Getting Under Graphite's Skin:

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered a new process to sheathe metal under a single layer of graphite which may lead to new and better-controlled properties for these types of materials.

Columbia Engineers Develop Floating Solar Fuels Rig for Seawater Electrolysis

Chemical Engineering Prof Daniel Esposito has developed a novel photovoltaic-powered electrolysis device that can operate as a stand-alone platform that floats on open water. His floating PV-electrolyzer can be thought of as a "solar fuels rig" that bears some resemblance to deep-sea oil rigs--but it would produce hydrogen fuel from sunlight and water instead of extracting petroleum from beneath the sea floor. (International Journal of Hydrogen Energy)

National MagLab's Latest Magnet Snags World Record, Marks New Era of Scientific Discovery

The Florida State University-headquartered National High Magnetic Field Laboratory has shattered another world record with the testing of a 32-tesla magnet -- 33 percent stronger than what had previously been the world's strongest superconducting magnet used for research and more than 3,000 times stronger than a small refrigerator magnet.

Clearing the Air

A greater understanding of the dynamics of chemical reactions is leading to better models of atmospheric chemistry. Through this work, scientists are gaining insight into a key chemical able to break down some major air pollutants.

The Wet Road to Fast and Stable Batteries

An international team of scientists --- including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory -- - has discovered an anode battery material with superfast charging and stable operation over many thousands of cycles.

Light Perfects Interfaces

Shining light on a growing semiconductor modifies its interface with the surface and could improve the optical properties of each.

Advance in Light Filtering Technology Has Implications for LCD Screens, Lasers and Beyond

Vector polarizers are a light filtering technology hidden behind the operation of many optical systems. They can be found, for instance, in sunglasses, LCD screens, microscopes, microprocessors, laser machining and more. Optical physicists published details of their new vector polarizer design this week in APL Photonics. The newly proposed design is a major advance in polarization technology because it enables flexible filtering of a wide range of light sources and generation of new light states.

Accelerating the Self-Assembly of Nanoscale Patterns for Next-Generation Materials

Scientists have come up with a way to massively speed up the ordering process for self-assembling materials. The resulting ultra-small, well-ordered patterns could be used in the fabrication of microelectronics, antireflective surfaces, magnetic data storage systems, and fluid-flow devices.

Beta of Neurodata Without Borders Software Now Available

Neuroscientists can now explore a beta version of the new Neurodata Without Borders: Neurophysiology (NWB:N 2.0) software and offer input to developers before it is fully released next year.

Scientists Discover Path to Improving Game-Changing Battery Electrode

Researchers from Stanford University, two Department of Energy national labs and the battery manufacturer Samsung created a comprehensive picture of how the same chemical processes that give cathodes their high capacity are also linked to changes in atomic structure that sap performance.

ESnet's Petascale DTN Project Speeds up Data Transfers between Leading HPC Centers

A new Petascale Data Transfer Node project aims to to achieve regular disk-to-disk, end-to-end transfer rates of one petabyte per week between major supercomputing facilities, which translates to achievable throughput rates of about 15 Gbps on real world science data sets.

Underappreciated Microbes Now Get Credit for Holding Down Two Jobs in Soil

Soil microbes work as both decomposers and synthesizers of carbon compounds in soil, offering new answers with impacts to crops and eco-health.

Energy, Economy, and the Earth: The Benefits of Creating Feedback Loops

Scientists reduce uncertainties in future climate prediction by directly coupling an energy-economy model to an Earth system model.

How Grasslands Regulate Their Productivity in Response to Droughts

Scientists show that grasslands are more sensitive to changes in the amount of moisture in the air than to changes in precipitation.

Building Confidence in Hydrologic Models

Scientists evaluate seven hydrologic models to understand how each model agrees and differs.

New Research Shows Hydropower Dams Can Be Managed Without an All-or-Nothing Choice Between Energy and Food

Nearly 100 hydropower dams are planned for construction along tributaries off the Mekong River's 2,700-mile stretch. In Science Magazine, researchers present a mathematical formula to balance power generation needs with needs of fisheries downstream.

El Nino and Liquid Water Clouds Contribute to Antarctic Melt in 2015-2016

Atmospheric Radiation Measurement (ARM) observations provide clues on atmospheric contributions to an Antarctic melt event.

Designer Yeast Consumes Plant Matter and Spits Out Fatty Alcohols for Detergents and Biofuels

Highest concentration and yield of valuable chemicals reported in industrial yeast Saccharomyces cerevisiae.

Scientists Create Stretchable Battery Made Entirely Out of Fabric

A research team led by faculty at Binghamton University, State University of New York has developed an entirely textile-based, bacteria-powered bio-battery that could one day be integrated into wearable electronics.

Old Rules Apply in Explaining Extremely Large Magnetoresistance

Physicists at the U.S. Department of Energy's Ames Laboratory compared similar materials and returned to a long-established rule of electron movement in their quest to explain the phenomenon of extremely large magnetoresistance (XMR).

Scientists Craft World's Tiniest Interlinking Chains

For decades, scientists have been trying to make a true molecular chain: a repeated set of tiny rings interlocked together. In a study in Science published online Nov. 30, University of Chicago researchers announced the first confirmed method to craft such a molecular chain.

Heavy Metal: How First Supernovae Altered Early Star Formation

An international team of researchers ran multi-scale, multi-physics 2D and 3D simulations at NERSC to illustrate how heavy metals expelled from exploding supernovae held the first stars in the universe regulate subsequent star formation and influence the appearance of galaxies in the process.

Hybrid Electrolyte Enhances Supercapacitance in Vertical Graphene Nanosheets

Supercapacitors can store more energy than and are preferable to batteries because they are able to charge faster, mainly due to the vertical graphene nanosheets that are larger and positioned closer together. Using VGNs as the material for supercapacitor electrodes offers advantages due to their intriguing properties, and those advantages can be enhanced depending on how the material is grown, treated and prepared to work with electrolytes. In this week's Journal of Applied Physics, researchers discuss their work to improve the material's supercapacitance properties.

WVU Physicists Tune the Dynamics of Exotic Quantum Particles

Physicists at West Virginia University have discovered a way to control a newly discovered quantum particle, potentially leading to faster computers and other electronic devices.

Dark Fiber: Using Sensors Beneath Our Feet to Tell Us About Earthquakes, Water, and Other Geophysical Phenomenon

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have shown for the first time that dark fiber - the vast network of unused fiber-optic cables installed throughout the country and the world - can be used as sensors for detecting earthquakes, the presence of groundwater, changes in permafrost conditions, and a variety of other subsurface activity.