logo
Latest News
    Mapping a Path to Improved Cassava Production

    Mapping a Path to Improved Cassava Production

    Though cassava is easy to cultivate, it is particularly vulnerable to plant pathogens which can significantly reduce crop yields. With the help of genomics, researchers hope to apply advanced breeding strategies that can improve cassava's resistance to diseases and improve crop yields.

    'Odd Couple' Monolayer Semiconductors Align to Advance Optoelectronics

    'Odd Couple' Monolayer Semiconductors Align to Advance Optoelectronics

    In a study led by Oak Ridge National Laboratory, scientists synthesized a stack of atomically thin monolayers of two lattice-mismatched semiconductors and created an atomically thin solar cell.

    SLAC Researchers Recreate the Extreme Universe in the Lab

    SLAC Researchers Recreate the Extreme Universe in the Lab

    Conditions in the vast universe can be quite extreme: Violent collisions scar the surfaces of planets. Nuclear reactions in bright stars generate tremendous amounts of energy. Gigantic explosions catapult matter far out into space. But how exactly do processes like these unfold? What do they tell us about the universe? To find out, researchers from the Department of Energy's SLAC National Accelerator Laboratory perform sophisticated experiments and computer simulations that recreate violent cosmic conditions on a small scale in the lab.

    Princeton Graduate Student Imene Goumiri Creates Computer Program That Helps Stabilize Fusion Plasmas

    Princeton Graduate Student Imene Goumiri Creates Computer Program That Helps Stabilize Fusion Plasmas

    This piece describes a new method for controlling plasma rotation to limit instabilities that can halt fusion reactions.

    Elusive State of Superconducting Matter Discovered after 50 Years

    Elusive State of Superconducting Matter Discovered after 50 Years

    Scientists at the U.S. Department of Energy's Brookhaven National Laboratory, Cornell University, and collaborators have produced the first direct evidence of a state of electronic matter first predicted by theorists in 1964 -- a "Cooper pair density wave." The discovery, described in a paper published online April 13, 2016, in Nature, may provide key insights into the workings of high-temperature superconductors.

    Researchers Discover New Type of 'Pili' Used by Bacteria to Cling to Hosts

    Researchers Discover New Type of 'Pili' Used by Bacteria to Cling to Hosts

    Many bacteria interact with their environment through hair-like structures known as pili, which attach to and help mediate infection of host organisms, among other things. Now a U.S.-Japanese research team, including scientists from the Department of Energy's SLAC National Accelerator Laboratory, has discovered that certain bacteria prevalent in the human gut and mouth assemble their pili in a previously unknown way - information that could potentially open up new ways of fighting infection.

    Ames Laboratory Physicists Discover New Type of Material That May Speed Computing

    Ames Laboratory Physicists Discover New Type of Material That May Speed Computing

    Physicists at the U.S. Department of Energy's Ames Laboratory have discovered a topological metal, PtSn4 (platinum and tin), with a unique electronic structure that may someday lead to energy efficient computers with increased processor speeds and data storage.

    Engine Design Takes a Major Leap at Argonne

    Engine Design Takes a Major Leap at Argonne

    A team with Argonne's Virtual Engine Research Institute and Fuels Initiative (VERIFI) announce that they have completed development of engineering simulation code and workflows that will allow as many as 10,000 engine simulations to be conducted simultaneously on the Mira supercomputer.

    New Magnetism Research Brings High-Temp Superconductivity Applications Closer

    New Magnetism Research Brings High-Temp Superconductivity Applications Closer

    A research team by the U.S. Department of Energy's (DOE) Argonne National Laboratory have discovered that only half the atoms in some iron-based superconductors are magnetic, providing the first conclusive demonstration of the wave-like properties of metallic magnetism.

    Quantum Dots Enhance Light-to-Current Conversion in Layered Metal Dichalcogenide Semiconductors

    Quantum Dots Enhance Light-to-Current Conversion in Layered Metal Dichalcogenide Semiconductors

    Scientists combined the excellent light-harvesting properties of quantum dots with the tunable electrical conductivity of a layered tin disulfide semiconductor to produce a hybrid material that exhibited enhanced light-harvesting and energy transfer properties -- both in laboratory tests and when incorporated into electronic devices. The research paves the way for using these materials in optoelectronic applications such as energy-harvesting photovoltaics, light sensors, and light emitting diodes (LEDs).

    ORNL Neutron 'Splashes' Reveal Signature of Exotic Particles

    ORNL Neutron 'Splashes' Reveal Signature of Exotic Particles

    Researchers used neutrons to uncover novel behavior in materials that holds promise for quantum computing. The findings provide evidence for long-sought phenomena in a two-dimensional magnet.

    Microbes Take Center Stage in Workings of 'the River's Liver'

    Microbes Take Center Stage in Workings of 'the River's Liver'

    Scientists have found evidence that rising river waters deliver a feast of carbon to hungry microbes where water meets land, triggering increased activity and altering the flow of greenhouse gases into the atmosphere.

