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Abstract

This paper estimates the impact of shale gas development on local particulate matter pollu-

tion by exploiting a quasi-experimental setting in Pennsylvania where some wells experienced

pre-production and/or production activities whereas some others were permitted but not

spud between 2000 – 2018. We measure local PM pollution using daily aerosol optical

depth (AOD) over a 3 kilometers circular area around every shale gas well. Using a spatial

difference-in-differences model, we find that both shale gas pre-production and production

activities increase daily AOD significantly, by 1.35% – 2.19% relative to the baseline. The ef-

fect of pre-production is slightly larger than production activities, but both effects attenuate

with distance from the centroid well. Accounting for airborne spillovers, fracking increases

AOD by 1.27% – 5.67%, which translates to 0.017µg/m3–0.062µg/m3 increase in PM 2.5

concentration. This increase in PM 2.5 is associated with 20.11 additional deaths.

Key words: shale gas, particulate matter, aerosol optical depth, spatial DID, mortality

impact
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1 Introduction

The United State’s shale gas industry has developed rapidly in the past decades, growing from

1.6% of total natural gas production in 2000 to 69% in 2018 (Sieminski, 2014). The boom in

shale gas production is largely due to the application of a new technology known as hydraulic

fracturing. Recent work has shown that the hydraulic fracturing technology and its massive

deployment impacts not only local economic but also local environmental conditions, including

ground water contamination (Hill and Ma, 2017; Osborn et al., 2011; Jackson et al., 2013) and

chemical exposures to surface water (Olmstead et al., 2013). In addition, various air pollutants

including CO, NOx, SOx, particulate matter (PM), and volatile organic compounds (VOC) are

released to the air from unconventional wells’ preparation and fracking operations (Allen et al.,

2014; Litovitz et al., 2013). However, the effects of shale gas development on local air pollution

have not been evaluated.

We examine whether shale gas development in Pennsylvania has led to detectable changes in

local PM pollution between 2000 and 2018 and the magnitude of those changes. Pennsylvania is

the largest producer of shale gas among all states, and produces almost 30% of total shale gas in

the whole country (EIA Website, 2019). Our particular focus on PM rather than the other types

of air pollutants is important for two reasons: First, there is documented public concern that

shale gas drilling activities contribute to local PM pollution (Litovitz et al., 2013), yet there is

little causal evidence linking the two. Furthermore, while the literature has documented health

effects on populations living close to unconventional wells (Currie et al., 2017; Hill, 2018), the

channels explaining these effects are uncertain. PM pollution has known adverse health impacts

(Atkinson et al., 2014), so understanding the causal effects of shale gas development on local

PM pollution is relevant to policy.

Since the shale gas wells usually locate in the rural areas which are mostly not covered

by the ground-based air quality monitors, we use a satellite based remote sensing data, daily

Aerosol Optical Depth (AOD) data, as an indicator of PM concentration. AOD is a unit-less

high-frequency and high-resolution measurement of PM concentration provided by specialized

instruments on NASA’s satellites. AOD measures the degree to which aerosols prevent the

transmission of light by absorption or scattering of light through the entire vertical column of

the atmosphere from the ground to the satellite sensors; therefore a higher value of AOD implies
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higher concentration of PM pollution (Liu et al., 2004; Donkelaar et al., 2016). While the daily

AOD captures the short-lived nature of the pollution (Sarigiannis et al., 2017), the measurment

is sensitive to weather (Kumar et al., 2007; Foster et al., 2009). To solve this problem, we

include as regressors a set of daily weather variables including precipitation, temperature, and

dew point. We use AOD to estimate the pollution of shale gas industry, and covert the pollution

in AOD to PM 2.5 using Lee et al. (2011)’s method for the purpose of estimating the mortality

impact.

We define our study unit, named “Pollution area” (P-area), as a circular area of 3 kilometers

radius around each unconventional well. The effect of wind on PM is captured econometrically,

as detailed below. We expect that during the well pre-production phase, PM pollution will

increase because well preparation activities, such as drilling and the associated commercial

vehicle traffic, bring dust and diesel combustion to well sites and nearby roads. Similarly, we

expect elevated PM pollution during gas production from on-site diesel combustion (Litovitz

et al., 2013) and fugitive emissions.1 Since the two periods may have different impacts on

local PM pollution, we divide the life cycle of unconventional wells into three phases: inactive,

pre-production, and production, and focus on the effects of the pre-production and production

treatments on local PM pollution.

To estimate the causal effects of the two treatments on local PM pollution in the vicin-

ity of hydraulically fractured wells, we need to construct the appropriate counterfactual. The

Pennsylvania Department of Environmental Protection reports that not every well that is per-

mitted eventually gets spudded and drilled (PA DEP Web, 2012). We use the PM pollution in

the vicinity of these wells to construct the counterfactual because they are not associated with

pre-production or production activities but are likely located in areas with similar geology and

social-economic conditions as the wells that are spudded or producing. On the basis of this,

we assign P-areas to the treatment group if their centroid wells have ever been in either the

pre-production or production treatment, while P-areas are included in the control group if their

centroid wells were permitted but never started the pre-production phase (i.e. not spudded).

Such a quasi-experiment setting allows us identify the causal difference-in-differences estimates

of the effect of the two treatments on local air quality in the vicinity of hydraulically fractured

1Fugitive emissions include benzene, toluene, ethyl-benzene, xylem other toxic hydrocarbons (Srebotnjak and
Rotkin-Ellman, 2014). These aerosols can interact with sunlight and water vapor to form liquid particles,
and are considered the secondary source of PM pollution.
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wells.

It is important, however, to note that the estimation of the treatment effects is complicated

by the potential “spillover” of one well’s activities on its neighboring wells’ P-areas. The spillover

may arise from two channels. First, because PM pollution is air borne and travels with wind,

a well’s pre-production and production operations may increase PM pollution in downwind P-

areas. Second, a cluster of wells may share infrastructure, such as road access to the fracking

site, pipelines, waste pits, and other facilities needed for the fracking operation, thereby lowering

the marginal change in PM pollution at a new well’s P-area. To deal with the spatial spillover

effects, we implement a spatial difference-in-differences model (Delgado and Florax, 2015), that

allows the potential outcome of spatial units to be affected by not only their own treatment

status, but also their neighboring units’ treatment through spillovers. The model uses daily

information on wind speed and direction to model the potential airborne spillovers from one

well to another. We account for the second channel by including the number of wells in the

pre-production phase, in production, or plugged in the 20 km radius around every well area as

control variables in our regression.

Our data set includes all 20,677 unconventional wells in PA between February 24, 2000

and September 20, 2018. We have an unbalanced panel with 11,470 areas (17,506,147 area-

day observations) in the treatment group and 9,207 areas (14,025,840 area-day observations)

in the control group. Among the treatment group observations, we have 1,004,184 area-day

observations in the pre-production phase and 3,607,236 area-day observations in the production

period.

We find statistically detectable changes in daily AOD during both the pre-production and

production phases of a marginal unconventional well. Not surprisingly, the marginal increase

in AOD is higher during the pre-production phase (2.19% relative to the baseline AOD) than

during production (1.35% of baseline). Furthermore, while the airborne spillover effects decline

with distance from a centroid well, they can be felt not only within the P-area but also as far

as 10 km downwind. Accounting for airborne spillovers, fracking increases AOD by 1.27% for

the whole sample, and by 5.67% for the subsample of P-areas with a treated well. Based on

Lee et al. (2011), these overall increases in AOD imply that daily PM concentrations increased

by 0.017µg/m3 and 0.062µg/m3, respectively, in the average P-area. Using the concentration
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response functions in Lepeule et al. (2012) and Fowlie et al. (2019), we estimate that this

resulted in an additional 20 deaths between 2010 and 2017 in 671 census block groups (across

40 counties) which contains at least one shale gas well, with a total population of about 840,000

and an annual average death rate of 12 per 1000.

Our results are relevant for policy makers who seek to understand the welfare effect of shale

gas development. They are also relevant for the communities located close to shale gas wells in

terms of understanding the local air quality impact.

2 Link between Shale Gas Development and Local Air Pollution

2.1 The Link

The innovation of hydraulic fracturing and horizontal drilling technology decreased the produc-

tion cost of shale gas significantly, making unconventional production economically feasible and

boosting the size of the shale gas industry. The rapid expansion of natural gas development

increased the supply of natural gas and lowered the prices relative to the scenario without hy-

draulic fracturing (Newell and Raimi, 2014). Abundant natural gas with relatively lower prices

has facilitated the displacement of coal to natural gas in power plants, leading to air quality

improvement. At the same time, relatively lower prices encourage more consumption of energy.

