logo
Latest News
    Scientists Get First Glimpse of Conductivity That Could Break Size Barriers for Memory

    Scientists Get First Glimpse of Conductivity That Could Break Size Barriers for Memory

    Scientists from Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have made the first direct images showing that electrical currents can flow along the boundaries between tiny magnetic regions of a material that normally doesn't conduct electricity. The results could have major implications for magnetic memory storage.

    Researchers Model Birth of Universe in One of Largest Cosmological Simulations Ever Run

    Researchers Model Birth of Universe in One of Largest Cosmological Simulations Ever Run

    Researchers are sifting through an avalanche of data produced by one of the largest cosmological simulations ever performed, led by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory. The simulation, run on the Titan supercomputer at DOE's Oak Ridge National Laboratory, modeled the evolution of the universe from just 50 million years after the Big Bang to the present day--from its earliest infancy to its current adulthood. Over the course of 13.8 billion years, the matter in the universe clumped together to form galaxies, stars and planets; but we're not sure precisely how.

    New ORNL Catalyst Features Unsurpassed Selectivity

    New ORNL Catalyst Features Unsurpassed Selectivity

    Catalysts that power chemical reactions to produce the nylon used in clothing, cookware, machinery and electronics could get a lift with a new formulation that saves time, energy and natural resources.

    Battery Mystery Solved: Atomic-Resolution Microscopy Answers Longstanding Questions About Lithium-Rich Cathode Material

    Battery Mystery Solved: Atomic-Resolution Microscopy Answers Longstanding Questions About Lithium-Rich Cathode Material

    Using complementary microscopy and spectroscopy techniques, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) say they have solved the structure of lithium- and manganese-rich transition metal oxides, a potentially game-changing battery material and the subject of intense debate in the decade since it was discovered.

    On the Road to ANG Vehicles

    On the Road to ANG Vehicles

    Berkeley Lab researchers have developed metal-organic frameworks (MOFs) that feature flexible gas-adsorbing pores, giving them a high capacity for storing methane. This capability has the potential to help make the driving range of adsorbed-natural-gas (ANG) cars comparable to that of a typical gasoline-powered car.

    Promising Technique Improves Hydrogen Production of Affordable Alternative to Platinum

    Promising Technique Improves Hydrogen Production of Affordable Alternative to Platinum

    Scientists have demonstrated that microwaves can help create nanostructured molybdenum disulfide (MoS2) catalysts with an improved ability to produce hydrogen. The microwave-assisted strategy accomplishes this by increasing the space, and therefore decreasing the interaction, between individual layers of MoS<sub>2</sub> nanosheets.

    Unraveling the Complex, Intertwined Electron Phases in a Superconductor

    Unraveling the Complex, Intertwined Electron Phases in a Superconductor

    A team led by researchers from Brookhaven Lab and Cornell has characterized a key arrangement of electrons that may impede superconductivity in cuprates. Understanding this "electron density wave" may lead to ways to suppress or remove it to induce superconductivity, possibly even at room temperature.

    California 2100: More Frequent and More Severe Droughts and Floods Likely

    California 2100: More Frequent and More Severe Droughts and Floods Likely

    A study published in Nature Communications suggests that the weather patterns known as El Nino and La Nina could lead to at least a doubling of extreme droughts and floods in California later this century.

    Scientists Gain Insight Into Origin of Tungsten-Ditelluride's Magnetoresistance

    Scientists Gain Insight Into Origin of Tungsten-Ditelluride's Magnetoresistance

    Two new significant findings may move scientists closer to understanding the origins of tungsten-ditelluride's (WTe<sub>2</sub>) extremely large magnetoresistance, a key characteristic in modern electronic devices like magnetic hard drives and sensors. Scientists in Illinois recently discovered that tungsten-ditelluride (WTe<sub>2</sub>) is electronically three-dimensional with a low anisotropy.

    Solvents Save Steps in Solar Cell Manufacturing

    Solvents Save Steps in Solar Cell Manufacturing

    Advances in ultrathin films have made solar panels and semiconductor devices more efficient and less costly, and researchers at the Department of Energy's Oak Ridge National Laboratory say they've found a way to manufacture the films more easily, too.

    'Molecular Accordion' Drives Thermoelectric Behavior in Promising Material

    'Molecular Accordion' Drives Thermoelectric Behavior in Promising Material

    Engines, laptops and power plants generate waste heat. Thermoelectric materials can recover heat and improve energy efficiency. Scientists at Oak Ridge National Laboratory explored the fundamental physics of the world's best thermoelectric material.

    Analysis Shows Greenhouse Gas Emissions Similar for Shale, Crude Oil

    Analysis Shows Greenhouse Gas Emissions Similar for Shale, Crude Oil

    The U.S. Department of Energy's Argonne National Laboratory this week released a pair of studies on the efficiency of shale oil production excavation. The reports show that shale oil production generates greenhouse gas emissions at levels similar to traditional crude oil production.

    X-Ray Study Reveals New Details of How Burrowing Sea Creatures Shape Geology

    X-Ray Study Reveals New Details of How Burrowing Sea Creatures Shape Geology

    Research at the Department of Energy's SLAC National Accelerator Laboratory reveals new details about how tiny, burrowing sea organisms can influence the chemistry and structure of rocks where hydrocarbon deposits such as oil and gas are found.