    Plastic Proteins: Synthetic Material Mimics Essential Characteristics of Natural Proteins

    Plastic Proteins: Synthetic Material Mimics Essential Characteristics of Natural Proteins

    Researchers hoping to design new materials for energy uses have developed a system to make synthetic polymers -- some would say plastics -- with the versatility of nature's own polymers, the ubiquitous proteins. Based on an inexpensive industrial chemical, these synthetic polymers might one day be used to create materials with functions as limitless as proteins, which are involved in every facet of life.

    ORNL Tracks How Halogen Atoms Compete to Grow 'Winning' Perovskites

    ORNL Tracks How Halogen Atoms Compete to Grow 'Winning' Perovskites

    Researchers have found a potential path to further improve solar cell efficiency by understanding the competition among halogen atoms during the synthesis of sunlight-absorbing crystals.

    PPPL Scientists Help Test Innovative Device to Improve Efficiency of Tokamaks

    PPPL Scientists Help Test Innovative Device to Improve Efficiency of Tokamaks

    Article describes successful test of liquid lithium limiter on China's EAST tokamak.

    Existing State Laws Collectively Require a 50% Increase in U.S. Renewable Electricity

    Existing State Laws Collectively Require a 50% Increase in U.S. Renewable Electricity

    State renewables portfolio standards (RPS) have contributed to more than half of all renewable electricity growth in the United States since 2000. Most state RPS requirements will continue to rise through at least 2020, if not beyond, and collectively these policies will require substantial further growth in U.S. renewable electricity supplies, according to a new report from Berkeley Lab.

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, April 2016

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, April 2016

    ORNL researchers focus on minimizing impact of natural and man-made disasters hit; Aberrated probes helping to detect magnetic properties in materials; Thermoelectric heat pump dryer potentially uses 40 percent less energy; ORNL researchers discover structures designed to monitor fish movement are potential obstacles

    World's Fastest Electron Diffraction Snapshots of Atomic Motions in Gases

    World's Fastest Electron Diffraction Snapshots of Atomic Motions in Gases

    Scientists have made a significant advance toward making movies of extremely fast atomic processes with potential applications in energy production, chemistry, medicine, materials science and more. Using a superfast, high-resolution "electron camera," a new instrument for ultrafast electron diffraction (UED) at the Department of Energy's SLAC National Accelerator Laboratory, researchers have captured the world's fastest UED images of nitrogen molecules rotating in a gas, with a record shutter speed of 100 quadrillionths of a second.

    Scientists Study the Insulator-Superconductor Transition of Copper-Oxide Compound in Fine Detail

    Scientists Study the Insulator-Superconductor Transition of Copper-Oxide Compound in Fine Detail

    Using a highly controlled deposition technique, scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have synthesized ultrathin films containing multiple samples of a copper-oxide compound to study the compound's electronic behavior at near-absolute-zero temperature.

    Berkeley Lab Working on Key Components for LCLS-II X-ray Lasers

    Berkeley Lab Working on Key Components for LCLS-II X-ray Lasers

    As part of a unique new X-ray laser project that will produce up to 1 million ultrabright X-ray pulses per second, Berkeley Lab researchers are managing the development of a new breed of electron "gun" and chains of powerful magnetic devices that cause electrons to emit ultrabright X-rays.

    Scientists Push Valleytronics One Step Closer to Reality

    Scientists Push Valleytronics One Step Closer to Reality

    Berkeley Lab scientists have taken a big step toward the practical application of "valleytronics," which is a new type of electronics that could lead to faster and more efficient computer logic systems and data storage chips in next-generation devices. They experimentally demonstrated, for the first time, the ability to electrically generate and control valley electrons in a two-dimensional semiconductor.

    Low-Cost and Lightweight

    Low-Cost and Lightweight

    For the first time, researchers have been able to see what makes this titanium alloy so strong - and then make it stronger.

    X-Rays Reveal How a Solar Cell Gets Its Silver Stripes

    X-Rays Reveal How a Solar Cell Gets Its Silver Stripes

    The silver electrical contacts that carry electricity out of about 90 percent of the solar modules on the market are also one of their most expensive parts. Now scientists from two Department of Energy national laboratories have used X-rays to observe exactly how those contacts form during manufacturing.

    ORNL Surges Forward with 20-Kilowatt Wireless Charging for Vehicles

    ORNL Surges Forward with 20-Kilowatt Wireless Charging for Vehicles

    A 20-kilowatt wireless charging system demonstrated at Oak Ridge National Laboratory has achieved 90 percent efficiency and at three times the rate of the plug-in systems commonly used for electric vehicles today.

    Proving the Genetic Code's Flexibility

    Proving the Genetic Code's Flexibility

    In Angewandte Chemie International Ed., DOE Joint Genome Institute and Yale University researchers report that microorganisms recognize multiple codons for selenocysteine. The finding builds on studies indicating that an organism's genetic vocabulary is not as constrained as had been long held.