logo
Latest News
    DOE JGI Database of DNA Viruses and Retroviruses Debuts on IMG Platform

    DOE JGI Database of DNA Viruses and Retroviruses Debuts on IMG Platform

    In a series of four articles published in the Database issue of the Nucleic Acids Research journal, DOE JGI researchers report on the latest updates to several publicly accessible databases and computational tools that benefit the global community of microbial researchers.

    Finding Diamonds in the Rough

    Finding Diamonds in the Rough

    New crystallography finding benefits bioenergy industry.

    Sketching Out Magnetism With Electricity

    Sketching Out Magnetism With Electricity

    In a proof-of-concept study published in Nature Physics, researchers drew magnetic squares in a nonmagnetic material with an electrified pen and then "read" this magnetic doodle with X-rays.

    Chemistry on the Edge: Study Pinpoints Most Active Areas of Reactions on Nanoscale Particles

    Chemistry on the Edge: Study Pinpoints Most Active Areas of Reactions on Nanoscale Particles

    Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe at Berkeley Lab.

    Surrounded by Water

    Surrounded by Water

    Whether producing new types of power or cleaning old waste sites, the reaction between water and positively charged particles from acids is crucial. To gain insight, scientists isolated certain structures of a proton being surrounded by an increasing number of water molecules.

    Not Your Typical "Cut Glass Crystal"

    Not Your Typical "Cut Glass Crystal"

    With a new approach, scientists can fabricate single crystals of compositions that are unstable at the high temperatures. The team's process is simple and low cost. It enables fabrication of complex shapes with single crystals. These shapes could enable new materials for solar cell devices or other uses.

    Polarized Partners: Spinning Electrons Yield Spinning Positrons

    Polarized Partners: Spinning Electrons Yield Spinning Positrons

    A new technique could allow the exploitation of polarized positron beams for a range of uses, including improved product manufacturing.

    Helium: When You Must Be Sure It's Ultra-Pure

    Helium: When You Must Be Sure It's Ultra-Pure

    Scientists need ultra-pure helium for a wide range of experiments. Researchers demonstrated an approach that reaches a level of precision several orders of magnitude beyond that of any other technique.

    New Properties Discovered in Atom-Wide Troughs

    New Properties Discovered in Atom-Wide Troughs

    Could adding defects make a good material better? Scientists have found that linear defects in a promising thin film create one-atom-thick metallic wires. These wires cross the otherwise intact material, offering a way to channel electrons and photons, tiny packets of light

    New Limits in the Search for Sterile Neutrinos

    New Limits in the Search for Sterile Neutrinos

    Sterile neutrinos could be part of the mysterious "dark world," including the dark matter that makes up about a quarter of the universe. True evidence that sterile neutrinos exist would change our understanding of the universe. This study narrows the search for these particles.

    Magnetic Discovery Could Be Tip of the "Ice"Berg

    Magnetic Discovery Could Be Tip of the "Ice"Berg

    A new material, called "rewritable magnetic charge ice," has an unprecedented degree of control over local magnetic fields. This material has write-read-erase capabilities at room temperature, which may have implications for new computing technologies.

    Spinning the (X-ray) Light Fantastic

    Spinning the (X-ray) Light Fantastic

    For the first time, X-ray scientists have access to wavelength-tunable circularly polarized free-electron laser pulses in the range between 280 and 1200 eV. Several types of experiments can benefit from the short and intense pulses.

    Translating Basic Biological Research to Cancer Drug Discovery

    Translating Basic Biological Research to Cancer Drug Discovery

    New information on the details of a key protein, obtained using DOE user facilities, could help scientists design ways to inhibit tumor growth without activating other tumor-producing pathways.

    Crystallization Method Offers New Option for Carbon Capture From Ambient Air

    Crystallization Method Offers New Option for Carbon Capture From Ambient Air

    Scientists at the Department of Energy's Oak Ridge National Laboratory have found a simple, reliable process to capture carbon dioxide directly from ambient air, offering a new option for carbon capture and storage strategies to combat global warming.

    Small, Efficient Solutions for a Big-Name Pollutant

    Small, Efficient Solutions for a Big-Name Pollutant

    Winter cold snaps often bring tragic stories of Americans killed by carbon monoxide from gas-powered generators. While we currently rely on carbon monoxide detectors, new research points the way to a new approach: direct elimination of the gas.

    Nanoparticle Catalysts Outperform Single Metal Atoms

    Nanoparticle Catalysts Outperform Single Metal Atoms

    New research impacts an ongoing debate about how platinum catalysts create carbon dioxide. The debate influences a wide array of technologies, from automobile exhaust control systems to hydrogen fuel cells.

    Re-Energizing the Lithium-Ion Battery

    Re-Energizing the Lithium-Ion Battery

    Researchers determined that lithium ions are more intimately connected with liquids used in batteries. The findings could eventually lead to a larger role for lithium-ion batteries.

    PPPL Physicists Make First-Ever Direct Observation of Collisional Plasmoid Instability During Magnetic Reconnection in a Laboratory Setting

    PPPL Physicists Make First-Ever Direct Observation of Collisional Plasmoid Instability During Magnetic Reconnection in a Laboratory Setting

    PPPL physicists have for the first time directly observed a phenomenon that had previously only been hypothesized to exist. The phenomenon, plasmoid instabilities that occur during collisional magnetic reconnection, had until this year only been observed indirectly using remote-sensing technology.

    Confined Water at Fahrenheit -451

    Confined Water at Fahrenheit -451

    Scientists discovered a new kind of water molecule whose shape has been altered to conform to the symmetry of the environment in which it is trapped.

    SLAC Study: Light Can Switch on Topological Materials

    SLAC Study: Light Can Switch on Topological Materials

    Theoretical physicists at the Department of Energy's SLAC National Accelerator Laboratory used computer simulations to show how special light pulses could create robust channels where electricity flows without resistance in an atomically thin semiconductor.

    Increasing Rainfall in a Warmer World Will Likely Intensify Typhoons in Western Pacific

    Increasing Rainfall in a Warmer World Will Likely Intensify Typhoons in Western Pacific

    An analysis of the strongest tropical storms over the last half-century reveals that higher global temperatures have intensified the storms via enhanced rainfall. Rain that falls on the ocean reduces salinity and allows typhoons to grow stronger.

    Electrons "Puddle" Under High Magnetic Fields, Study Reveals

    Electrons "Puddle" Under High Magnetic Fields, Study Reveals

    In a new study from the U.S. Department of Energy's Argonne National Laboratory, researchers used extremely high magnetic fields - equivalent to those found in the center of neutron stars - to alter electronic behavior. By observing the change in the behavior of these electrons, scientists may be able to gain an enriched understanding of material behavior.

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, January 2017

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, January 2017

    Researchers identify patterns that could be valuable resource for superconductivity research; ORNL researchers developing approaches to preserve forests, wildlife; ORNL supercomputer helping scientists push boundaries; New measurement technique opens pathway to new graphene-based energy, electronic applications; ORNL cryogenic memory cell circuit could advance pathway to quantum computing;

    Researchers Use World's Smallest Diamonds to Make Wires Three Atoms Wide

    Researchers Use World's Smallest Diamonds to Make Wires Three Atoms Wide

    Scientists at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have discovered a way to use diamondoids - the smallest possible bits of diamond - to assemble atoms into the thinnest possible electrical wires, just three atoms wide.

    Feeding the Ravenous Black Hole at the Center of Our Galaxy

    Feeding the Ravenous Black Hole at the Center of Our Galaxy

    Feature describes improved method for simulating collisionless accretion disk around supermassive Sagittarius A* at center of Milky Way.