logo
Latest News
    Fusion Instabilities Lessened by Unexpected Effect

    Fusion Instabilities Lessened by Unexpected Effect

    Introduction of relatively weak magnetic fields into Sandia's Z machine unexpectedly lessened plasma instabilities that have sunk previous fusion efforts.

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, January 2014

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, January 2014

    1) The road to efficiency. 2) Zero Energy Ready Homes. 3) Cross-disciplinary research is yielding new insight into the carbon cycle, contaminated soils and soil fertility.

    Enlisting Cells' Protein Recycling Machinery to Regulate Plant Products

    Enlisting Cells' Protein Recycling Machinery to Regulate Plant Products

    Scientists have developed a new set of molecular tools for controlling the production of (poly)phenols, plant compounds important for flavors, human health, and biofuels.

    Algae to Crude Oil: Million-Year Natural Process Takes Minutes in the Lab

    Algae to Crude Oil: Million-Year Natural Process Takes Minutes in the Lab

    Engineers have created a chemical system that continually produces useful crude oil minutes after they pour in raw algae material - a green paste with the consistency of pea soup. The technology eliminates the need to dry the algae and recycles ingredients such as phosphorus, cutting costs.

    Small Size Enhances Charge Transfer in Quantum Dots

    Small Size Enhances Charge Transfer in Quantum Dots

    In a study published in the journal Chemical Communications, scientists at the U.S. Department of Energy's Brookhaven National Laboratory, Stony Brook University, and Syracuse University show that shrinking the core of a quantum dot can enhance the ability of a surrounding polymer to extract electric charges generated in the dot by the absorption of light.

    Can We Turn Unwanted Carbon Dioxide Into Electricity?

    Can We Turn Unwanted Carbon Dioxide Into Electricity?

    Researchers are developing a new kind of geothermal power plant that will lock away unwanted carbon dioxide (CO2) underground--and use it as a tool to boost electric power generation by at least 10 times compared to existing geothermal energy approaches.

    Harvesting Electricity: Triboelectric Generators Capture Wasted Power

    Harvesting Electricity: Triboelectric Generators Capture Wasted Power

    Researchers are developing a family of generators that provide power for portable electronic devices and sensors by harnessing the triboelectric effect to capture mechanical energy that would otherwise be wasted.

    At Agu: Shale Sequestration, Water for Energy & Soil Microbes

    At Agu: Shale Sequestration, Water for Energy & Soil Microbes

    PNNL scientists will present research on carbon sequestration at shale gas sites, water needs for energy production and climate-induced changes in microbes at the 2013 American Geophysical Union Fall Meeting, Dec. 9-13.

    Highly Insulating Windows Are Very Energy Efficient, Though Expensive

    Highly Insulating Windows Are Very Energy Efficient, Though Expensive

    Highly insulating triple-pane windows keep a house snug and cozy, but it takes two decades or more for the windows to pay off financially based on utility-bill savings.

    New Thermoelectronic Generator

    New Thermoelectronic Generator

    Through a process known as thermionic conversion, heat energy can be converted into electricity with very high efficiency. Because of its promise, researchers have been trying for more than half a century to develop a practical thermionic generator, with little luck. That luck may soon change, thanks to a new design -- dubbed a thermoelectronic generator -- described in Journal of Renewable and Sustainable Energy.

    Process Holds Promise for Production of Synthetic Gasoline

    Process Holds Promise for Production of Synthetic Gasoline

    A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide.

    Better Combustion Through Plasma

    Better Combustion Through Plasma

    Scientists know that by introducing plasma to combustion, new chemical species are produced that catalyze the reaction. But no one knows precisely what species are involved, what the reactions are, and what their rates are. To better understand plasma-assisted combustion and to develop future technology, researchers are conducting experiments and creating computer models to determine which chemical processes are involved.

    Scientists Capture 'Redox Moments' in Living Cells

    Scientists Capture 'Redox Moments' in Living Cells

    Scientists have glimpsed key chemical events, known as redox reactions, inside living cells of fast-growing Synechococcus. The work marks the first time that redox activity has been observed in specific proteins within living cells.