    One Direction: Researchers Grow Nanocircuitry with Semiconducting Graphene Nanoribbons

    One Direction: Researchers Grow Nanocircuitry with Semiconducting Graphene Nanoribbons

    Researchers from the University of Wisconsin at Madison are the first to grow self-directed graphene nanoribbons on the surface of the semiconducting material germanium. This allows the semiconducting industry to tailor specific paths for nanocircuitry in their technologies. Confirmation of the findings was done at Argonne's Center for Nanoscale Materials.

    Not Shaken, Not Stirred: New Molecular Modeling Techniques for Catalysis in Unmixed Systems

    Not Shaken, Not Stirred: New Molecular Modeling Techniques for Catalysis in Unmixed Systems

    Scientists at the U.S. Department of Energy's Ames Laboratory have developed molecular modeling simulations and new theoretical formulations to help understand and optimize catalytic reactions that take place in chemical environments where the reactant "ingredients" for catalysis are not well mixed.

    Field Widens for Environments, Microbes That Produce Toxic Form of Mercury

    Field Widens for Environments, Microbes That Produce Toxic Form of Mercury

    Thawing permafrost and contaminated sediment in marine coastal areas pose some of the greatest risks for the production of highly toxic methylmercury.

    Laser Spectroscopy of Ultrathin Semiconductor Reveals Rise of 'Trion' Quasiparticles

    Laser Spectroscopy of Ultrathin Semiconductor Reveals Rise of 'Trion' Quasiparticles

    Quasiparticles are central to energy applications but can be difficult to detect. Researchers at Oak Ridge National Laboratory have seen evidence of quasiparticles called negative trions forming and fading in an ultrathin layer of semiconducting material.

    SLAC Experiment Finds Key to Natural Detoxifier's Reactivity

    SLAC Experiment Finds Key to Natural Detoxifier's Reactivity

    Researchers working at the Department of Energy's SLAC National Accelerator Laboratory have discovered that a mere 9-trillionths-of-a-meter reduction in the length of a chemical bond dramatically boosts the reactivity of a family of molecules that helps keep humans and many other organisms healthy.

    Newly Discovered 'Design Rule' Brings Nature-Inspired Nanostructures One Step Closer

    Newly Discovered 'Design Rule' Brings Nature-Inspired Nanostructures One Step Closer

    Scientists aspire to build nanostructures that mimic the complexity and function of nature's proteins. These microscopic widgets could be customized into incredibly sensitive chemical detectors or long-lasting catalysts. But as with any craft that requires extreme precision, researchers must first learn how to finesse the materials they'll use to build these structures. A discovery by Berkeley Lab scientists is a big step in this direction. The scientists discovered a design rule that enables a recently created material to exist.

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, October 2015

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, October 2015

    High octane rating makes ethanol attractive; ORNL has potential solution to congestion, collisions; ORNL using advanced methods to discover new materials; ORNL hosting molten salt reactor workshop; Virginia Tech using ORNL computing resources for energy exploration

    ORNL Researchers Find 'Greener' Way to Assemble Materials for Solar Applications

    ORNL Researchers Find 'Greener' Way to Assemble Materials for Solar Applications

    Scientists at Oak Ridge National Laboratory have found a "greener" way to control the assembly of photovoltaic polymers in water using a surfactant--a detergent-like molecule--as a template.

    Flipping Molecular Attachments Amps Up Activity of CO2 Catalyst

    Flipping Molecular Attachments Amps Up Activity of CO2 Catalyst

    New research by chemists at Brookhaven Lab offers clues that could help scientists design more effective catalysts for transforming carbon dioxide (CO2) to useful products. The study reveals how a simple rearrangement of molecular attachments on an iridium hydride catalyst can greatly improve its ability to coax notoriously stable CO2 molecules to react.

    A Simpler Way to Estimate the Feedback Between Permafrost Carbon and Climate

    A Simpler Way to Estimate the Feedback Between Permafrost Carbon and Climate

    Researchers led by a scientist from Berkeley Lab have developed a simple model of permafrost carbon based on direct observations. Their approach could help climate scientists evaluate how well permafrost dynamics are represented in the Earth system models used to predict climate change.

    Ames Laboratory Scientists Create an All-Organic UV on-Chip Spectrometer

    Ames Laboratory Scientists Create an All-Organic UV on-Chip Spectrometer

    The U.S. Department of Energy's Ames Laboratory has developed a near ultra-violet and all-organic light emitting diode (OLED) that can be used as an on-chip photosensor.

    Quark Matter 2015: Scientists Present, Discuss Latest Data from Experiments Smashing Nuclei at the Speed of Light

    Quark Matter 2015: Scientists Present, Discuss Latest Data from Experiments Smashing Nuclei at the Speed of Light

    Scientists intent on unraveling the mystery of the force that binds the building blocks of visible matter are gathered in Kobe, Japan, this week to present and discuss the latest results from "ultrarelativistic nucleus-nucleus collisions." Known more colloquially as Quark Matter 2015, the conference convenes scientists studying smashups of nuclei traveling close to the speed of light at the world's premier particle colliders-the Relativistic Heavy Ion Collider (RHIC, https://www.bnl.gov/rhic/) at the U.S. Department of Energy's Brookhaven National Laboratory, and the Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN).