
1

Kerman: A Hybrid Lightweight Tracking Algorithm
to Enable Smart Surveillance as an Edge Service

Seyed Yahya Nikouei†, Yu Chen†, Sejun Songξ, Timothy R. Faughnan‡
†Dept. of Electrical and Computing Engineering, Binghamton University, SUNY, Binghamton, NY 13902, USA

ξSchool of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA
‡New York State University Police, Binghamton University, SUNY, Binghamton, NY 13902, USA

E-mails: {snikoue1, ychen, tfaughn}@binghamton.edu, songsej@umkc.edu.

Abstract—Edge computing pushes the cloud computing bound-
aries beyond uncertain network resource by leveraging com-
putational processes close to the source and target of data.
Time-sensitive and data-intensive video surveillance applications
benefit from on-site or near-site data mining. In recent years,
many smart video surveillance approaches are proposed for
object detection and tracking by using Artificial Intelligence
(AI) and Machine Learning (ML) algorithms. However, it is
still hard to migrate those computing and data-intensive tasks
from Cloud to Edge due to the high computational requirement.
In this paper, we envision to achieve intelligent surveillance
as an edge service by proposing a hybrid lightweight tracking
algorithm named Kerman (Kernelized Kalman filter). Kerman is
a decision tree based hybrid Kernelized Correlation Filter (KCF)
algorithm proposed for human object tracking, which is coupled
with a lightweight Convolutional Neural Network (L-CNN) for
high performance. The proposed Kerman algorithm has been
implemented on a couple of single board computers (SBC) as
edge devices and validated using real-world surveillance video
streams. The experimental results are promising that the Kerman
algorithm is able to track the object of interest with a decent
accuracy at a resource consumption affordable by edge devices.

Keywords—Edge Computing, Smart Surveillance, Lightweight
Trackers, Kernelized Correlation Filter (KCF).

I. INTRODUCTION

The unprecedented pace of urbanization [9] poses many
opportunities and challenges. The recent concept of Smart
Cities has attracted the attention of the urban planners and
researchers to enhance the security and well-being of the
residents. One of the most essential smart community services
is the intelligent resident surveillance [6]. It enables a broad
spectrum of promising applications, including access control
in areas of interest, human identity or behavior recognition,
detection of anomalous behaviors, interactive surveillance us-
ing multiple cameras and crowd flux statistics and congestion
analysis and so on [16].

Many of these smart surveillance applications require sig-
nificant computing and storage resources handling massive
contextual data created by video sensors. The cloud computing
paradigm provides excellent flexibility and is also scalable
corresponding to the increasing number of surveillance cam-
eras. In practice, however, there are significant hurdles for
the remote cloud-based smart surveillance architecture. Many

key surveillance applications such as monitoring and tracking
need a real-time capability. However, processing raw video
data from widely distributed video sensors such as Close-
Circle Television (CCTV) cameras and mobile cameras not
only incurs uncertainty in data transfer and timing but also
poses significant overhead and delay to the communication
networks[8]. Also, it may cause the data security and privacy
issues by providing more attacking opportunities for adver-
saries. Therefore, current surveillance applications are for off-
line forensics analysis instead of a proactive tool to deter
suspicious activities before the damages are caused.

Edge computing as a surveillance service is considered
as the answer to the shortcomings[1], [2], [5]. The edge
computing technology migrates more computing tasks to the
connected smart “things” (sensors and actuators) at the edge
of the network [28]. Consequently it possesses the following
advantages: real-time response, lower network workload, lower
energy consumption, and higher data security and privacy.

Despite the promising Edge computing benefits, one of
the critical challenges is how to efficiently process the data-
intensive tasks in real-time on a rather resource hungry edge
nodes. Specifically, many smart video surveillance approaches
for object detection and tracking propose to use Artificial Intel-
ligence (AI) and Machine Learning (ML) algorithms. However,
they usually have the high computational requirement. How to
migrate those computing and data-intensive tasks to the edge
nodes are still significant challenges.

In this paper, a novel lightweight, hybrid tracking algorithm
named Kerman is proposed, which addresses the weaknesses
of the well-known Kernelized Correlation Filter (KCF) [14]
by leveraging some features of Kalman Filter [27] and Back-
ground Subtraction (BS) [21]. The proposed Kerman algorithm
achieves higher performance while preserves the favorite fea-
tures of KCF such as its fast adaptation and tracking. An exper-
imental study has been conducted using real-world surveillance
video streams on two types of single board computers (SBC)
as edge devices, Raspberry PI 3 and Tinker board.

The rest of the paper is organized as follows: in section II the
previous attempts for object tracking at the edge of the network
is discussed. Section III presents the complete Kerman tracking
algorithm. Experimental results of the tracker is presented in
Section IV. Finally, Section V wraps up this paper with the
conclusions.

ar
X

iv
:1

80
8.

02
13

4v
1

 [
cs

.D
C

]
 6

 A
ug

 2
01

8

2

II. MOTIVATION AND RELATED WORK

Currently, most of the video surveillance systems function
as an archive of footages and being used for the afterwards,
offline forensics analysis as well as depending on human
operators in process loop [7]. Because of long transmission and
process time, it cannot support uninterrupted, real-time video
surveillance tasks. However, thanks to the fast development in
machine learning (ML) algorithms, there are very promising
results presented in human-oriented surveillance area. Where
human detection and tracking along with abnormal behavior
detection analysis are feasible using various smart deep learn-
ing or other ML algorithms. There are various methods for
automated video frames collection in a cloud and unusual
events detection [29]. Research community has recognized
that heavy communication overhead is not tolerable in many
delay sensitive, mission-critical tasks [28]. Leveraging the fog
computing paradigm, there are online and uninterrupted target
tracking systems proposed to meet the requirements of real-
time video processing and instant decision making [9], [19].

While there are a lot of work conducted in image processing
area such as object detection and tracking, only few literature
is specifically focused on human object [22]. As the first step
for any video surveillance application, object detection and
coordinates allocation are essential for further object tracking
tasks. CNNs have high accuracy as well as shorter run time
after training [10], [26]. Smaller size networks are tailored for
edge constrained environment to resolve the issue of limited
memory [15], [17]. For instance, a lightweight Single Shot
Multi-box Detector (SSD) CNN is chose for human detection
and decent performance is achieved [23]. However, even
lightweight CNNs that are designed for low power devices,
are not fast enough to perform real time object detection, the
best ones reached about 2 FPS in experiments on Raspberry
PI 3 [23].

This yields for a tracker that can follow a human being once
it is identified and does not mix it with other moving objects
in the frame. Online trackers are preferred since they conduct
training online for better results. This is critical because
people subject for tracking may with any size and clothes
colors, offline trained systems are not suitable. Meanwhile,
the tracking tasks will take place at the edge environment in
which it is assumed there is not GPUs, therefore, the CPU
based tracking algorithms are subject of this research.

Analytically, a smart surveillance task can be considered as
a three-layer framework:
• Layer 1: the low-level conducts information extraction

like feature detection and object tracking;
• Layer 2: the intermediate-level is in charge of mode

recognition like action recognition and behavior under-
standing; and

• Layer 3: the high-level is focused on decision making
like abnormal event detection.

Functions belonging to each layer may be deployed on
different positions of the hierarchical platform consisting of
edge, fog, and cloud stratum [18]. Most of the first layer
functions are expected to run on the edge devices, like the
surveillance cameras, leveraging light weighted algorithms.

Figure 1. Human surveillance algorithm implementation at edge technology.

Figure 1 shows how each layer of the human surveillance
system. The detection and tracking algorithms can be imple-
mented at the edge layer with minimum latency and online
training for better performance. It should be noted that in
human surveillance application, there may be multiple objects
being tracked in one individual frame. The detection algorithm
may give the bounding box around a person but it will not
guarantee the order of detection, which implies the object that
was labeled in one frame may be re-labeled differently and be
refereed to as another object in the following frame.

For trackers the common challenges include partial or
full object occlusions, scene illumination changes and object
shapes and motion [24]. The well-known region based tracking
algorithm detects a human and extracts it from the background
[30]. Because it only detects the background and foreground
based on Gaussian modeling, the region based tracking is
not suitable for surveillance application at hand. Another
method is Feature Based Tracking, where a classifier looks
for features that are well-describing the object of interest such
as lines, point that separates the object from the background.
The feature based methods suffer from occlusion problem as
the they need at least some sub-features to remain visible
and even then the accuracy of the classification drops [31].
Active Contour Based Tracking represents object’s outlines as
bounding contours [25].