    Scripps Oceanography Researchers Engineer Breakthrough for Biofuel Production

    Scripps Oceanography Researchers Engineer Breakthrough for Biofuel Production

    Researchers at Scripps Institution of Oceanography at UC San Diego have developed a method for greatly enhancing biofuel production in tiny marine algae.

    Study Uses Neutron Scattering, Supercomputing to Demystify Forces at Play in Biofuel Production

    Study Uses Neutron Scattering, Supercomputing to Demystify Forces at Play in Biofuel Production

    Researchers studying more effective ways to convert woody plant matter into biofuels have identified fundamental forces that change plant structures during pretreatment processes used in the production of bioenergy.

    Structure of Bacterial Nanowire Protein Hints at Secrets of Conduction

    Structure of Bacterial Nanowire Protein Hints at Secrets of Conduction

    Tiny electrical wires protrude from some bacteria and contribute to rock and dirt formation. Researchers studying the protein that makes up one such wire have determined the protein's structure. The finding is important to such diverse fields as producing energy, recycling Earth's carbon and miniaturizing computers.

    Methane-Munching Microorganisms Meddle with Metals

    Methane-Munching Microorganisms Meddle with Metals

    A pair of microbes on the ocean floor "eats" methane in a unique way, and a new study provides insights into their surprising nutritional requirements. Learning how these methane-munching organisms make a living in these extreme environments could provide clues about how the deep-sea environment might change in a warming world.

    New Aluminum Alloy Stores Hydrogen

    New Aluminum Alloy Stores Hydrogen

    We use aluminum to make planes lightweight, store sodas in recyclable containers, keep the walls of our homes energy efficient and ensure that the Thanksgiving turkey is cooked to perfection. Now, thanks to a group of Japanese researchers, there may soon be a new application for the versatile metal: hydrogen storage for fuel cells.

    Crafting a Better Enzyme Cocktail to Turn Plants Into Fuel Faster

    Crafting a Better Enzyme Cocktail to Turn Plants Into Fuel Faster

    Scientists looking to create a potent blend of enzymes to transform materials like corn stalks and wood chips into fuels have developed a test that should turbocharge their efforts. Efforts revolve around the fungus Trichoderma reesei, which churns out enzymes that chew through molecules like complex sugars.

    Geoengineering the Climate Could Reduce Vital Rains

    Geoengineering the Climate Could Reduce Vital Rains

    Although a significant build-up in greenhouse gases in the atmosphere would alter worldwide precipitation patterns, geoengineering would also interfere with rainfall and snowfall. An international study, led by NCAR scientists, finds that "geoengineering" could result in monsoonal rains in North America, East Asia, and other regions dropping by 5-7 percent compared to preindustrial conditions because of less evaporation and reduced plant emissions of water.

    Staggering Turbines Improves Performance 33%

    Staggering Turbines Improves Performance 33%

    Researchers at the University of Delaware found staggering and spacing out turbines in an offshore wind farm can improve performance by as much as 33 percent.

    Extracting Energy from Bacteria

    Extracting Energy from Bacteria

    Microbial electrode catalysts that turn wastewater into watts presented at AVS Meeting in Long Beach, Calif.

    Neutrons, Electrons and Theory Reveal Secrets of Natural Gas Reserves

    Neutrons, Electrons and Theory Reveal Secrets of Natural Gas Reserves

    Gas and oil deposits in shale have no place to hide from an Oak Ridge National Laboratory technique that provides an inside look at pores and reveals structural information potentially vital to the nation's energy needs.

    Making the Light at the End of the Tunnel More Efficient

    Making the Light at the End of the Tunnel More Efficient

    Nanoscale engineering boosts performance of quantum dot light emitting diodes

    ASU, Georgia Tech Create Breakthrough for Solar Cell Efficiency

    ASU, Georgia Tech Create Breakthrough for Solar Cell Efficiency

    In an article recently published in the journal Applied Physics Letters, Arizona State University researchers, in collaboration with a scientific team led by Professor Alan Doolittle at the Georgia Institute of Technology, have just revealed the fundamental aspect of a new approach to growing InGaN crystals for diodes, which promises to move photovoltaic solar cell technology toward record-breaking efficiencies.