Newell and Raimi (2014) show that the boom of shale gas development has reduced green house

gas emissions in the US, which is driven by the fact that the retirement of coal-fired power

plants dominates the effects of increased energy consumption.

Despite the positive global and regional environmental externality, the shale gas boom has

raised concerns regarding local air quality because of the extensive activities associated with

well preparation and gas production. Most fracking activities come with diesel combustion and

dust, increasing emissions of ambient pollutants like CO, NO, hydrocarbons, PM, etc. It usually

takes several months to complete well preparation (Hill, 2018). Activities include building roads,

clearing sites, and transporting heavy equipment. Fracking requires a large amount of heavy

equipment, such as drilling rigs, high-volume fracking pumps, and large size storage tanks,

and this equipment typically arrives at the site on heavy trucks. According to Graham et al.

(2015), it takes roughly 1,500 heavy-truck trips to deliver equipment and materials to a site and

to remove the construction and drilling wastes from the site. In addition, off-road heavy-duty
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engines are used to construct drill rigs and hydraulic fracturing pumps (Roy et al., 2014). When

the construction is completed, a completion venting is performed for cleaning and bringing the

well to production (Roy et al., 2014). The venting occurs multiple times during the whole

life-cycle of an unconventional well as a maintenance procedure, and is known to be a major

source of of volatile organic compounds (VOCs) emissions from unconventional wells.

During the production period, on-site equipment, including compressors to maintain the

pressure of produced natural gas and other diesel machinery for well maintenance, result in

diesel and natural gas combustion and air pollution. Additionally, when gas is flared, vented, or

accidentally leaked during production, it also releases toxic air pollutants. Toxic air pollutants

and VOCs including benzene, toluene, ethyl-benzene, xylem other toxic hydrocarbons come from

direct and fugitive emissions of hydrocarbons at the well and from associated infrastructure such

as condensate tanks (store liquid separated from produced natural gases), dehydrators (remove

water from the produced natural gas), waste water impoundment pits, and pipelines (Srebotnjak

and Rotkin-Ellman, 2014). In addition, many of these aerosols can interact with sunlight and

water vapor to form liquid particles, and are considered a secondary source of PM pollution. In

fact, secondary aerosols contribute a large portion of total PM, and are the dominating source

of PM in many cases (Larsen et al., 2012; Heo et al., 2009; Lewandowski et al., 2008; Huang

et al., 2014).

2.2 Local Air Pollution Measurements

Since many of the pollutants emitted during the well’s pre-production and production phase

are either primary or secondary sources of PM, we use PM to indicate the impact of shale

gas development on local air quality. PM measurements are available from multiple sources,

including the EPA’s ground-based mobile monitoring, network stations, aircraft measurements,

and a satellite platform as summarized in Field et al. (2014). Only the satellite platform provides

a hyperlocal, daily measurement of PM. We therefore take advantage of NASA’s satellite based

measurements of aerosal optical depth (AOD), which is a high-frequency and high resolution (3

km × 3 km) measure, and is known to be one of the most robust aerosol parameters retrieved

by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s satellites (Streets
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et al., 2013).2 3

More importantly, the literature has shown that AOD is a good predictor of PM of different

sizes: PM2.5 (size < 2.5µm) and PM10 (size < 10µm) (Liu et al., 2004; Donkelaar et al., 2016).

Higher AOD indicates worse air quality, and therefore higher PM pollution. An advantage of

using AOD is that it offers daily air quality observations with high geographical resolution. The

spatial scale of the air pollution from shale gas wells is small. Companies conduct the drilling

process on about a 3-acre pad of land, with a number of trucks that become part of an oil

and gas drilling process. Given the sources of air pollution are from truck traffic and on-site

construction and production process, we focus on a 3 km circular area around each single well.