In 2017 Need for Speed (NFS) was introduced as a dataset
created with very high quality videos used for benchmarking
and divides object tracking to deep trackers and correlation
filter (CF) trackers [11]. Several best performing algorithms
are used in the benchmarks. The fastest algorithm is the Multi-
Dimensional Network (MDNet) that has more than 50 FPS
tested using the benchmark [20]. In contrast, the CF track-
ers like Multiple Instance Learning (MIL) [3] and Boosting
algorithm [13] are slow. The MOSSE filter [4] is very fast
but not accurate. The KCF [14] is based on MOSSE too but it
achieved better accuracy with supports from the HOG features.
Because of the boundary issues in frequency domain learning
[12], some researchers use boundary learning methods to reach
good performances. KCF has a much higher speed on CPU
than the others without sacrificing the accuracy. CF trackers
using CNN achieved a high accuracy with a low speed.

3

III. THE KERMAN ALGORITHM

A. Design Rationale

In this effort the edge computing paradigm is leveraged
for real-time human targets detecting and tracking. All the
raw video streams are processed locally by edge devices
instead of being sent to the remote cloud center over the
communication network. While there are several methods for
object tracking, only few are feasible for edge implementation.
The KCF algorithm is considered as the foundation because
of its fastness and light weight. It has the potential to serve
the purpose of real-time surveillance at the edge. The Kernel
Trick and matrix multiplications in frequency domain provide
the option that enables faster computation and thus the ability
to use more complex classifiers online. Meanwhile, the KCF
has weaknesses to be addressed. It loses the object of interest
if the object moves fast, and this flaw exits no matter how well
the algorithm is implemented. As the KCF algorithm considers
the background in the coordinates given in each frame as well
as the object. If the object of interest moves fast, soon the
tracker will be mistakenly trained to focus on the background
and lose the object of interest. Additionally, the tracker tends to
stop when the pedestrian walks with the usual speed but there
is a sharp border line of another object or shadow, which may
block the human object of interest. Therefore, another method
for occlusions detection is needed.

Kalman Filter (KF) [27] is one of the most popular object
tracking methods. If the object of interest is viewed as a system
with the central point in the bounding box as its representation,
its position in the next frame can be predicted. Running other
code along with KCF algorithm may improve the accuracy of
the tracker at the cost of slightly lower speed. KF needs to be
fed with the actual position of the object of interest in each
frame to create a feedback system and update its parameters.
However, the KF can be considered as a post processing for
KCF algorithm, and the data from the KCF algorithm is used
for KF update. If the KCF bounding box stops because of an
error in tracking, the KF will follow with a delay because of
its nature to remain in the situation it was before update. This
delay creates a distance from the center of bounding box in the
KCF and the output of the KF, which can be used as a pointer
to indicate the occlusions and to prevent the KCF algorithm
from mistakenly re-focusing on the background or other items
but the object of interest.

By its nature, the move of a person is hard to be predicted,
a person can make sudden changes either in terms of speed or
direction. These variations create the same challenges as what
occlusions introduce. On the one hand, the KCF is a very
capable algorithm to follow the object with sudden changes in
appearance or moving direction. On the other hand, KF lacks
this ability and has a delay to follow, but this ”shortcoming”
is useful to stop KCF from launching wrong updates. The key
here is a intelligent decision making that help the system to
choose between KCF or KF correctly. In this paper, the back-
ground subtraction (BS) method based on Gaussian Mixture-
based Background/Foreground Segmentation Algorithm [32] is
selected to address this issue.

Basically, a bounding box is given by the KCF algorithm,

Figure 2. The overall algorithm work-flow.

the pixels from the mask (classified as foreground) near the
KCF bounding box are considered as the object of interest.
The background subtraction is going to be executed only one
time in each frame. The algorithm complexity is O(n) where
n is the number of modeling pixels. In the framework of our
proposal, the background subtraction is not used for object
tracking. Instead, it functions as an indicator telling the system
whether or not the KCF or KF should be applied. The bounding
boxes that are output of the background subtraction can be in
any position of the frame where no human is detected. Thus,
it is important to associate them to each human that is being
tracked. If the center of each contour is in range of the KCF
bounding box, the background subtraction verifies the human
object is subject of tracking.

B. The Kerman Algorithm: Pseudocode

The proposed Kerman algorithm is an answer to the flaws
in KCF algorithm. While each individual method has some
overhead, the combination is not as heavy as simply cascading
them in series.

The Kerman algorithm is designed based on the knowledge
that tracking with an online learning method is the best way
to make the tracker adaptive to the object of interest and make
it more immune to sudden changes to the object’s appearance.
In surveillance applications, human beings are walking and
it is possible the pedestrian changes the directions swiftly.
Consequently, the tracker may lose the target. Because it
changes features that the tracker is using.

