X-Ray Laser Reveals How Bacterial Protein Morphs in Response to Light

Researchers have captured the highest-resolution snapshots ever taken with an X-ray laser that show changes in a protein's structure over time, revealing how a key protein in a photosynthetic bacterium changes shape when hit by light. They achieved a resolution of 1.6 angstroms, equivalent to the radius of a single tin atom.

Rattled Atoms Mimic High-Temperature Superconductivity

An experiment at the Department of Energy's SLAC National Accelerator Laboratory provided the first fleeting glimpse of the atomic structure of a material as it entered a state resembling room-temperature superconductivity - a long-sought phenomenon in which materials might conduct electricity with 100 percent efficiency under everyday conditions.

Powerful New Technique Simultaneously Determines Nanomaterials' Chemical Makeup, Topography

A team of researchers from the U.S. Department of Energy's Argonne National Laboratory and Ohio University have devised a powerful technique that simultaneously resolves the chemical characterization and topography of nanoscale materials down to the height of a single atom.

Lengthening the Life of High Capacity Silicon Electrodes in Rechargeable Lithium Batteries

A new study will help researchers create longer-lasting, higher-capacity lithium rechargeable batteries, which are commonly used in consumer electronics. In a study published in the journal ACS Nano, researchers showed how a coating that makes high capacity silicon electrodes more durable could lead to a replacement for lower-capacity graphite electrodes.

A Better Look at the Chemistry of Interfaces

SWAPPS - Standing Wave Ambient Pressure Photoelectron Spectroscopy - is a new X-ray technique developed at Berkeley Lab's Advanced Light Source that provides sub-nanometer resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries, fuel cells and other devices.

Shaping the Future of Energy Storage with Conductive Clay

Materials scientists from Drexel University's College of Engineering invented the clay, which is both highly conductive and can easily be molded into a variety of shapes and sizes. It represents a turn away from the rather complicated and costly processing--currently used to make materials for lithium-ion batteries and supercapacitors--and toward one that looks a bit like rolling out cookie dough with results that are even sweeter from an energy storage standpoint.

Process Converts Human Waste Into Rocket Fuel

GAINESVILLE, Fla. - Buck Rogers surely couldn't have seen this one coming, but at NASA's request, University of Florida researchers have figured out how to turn human waste - yes, that kind -- into rocket fuel.

UF/IFAS Process Can Convert Human-Generated Waste Into Fuel in Space

Who would've known human waste could be used to propel spacecraft from the moon back to Earth? UF/IFAS researchers responded to the call from NASA and came up with a process to convert waste to methane and propel spacecraft to Earth.

How to Save Billions of Gallons of Gasoline

Each year, the more than 2 million tractor-trailer trucks that cruise America's highways consume about 36 billion gallons of diesel fuel, representing more than 10 percent of the nation's entire petroleum use. That fuel consumption could be reduced by billions of gallons a year through the use of drag-reducing devices on trucks, according to studies by researchers at Lawrence Livermore National Laboratory.

Discovery Sheds Light on Nuclear Reactor Fuel Behavior During a Severe Event

A new discovery about the atomic structure of uranium dioxide will help scientists select the best computational model to simulate severe nuclear reactor accidents.

Stony Brook Scientists Unveil First Structure Measurements of Molten Uranium Dioxide

Nuclear power is part of the worldwide energy mix, accounting for around 10% of global electricity supply. Safety is the paramount issue. Uranium dioxide (UO2) is the major nuclear fuel component of fission reactors, and the concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its protective containment systems. Understanding--in order to predict--the behavior of UO2 at extreme temperatures is crucial to improved safety and optimization of this electricity source.

Scientists Get to the Heart of Fool's Gold as a Solar Material

As the installation of photovoltaic solar cells continues to accelerate, scientists are looking for inexpensive materials beyond the traditional silicon that can efficiently convert sunlight into electricity. Theoretically, iron pyrite could do the job, but when it works at all, the conversion efficiency remains frustratingly low. Now, a University of Wisconsin-Madison research team explains why that is, in a discovery that suggests how improvements in this promising material could lead to inexpensive yet efficient solar cells.

