logo
Latest News
    Supercomputing the Strange Difference Between Matter and Antimatter

    Supercomputing the Strange Difference Between Matter and Antimatter

    An international team of physicists including theorists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has published the first calculation of direct "CP" symmetry violation--how the behavior of subatomic particles (in this case, the decay of kaons) differs when matter is swapped out for antimatter. Should the prediction represented by this calculation not match experimental results, it would be conclusive evidence of new, unknown phenomena that lie outside of the Standard Model--physicists' present understanding of the fundamental particles and the forces between them.

    ORNL Microscopy Captures Real-Time View of Evolving Fuel Cell Catalysts

    ORNL Microscopy Captures Real-Time View of Evolving Fuel Cell Catalysts

    Atomic-level imaging of catalysts by scientists at Oak Ridge National Laboratory could help manufacturers lower the cost and improve the performance of emission-free fuel cell technologies.

    Quantum Spin Could Create Unstoppable, One-Dimensional Electron Waves

    Quantum Spin Could Create Unstoppable, One-Dimensional Electron Waves

    Scientists from Brookhaven National Laboratory and Ludwig Maximilian University have proposed a solution to the subatomic stoppage of electron flow due to defects in materials: a novel way to create a more robust electron wave by binding together the electron's direction of movement and its spin.

    Using Powerful Computers, Physicists Uncover Mechanism That Stabilizes Plasma Within Tokamaks

    Using Powerful Computers, Physicists Uncover Mechanism That Stabilizes Plasma Within Tokamaks

    A team of physicists led by Stephen Jardin of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a "sawtooth cycle" and can cause instabilities within the plasma's core.

    X-ray Microscope Reveals 'Solitons,' a Special Type of Magnetic Wave

    X-ray Microscope Reveals 'Solitons,' a Special Type of Magnetic Wave

    Researchers used a powerful, custom-built X-ray microscope at the Department of Energy's SLAC National Accelerator Laboratory to directly observe the magnetic version of a soliton, a type of wave that can travel without resistance. Scientists are exploring whether such magnetic waves can be used to carry and store information in a new, more efficient form of computer memory that requires less energy and generates less heat.

    New Information About Bacterial Enzymes to Help Scientists Develop More Effective Antibiotics, Cancer Drugs

    New Information About Bacterial Enzymes to Help Scientists Develop More Effective Antibiotics, Cancer Drugs

    New research from Argonne, Scripps Research Institute and Rice University now allows researchers to manipulate nature's biosynthetic machinery to produce more effective antibiotics and cancer-fighting drugs.

    Team of Appraisers Across Six States Find Home Buyers Will Pay Premium for Solar Homes

    Team of Appraisers Across Six States Find Home Buyers Will Pay Premium for Solar Homes

    Photovoltaics added value to homes in six markets, according to a new report led by a Berkeley Lab researcher and a home appraisal expert. Seven appraisers from across six states determined the value that PV systems added to single-family homes.

    Scientists ID Genetic Factors that Influence Body Weight and Neurological Disorders

    Scientists ID Genetic Factors that Influence Body Weight and Neurological Disorders

    A new study by Berkeley Lab scientists has identified genetic factors that influence motor performance and body weight in a genetically diverse group of mice. The researchers also found the genes identified in the mice overlap significantly with genes related to neurological disorders and obesity in people.

    Microbes Map Path Toward Renewable Energy Future

    Microbes Map Path Toward Renewable Energy Future

    In the quest for renewable fuels, scientists are taking lessons from a humble bacterium that fills our oceans and covers moist surfaces the world over. Cyanothece 51142, a type of bacteria also called blue-green algae, produces hydrogen in robust fashion, and scientists have found that it taps into an unexpected source of energy to do so.

    ESnet and NERSC Blaze 400G Production Network Path

    ESnet and NERSC Blaze 400G Production Network Path

    The Department of Energy's Energy Sciences Network (ESnet) and the National Energy Research Scientific Computing Center (NERSC) have built a 400 gigabit-per-second (Gbps) super-channel, the first-ever 400G production link to be deployed by a national research and education network.

    New Electron Microscopy Method Sculpts 3-D Structures at Atomic Level

    New Electron Microscopy Method Sculpts 3-D Structures at Atomic Level

    Electron microscopy researchers at the Department of Energy's Oak Ridge National Laboratory have developed a unique way to build 3-D structures with finely controlled shapes as small as one to two billionths of a meter.

    PPPL Physicists Find Clue to Formation of Magnetic Fields Around Stars and Galaxies

    PPPL Physicists Find Clue to Formation of Magnetic Fields Around Stars and Galaxies

    An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan Squire and Amitava Bhattacharjee at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a clue to the answer in the collective behavior of small magnetic disturbances.

    New Clues to How Gatekeeper for the Cell Nucleus Works

    New Clues to How Gatekeeper for the Cell Nucleus Works

    Berkeley Lab scientists have uncovered new clues to how a molecular machine inside the cell acts as a gatekeeper, allowing some molecules to enter and exit the nucleus while keeping other molecules out.

    Researchers Discover a New Dimension to High-Temperature Superconductivity

    Researchers Discover a New Dimension to High-Temperature Superconductivity

    A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity.

    Physicists Measure Force That Makes Antimatter Stick Together

    Physicists Measure Force That Makes Antimatter Stick Together

    Peering at the debris from particle collisions that recreate the conditions of the very early universe, scientists have for the first time measured the force of interaction between pairs of antiprotons. Like the force that holds ordinary protons together within the nuclei of atoms, the force between antiprotons is attractive and strong. The experiments were conducted at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and will publish in Nature.

    A Record-Setting Way to Make Transparent Conductors: Spread Them Like Butter on Toast

    A Record-Setting Way to Make Transparent Conductors: Spread Them Like Butter on Toast

    Scientists from Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have shown they can make flexible, transparent electrical conductors with record-high performance for use in solar cells, displays and other devices by spreading polymers on a clear surface with a tiny blade, like a knife spreading butter on toast.

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, November 2015

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, November 2015

    New tool developed for inspecting concrete at nuclear power plants; ORNL motor features 3-D printed metallic parts; ORNL technique combines intuition, computational strengths; Trane, ORNL combine to boost rooftop A/C efficiency 20 percent; Titan delivering unprecedented climate modeling; ORNL announces JUMP program to stimulate innovation; Bioenergy researchers closer to defeating lignin.

    Study Reveals Structure of Tuberculosis Enzyme, Could Offer Drug Target

    Study Reveals Structure of Tuberculosis Enzyme, Could Offer Drug Target

    A team of scientists, including several from the U.S. Department of Energy's Argonne National Laboratory, have determined the structures of several important tuberculosis enzymes, which could lead to new drugs for the disease.

    Calcium-48's 'Neutron Skin' Thinner Than Previously Thought

    Calcium-48's 'Neutron Skin' Thinner Than Previously Thought

    A team led by Oak Ridge National Laboratory computed distributions in calcium-48, and revealed that the difference between the radii of neutron and proton distributions (called the "neutron skin") is considerably smaller than previously thought.

    First Neutrino Sightings by MicroBooNE

    First Neutrino Sightings by MicroBooNE

    The recently commissioned MicroBooNE experiment at Fermi National Accelerator Laboratory has reached a major milestone: It detected its first neutrinos on Oct. 15, marking the beginning of detailed studies of these fundamental particles whose properties could be linked to dark matter, matter's dominance over antimatter in the universe and the evolution of the entire cosmos since the Big Bang.

    First Complete Pictures of Cells' DNA-Copying Machinery

    First Complete Pictures of Cells' DNA-Copying Machinery

    The first-ever images of the protein complex that unwinds, splits, and copies double-stranded DNA reveal something rather different from the standard textbook view. The electron microscope images, created by scientists at the U.S. Department of Energy's Brookhaven National Laboratory with partners from Stony Brook University and Rockefeller University, offer new insight into how this molecular machinery functions.

    Chemical Complexity Promises Improved Structural Alloys for Next-Gen Nuclear Energy

    Chemical Complexity Promises Improved Structural Alloys for Next-Gen Nuclear Energy

    Researchers in an Energy Frontier Research Center led by the Department of Energy's Oak Ridge National Laboratory are investigating ways to design structural materials that develop fewer, smaller flaws under irradiation.

    Scientists Get First Glimpse of Conductivity That Could Break Size Barriers for Memory

    Scientists Get First Glimpse of Conductivity That Could Break Size Barriers for Memory

    Scientists from Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have made the first direct images showing that electrical currents can flow along the boundaries between tiny magnetic regions of a material that normally doesn't conduct electricity. The results could have major implications for magnetic memory storage.

    Researchers Model Birth of Universe in One of Largest Cosmological Simulations Ever Run

    Researchers Model Birth of Universe in One of Largest Cosmological Simulations Ever Run

    Researchers are sifting through an avalanche of data produced by one of the largest cosmological simulations ever performed, led by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory. The simulation, run on the Titan supercomputer at DOE's Oak Ridge National Laboratory, modeled the evolution of the universe from just 50 million years after the Big Bang to the present day--from its earliest infancy to its current adulthood. Over the course of 13.8 billion years, the matter in the universe clumped together to form galaxies, stars and planets; but we're not sure precisely how.

    New ORNL Catalyst Features Unsurpassed Selectivity

    New ORNL Catalyst Features Unsurpassed Selectivity

    Catalysts that power chemical reactions to produce the nylon used in clothing, cookware, machinery and electronics could get a lift with a new formulation that saves time, energy and natural resources.