Pseudo code of the proposed tracker is presented in Al-
gorithm 1. The Kerman algorithm actually makes decisions
based on a majority voting mechanism, taking into account
of the opinions of KCF, KF, and BS. These algorithms work
together for each situation to stop KCF training, recalibrate
the bounding box or continue normal path. In order to use
center coordinates that are obtained by the KCF, by default the
tracker is set as KCF. Next, the center of the bounding box
given by the KCF is set as coordinate (0, 0) for each specific
object. Knowing the centers of KF and BS algorithms for the
same object can give two gradient for the corresponding object
and a threshold between gradients gives the flag to recalibrate
KCF bounding box. In should be noted that in the Kerman
algorithm, a class tracking object is introduced, objects from
this class are created in a multi-thread manner in order to

4

utilize the multi-core processor of the edge device. The number
of threads depends on the number of cores the edge device has.

Algorithm 1 Decision Tree Tracker
1: procedure Decision Tree(new coord)
2: feature← bbx area.HOG()
3: if flag then
4: KCF.training(features)

5: if cls pxl ← 1.5×bbx.area() then
6: bbx← KCF.classify . pixles in ×1.5 the

area of given bbx (comes from previous frame) using the
trained model

7: else
8: bbx← KCF.classify . the area of the bbx
9: cnt KCF ← KCF.center(bbx)

10: if flag then
11: cnt KF.update(bbx)
12: else
13: cnt KF.update()

14: KF grad← gradient(cnt KCF, cnt KF)
15: for each cnt cont do
16: if cnt cont in bbx then
17: bs grad← gradient(cnt KCF, cnt cont)

18: if bs grad - KF grad ¡ trhd and bs grad found then
19: flag ← TRUE
20: bbx← bbx(cntKF, cntcont) . the bounding box

is changed to have center same as middle of KF and BS
centers

21: else if bs grad not found then
22: bbx← bbx(cntKF) . the bounding box is

changed to have center same as middle of KF
23: else
24: flag ← FALSE . bounding box is given by the

KCF
return bbx

25: procedure TRACKER(camera1.stream)
26: frame← camera1.stream . OpenCV library
27: while frame not empty do . camera on
28: frame 400← frame.resize(400× 400)
29: if (framecount > human chk thld) then
30: fnd obj ← feed(L− CNN(frame 400)) .

human detection CNN based feed-forward
31: for each fnd obj do
32: for each trk obj do
33: checkingweather...
34: coordinatesarenew
35: Decision Tree.trk obj Q ←

new coord . add new object to the queue
36: cont← bg sub(frame 400)
37: for each Decision Tree.trk obj Q do
38: trk obj.updates(frame 400, cont)

39: show.frame()

The overall Kerman algorithm work-flow is shown in Fig. 2,
where from the input frame the human object bounding boxes
are given.

Figure 3. KCF algorithm lag when the object of interest moves fast.

IV. EXPERIMENTAL RESULTS

The proposed Kerman algorithm has been implemented on
two types of Single Board Computers (SBC) for test. One is
the Raspberry PI 3 with 1 GB of RAM and ARMv7 1.2 GHz
processor, the other device is a Tinker Board with 1.8 GHz
ARM-based RK3288 SoC and 2 GB LPDDR3 dual-channel.
These SBCs are selected as the edge devices because of the
low price (<$80 each), but at the same time they are capable of
running UNIX or Android based operating systems. Such that
they support high level programming like Python and various
I/O connections. Actually it is a trend that more and more
powerful small devices like SBC have shown faster and reliable
performances at the edge of the network.

A. High Level Overview
In the tracking process, the objects that are already being

tracked should not be labeled again. Therefore the center of a
new detection should be out of a circle with 2/3 diameter of
the objects that are already in the queue for track. Meanwhile,
the non-trivial lags between the boundary box and the actual
position of the object will fail the tracking algorithm. Figure 3
shows example cases in which the object was lost when using
the KCF algorithm only. In the upper left image the tracker lag
leads to re-detect the human and label him as a new object.
This comparison is based on the KCF because to the best of
the authors knowledge, it is the fastest among today’s online
tracking methods, which are not based on CNN. The human
object detection method applied here is the L-CNN that is
tailored for edge environment [23] to detect humans and pass
them to the tracker. As shown in Fig. 4, the KF has a lag in
comparison to the KCF algorithm when the object moves fast
or changes its direction abruptly.

