at Pacific Northwest National Laboratory have developed and successfully tested a novel process - called Friction Stir Dovetailing - that joins thick plates of aluminum to steel. The new process will be used to make lighter-weight military vehicles that are more agile and fuel efficient.

How to Turn Light Into Atomic Vibrations

Converting laser light into nuclear vibrations is key to switching a material's properties on and off for future electronics.

Could Holey Silicon Be the Holy Grail of Electronics?

Electronics miniaturization has put high-powered computing capability into the hands of ordinary people, but the ongoing downsizing of integrated circuits is challenging engineers to come up with new ways to thwart component overheating.

Superacids Are Good Medicine for Super Thin Semiconductors

Scientists demonstrated that powerful acids heal certain structural defects in synthetic films.

UNH Researchers Find Combination For Small Data Storage and Tinier Computers

It may sound like a futuristic device out of a spy novel, a computer the size of a pinhead, but according to new research from the University of New Hampshire, it might be a reality sooner than once thought. Researchers have discovered that using an easily made combination of materials might be the way to offer a more stable environment for smaller and safer data storage, ultimately leading to miniature computers.