A Billion Holes Can Make a Battery

Researchers at the University of Maryland have invented a single tiny structure that includes all the components of a battery that they say could bring about the ultimate miniaturization of energy storage components.

Good Vibrations Give Electrons Excitations That Rock an Insulator to Go Metallic

A team led by the Department of Energy's Oak Ridge National Laboratory has made an important advancement in understanding a classic transition-metal oxide, vanadium dioxide, by quantifying the thermodynamic forces driving the transformation. The results are published in the Nov. 10 advance online issue of Nature.

Renewable Energy Support Programs: New Studies Examine How and When They Work

In a pair of new papers, University of Chicago Booth School of Business Professor John R. Birge, along with Ingmar Ritzenhofen and Professor Stefan Spinler of the WHU-Otto Beisheim School of Management (Germany) have quantitatively analyzed the effects of various schemes to support renewable energy generation and, consequently, to reduce carbon emissions and end fossil fuel dependence.

Synthetic Fish Measures Wild Ride Through Dams

A synthetic fish is helping existing hydroelectric dams and new, smaller hydro facilities become more fish-friendly. The latest version of the Sensor Fish - a small tubular device filled with sensors that analyze the physical stresses fish experience - measures more forces, costs about 80 percent less and can be used in more hydro structures than its predecessor, according to a paper published in the journal Review of Scientific Instruments.

Story Tips From the Department of Energy's Oak Ridge National Laboratory November 2014

1) With the addition of a dash of a common solvent, researchers realized an efficiency gain of about 36 percent for organic solar cells. 2) An innovative computational tool could reduce uncertainties and the time required to decide where to drill for gas and oil. 3) The current source inverter takes direct current and converts it into alternating current, boosting the voltage by up to three times. 4) Batteries that boast higher energy for the same weight, lower cost and longer life.

New Process Transforms Wood, Crop Waste Into Valuable Chemicals

Scientists today disclosed a new method to convert lignin, a biomass waste product, into simple chemicals. The innovation is an important step toward replacing petroleum-based fuels and chemicals with biorenewable materials, says Shannon Stahl, an expert in "green chemistry" at the University of Wisconsin-Madison.

A New Look at AC-DC

Feeding the world's energy appetite may take innovative approaches in the future. A book by Nilanjan Ray Chaudhuri, assistant professor of electrical and computer engineering at North Dakota State University, Fargo, is the first text of its kind to examine methods to bring offshore wind energy on shore to power industry, homes and businesses. "Multi-terminal Direct Current Grids: Modeling, Analysis, and Control," is published by the Wiley-IEEE Press.

"Reverse Engineering" Materials for More Efficient Heating and Cooling

If you've gone for a spin in a luxury car and felt your back being warmed or cooled by a seat-based climate control system, then you've likely experienced the benefits of a class of materials called thermoelectrics. Thermoelectric materials convert heat into electricity, and vice versa, and have many advantages over traditional heating and cooling systems. Recently, researchers have observed that the performance of some thermoelectric materials can be improved by combining different solid phases.

Super Stable Garnet Ceramics May Be Ideal for High-Energy Lithium Batteries

Scientists have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs.

A Global Natural Gas Boom Alone Won't Slow Climate Change

A new analysis of global energy use, economics and the climate shows that expanding the current bounty of inexpensive natural gas alone would not slow the growth of global greenhouse gas emissions worldwide, according to a study appearing today in Nature.

New ORNL Electric Vehicle Technology Packs More Punch in Smaller Package

Using 3-D printing and novel semiconductors, researchers have created a power inverter that could make electric vehicles lighter, more powerful and more efficient.

Beyond LEDs: Brighter, New Energy -Saving Flat Panel Lights Based on Carbon Nanotubes

Scientists from Tohoku University in Japan have developed a new type of energy-efficient flat light source based on carbon nanotubes with very low power consumption of around 0.1 Watt for every hour's operation--about a hundred times lower than that of an LED.

UW Fusion Reactor Concept Could Be Cheaper Than Coal

University of Washington engineers have designed a concept for a fusion reactor that, when scaled up to the size of a large electrical power plant, would rival costs for a new coal-fired plant with similar electrical output.