The proposed Kerman algorithm integrates three fast track-
ing algorithms, KCF, KF, and BS, to achieve a higher accuracy
than each individual one can do separately. Kerman makes
better decisions when the human object moves faster than the
KCF can follow or there is a occlusions between object of
interest and another object in the frame. Although it is true
that the tracker is able to find the object of interest again

5

Figure 4. Kalman Filter will have a lag from KCF because KCF is used as
real measurement.

Figure 5. Performance comparison between the Kerman and KCF algorithms
in case when objects move fast and occlusions exist. (a) KCF algorithm (b)
KERMAN algorithm.

using the object detection algorithm even if it lost the object
under tracking, the performance is impacted significantly and
the interrupted tracking will further slow down the next steps
in surveillance, e.g. anomalous behavior detection.

Figure 5 shows the results of a real life surveillance footage
processing, which compares the Kerman algorithm with the
KCF algorithm. Looking more closely to this figure, the part
(a) shows results of instances from KCF based algorithm.
Where the object is lost or the bounding box around the object
has a lag or contains a huge space. In contrast, Fig. 5(b) shows

Figure 6. Memory needed in MB to run tracking and detection algorithms
in 30 seconds run-time: (a) Kerman algorithm with 0-2 human objects in the
frame (b) Kerman algorithm with 6-10 objects (c) KCF with 0-2 objects (d)
KCF with 6-10 objects.

the results of Kerman algorithm on the same video stream with
same instances, but the bounding box is better fit neither the
object is lost.

B. Performance Analysis

The performance of the Kerman algorithm has been eval-
uated experimentally in terms of memory consumption, CPU
utility, and the video processing speed (FPS). Figure 6 com-
pares the memory consumption of the Kerman algorithm with
the memory used by the KCF algorithm. The memory is read
in a 30 seconds of run time of two scenarios. In one scenario,
there are only one or two human objects in the frame and they
are positioned far away from each other. In the other scenario,
the frame is more crowded with human objects and at most
10 pedestrians are in the frame in the same time. The memory
utility shown in Fig. 6 includes both the tracking and detection
algorithms. The human detection algorithm is the L-CNN that
runs in every five frames for a video input rate of 10 FPS. The
L-CNN detector runs two times per second. Considering the
velocity of pedestrians, it is sufficient. In case there are up to 10
human objects in the frame the algorithm needs up to 350 MB
of memory space, which is available even in a memory limited
device like Raspberry PI. The experimental results also show
that the memory consumption is not sensitive to the number
of objects in the frame. The difference between having many
objects and fewer objects is not significant, which verified the
Kerman algorithm is scalable in terms of memory utility.

The CPU usage is also a critical metrics for the detection
and tracking algorithms as a whole system designed for human
surveillance automation. The percentage of CPU usage is
read on Raspberry PI 3 and Tinker Board for 30 seconds of
runtime and averaged. Same scenarios as used for memory
consumption test are applied to evaluate assess the CPU usage,
but divided into two scenarios. One scenario is with at most

6

2 human objects in a frame and another is with 6-10 human
objects. Both cases are managed using 80− 89% CPU.

V. CONCLUSIONS

In this paper the Kerman algorithm is introduced that
integrates three well-known lightweight tracking algorithms,
KCF, KF and BS, to enable the smart surveillance as an edge
service. The Kerman algorithm calculates the gradient of the
KF and BS algorithms based on the KCF algorithm for each
object of interest and recalibrates the bounding box given by
the KCF. On the selected edge devices, the Kerman algorithm
achieved decent performance in processing the real-world
security surveillance videos. The experimental results verified
that the Kerman algorithm has solved the flaws associated with
the KCF algorithm at a tolerable trade-off in processing time.
It meets the design goals and is a feasible solution at the edge.

REFERENCES

[1] E. Ahmed and M. H. Rehmani, “Mobile edge computing: opportunities,
solutions, and challenges,” 2017.

[2] M. Ali, R. Dhamotharan, E. Khan, S. U. Khan, A. V. Vasilakos, K. Li,
and A. Y. Zomaya, “Sedasc: secure data sharing in clouds,” IEEE
Systems Journal, vol. 11, no. 2, pp. 395–404, 2017.

[3] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with
online multiple instance learning,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009,
pp. 983–990.

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE,
2010, pp. 2544–2550.

[5] H. Cao, M. Wachowicz, C. Renso, and E. Carlini, “An edge-fog-
cloud platform for anticipatory learning process designed for internet
of mobile things,” arXiv preprint arXiv:1711.09745, 2017.