Our use of AOD as a measure of air quality is not unique in the economics literature. Zou

(2019) studies the current EPA policy of intermittent monitoring of environmental standards,

and uses AOD to measure air quality when ground monitoring is off. His study finds air quality

significantly worse on unmonitored days. Foster et al. (2009) studies the air pollution impact of

a voluntary pollution reduction program in Mexico, and its consequence on infant health. They

find a significant drop in AOD (increase in air quality) associated with the program, along with

a significant drop in infant mortality due to respiratory illness associated with the decreasing in

AOD. Sullivan and Krupnick (2019) uses AOD to measure the air quality in individual counties

across the US, and argue that due to the limited number of ground monitors, many counties

are mistakenly assigned as being in “attainment” with the 2015 National Ambient Air Quality

Standards for PM. They estimate that 24.4 million people live in attainment areas that AOD

data suggests should be in nonattainment. A similar result is also found by Fowlie et al. (2019).

3 Empirical Model

3.1 Estimating the Average Treatment Effects

Our baseline model follows a difference-in-differences framework:

qid = ηcT
c
id + ηpT

p
id + Aid

′Λ + Zid
′ζ + µi + σd + uid (1)

2There are two NASA satellites with MODIS instruments: Aqua and Terra. We use Terra because it has a
longer observation period (start from Feb. 2000, whereas Aqua starts from May 2002).

3AOD is generated by the following method: the remote sensors record the interaction between electromagnetic
radiation and aerosols including solid and liquid particles in the atmosphere, then convert the recorded results
to AOD by applying the radioactive transfer models (Remer et al., 2005).
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Here, qid represents the AOD of P-area i on date d. T c
id and T p

id are treatment dummy variables,

with T c
id = 1 and T p

id = 1 indicating the centroid well of P-area i is in the pre-production or

production period respectively on date d, and zero otherwise. The two way fixed effects are

P-area fixed effect µi and date fixed effect σd; thus in the difference-in-differences framework, ηc

and ηc estimate the average treatment effects of the pre-production and production treatments,

respectively.

Z ′id and A′id are vectors of covariates. Z ′id contains four weather variables: precipitation,

dew point, temperature, and wind speed. A′id includes three additional variables to address the

density of wells in the surrounding 20 km radius around every centroid well of P-area i. They

are the daily counts of wells with pre-production, production, and inactive status.4 Together,

these variables account for the potential sharing of infrastructure, such as main roads, rigs and

pipelines in the fracking area across wells. At the same time, the density of inactive wells –

wells that used to be in the pre-production or production phase before date, but do not have

on site activities anymore, reflects temporal variation in local geological conditions of shale gas

stock that we expect is correlated with the productivity of wells in the area.

3.2 Estimating the Average Treatment Effects with Spatial Spillovers

Motivation: spillover path and quantification

PM travels with wind, bringing a well’s pre-production and production treatment effects to

downwind areas. This spillover effect would not be a concern for us if it affected the neighboring

P-areas’ air quality randomly. Non-randomness in wind blown spillover may arise from spatial

segregation between treatment and control groups or temporal variation of wells’ pre-production

and production treatments.

Figure 1 shows the location of permitted wells in PA. While there is negligible regional

segregation between treatment and control groups (see Figure 2 and 3), the temporal variation

in the pre-production and production phases among wells (see Figure 4) suggests that the

spillover effects might be nonrandom in our study setting.5

4Inactive wells are those wells that are without any operations.
5The pattern of nonrandom spatial and temporal spillovers is more clear in Table 1, Panel II. The summary
statistics show that the densities of wells in the pre-production and production phases are much higher
around treated group than control group.
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Figure 1: Permitted Wells in 2000 – 2018

Figure 2: Wells in Treatment Group
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Figure 3: Wells in Control Group

Figure 4: Well Location by Permit Years

We follow Delgado and Florax (2015)’s model to handle the nonrandom spatial spillover.

Delgado and Florax (2015) account for a spatial spillover in potential outcome through a binary

time-invariant spatial weight matrix, which equals 1 if the neighboring area is within a threshold
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distance, and zero if not. In our setting, we expect the spillover effects through wind to attenuate

by distance. Therefore, we distinguish 3 circular rings around each P-area’s centroid well: 0–2

km, 2–5 km, and 5–10 km (hereafter referred to as bins), and allow the spillover effects from

the upwind wells’ pre-production and production activities to differ by bins. In addition to

distance, wind direction matters too. The closer the wind direction to the geographic direction

of the two wells, the stronger the spillover effects would be, conditional on the distance between

the two wells. This can be addressed by the angle between any two wells’ geographic direction

and the wind direction. Therefore, our spatial weight matrix is continuous and various by date,

because the wind direction is different every day.