[6] A. Cenedese, A. Zanella, L. Vangelista, and M. Zorzi, “Padova smart
city: An urban internet of things experimentation,” in World of Wire-
less, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th
International Symposium on a. IEEE, 2014, pp. 1–6.

[7] F. F. Chamasemani and L. S. Affendey, “Systematic review and
classification on video surveillance systems,” International Journal of
Information Technology and Computer Science (IJITCS), vol. 5, no. 7,
p. 87, 2013.

[8] N. Chen, Y. Chen, S. Song, C.-T. Huang, and X. Ye, “Smart ur-
ban surveillance using fog computing,” in Edge Computing (SEC),
IEEE/ACM Symposium on. IEEE, 2016, pp. 95–96.

[9] N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and R. Zimmermann, “Dy-
namic urban surveillance video stream processing using fog computing,”
in Multimedia Big Data (BigMM), 2016 IEEE Second International
Conference on. IEEE, 2016, pp. 105–112.

[10] M. Cristani, R. Raghavendra, A. Del Bue, and V. Murino, “Human
behavior analysis in video surveillance: A social signal processing
perspective,” Neurocomputing, vol. 100, pp. 86–97, 2013.

[11] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey, “Need
for speed: A benchmark for higher frame rate object tracking,” in 2017
IEEE International Conference on Computer Vision (ICCV). IEEE,
2017, pp. 1134–1143.

[12] H. K. Galoogahi, T. Sim, and S. Lucey, “Correlation filters with limited
boundaries,” in Computer Vision and Pattern Recognition (CVPR), 2015
IEEE Conference on. IEEE, 2015, pp. 4630–4638.

[13] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-
line boosting.” in Bmvc, vol. 1, no. 5, 2006, p. 6.

[14] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[16] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual
surveillance of object motion and behaviors,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 34, no. 3, pp. 334–352, 2004.

[17] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[18] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing: State-
of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, 2017.

[19] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys & Tutorials, 2018.

[20] H. Nam and B. Han, “Learning multi-domain convolutional neural net-
works for visual tracking,” in Computer Vision and Pattern Recognition
(CVPR), 2016 IEEE Conference on. IEEE, 2016, pp. 4293–4302.

[21] D. T. Nguyen, W. Li, and P. O. Ogunbona, “Human detection from
images and videos: A survey,” Pattern Recognition, vol. 51, pp. 148–
175, 2016.

[22] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B.-Y. Choi, and T. R. Faughnan,
“Intelligent surveillance as an edge network service: from harr-cascade,
svm to a lightweight cnn,” arXiv preprint arXiv:1805.00331, 2018.

[23] ——, “Real-time human detection as an edge service enabled by a
lightweight cnn,” in Edge Computing, the IEEE International Confer-
ence on, 2018.

[24] S. Ojha and S. Sakhare, “Image processing techniques for object track-
ing in video surveillance-a survey,” in Pervasive Computing (ICPC),
2015 International Conference on. IEEE, 2015, pp. 1–6.

[25] R. O’Malley, E. Jones, and M. Glavin, “Rear-lamp vehicle detection
and tracking in low-exposure color video for night conditions,” IEEE
Transactions on Intelligent Transportation Systems, vol. 11, no. 2, pp.
453–462, 2010.

[26] Y. Pang, H. Yan, Y. Yuan, and K. Wang, “Robust cohog feature
extraction in human-centered image/video management system,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 42, no. 2, pp. 458–468, 2012.

[27] H. A. Patel and D. G. Thakore, “Moving object tracking using kalman
filter,” International Journal of Computer Science and Mobile Comput-
ing, vol. 2, no. 4, pp. 326–332, 2013.

[28] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[29] S. Vishwakarma and A. Agrawal, “A survey on activity recognition and
behavior understanding in video surveillance,” The Visual Computer,
vol. 29, no. 10, pp. 983–1009, 2013.

[30] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder:
Real-time tracking of the human body,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 19, no. 7, pp. 780–785, 1997.

[31] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 9, pp. 1834–1848, 2015.

[32] Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive density esti-
mation per image pixel for the task of background subtraction,” Pattern
recognition letters, vol. 27, no. 7, pp. 773–780, 2006.

	I Introduction
	II Motivation and Related Work
	III The Kerman Algorithm
	III-A Design Rationale
	III-B The Kerman Algorithm: Pseudocode

	IV Experimental Results
	IV-A High Level Overview
	IV-B Performance Analysis

	V Conclusions
	References