Figure 5: Pollution Transportation by Wind

Define wbin
id as a 1×N matrix (spatial weight matrix) for the P-area with centroid well i on

day d, where N is the total number of centroid wells (of both treatment group and control group

P-areas) in our sample. The jth element in wbin
id , indicated by wbin

ijd , measures the magnitude
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of the spillover effects that the P-area with centroid well i would receive from the well j in the

bin bin on day d. We allow wbin
ijd to vary over time depending on jth well’s treatment status

on day d and whether it is located upwind of well i. To quantify wbin
ijd , we use the two wells’

geographical locations and wind direction on the day d. As shown in Figure 5, suppose θijd is

the angle between the wind direction and the geographical direction between the wells j and i

on day d, and xij is the perpendiculars distance between the two wells. Then wbin
ijd is defined as:

w0−2
ijd = cos(θijd) if θijd ≤ π and 0 < xij ≤ 2, w0−2

ijd = 0 otherwise

w2−5
ijd = cos(θijd) if θijd ≤ π and 2 < xij ≤ 5, w2−5

ijd = 0 otherwise

w5−10
ijd = cos(θijd) if θijd ≤ π and 5 < xij ≤ 10, w5−10

ijd = 0 otherwise

The definition of wbin
ijd follows the spillover path: it implies that the weight is zero if the

the well j is downwind of the P-area i, and the weight is positive if the the well j is located in

the upwind of the P-area i. A smaller angle between the wind direction and the geographical

direction from well j to P-area i means the treatments from well j has larger effect on P-

area i. The design of spatial weight matrix follows the spirit of the Gaussian point source

dispersion model6, in which the aerosol travels along the downwind direction, and diffuses along

the crosswind direction.

Model specification

In the light of Delgado and Florax (2015), we use the following spatial difference-in-differences

model as our preferred benchmark model:

qid =ηcT
c
id + ηpT

p
id +

∑
3bins

βbin,cwbin
id Hbin,c

d +
∑
3bins

βbin,pwbin
id Hbin,p

d

+ Aid
′Λ + Zid

′ζ + µi + σd + uid

(2)

Where qid, T c
id, T p

id, A′id, and Z ′id have the same definitions as in Equation (1).

wbin
id is the spatial weight matrix, Hbin,c

d is a vector of dummies for all wells, in which an

element is equal to 1 if and only if the well is in P-area i’s bin and this well was in the pre-

production phase on day d. In matrix notion, wbin
id Hbin,c

d is a weighted sum of all pre-production

treatments belonging to a given bin bin for P-area i on day d, indicating the spillover effects of

6Gaussian point source dispersion model is a fundamental model in atmospheric science. See Wikipedia page.
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pre-production treatment that P-area i received from the bin on day d. The interpretation can

be generalized to the other 5 variables.

4 Data

We create a comprehensive data set that includes every well that was permitted in Pennsylvania

between February 24, 2000 and September 20, 2018. Our data set includes detailed information

on each well and daily information on air pollution and weather from multiple data sources.

4.1 Pennsylvania Shale Gas Data

Our shale gas well data is compiled from two sources published by Pennsylvania Department

of Environmental Protection: “Oil Gas Locations – Unconventional” and “Oil & Gas Well

Production Report”. These sources include information submitted by well operators, as required

by PA DEP (Regulation Code Section 78a.121). Both data sources contain a unique well

identifier and well coordinates, allowing us to merge information across these sources.

For each well we have information on its geographic coordinates and permit date, regard-

less of whether the well is spudded or not. For wells that were drilled, we have current well

status, along with spud date, production period, and completion date if already plugged. This

information allows us to determine each well’s activities on any given day. Given our focus on

air quality, we consider three different phase in the life-cycle of a well: not yet spudded (or

inactive), pre-production phase, and production phase.

In total, we obtained 20,677 unconventional wells that were permitted over our study period.

As shown in Figure 1, most of these permitted wells are located in the northeastern corner

PA (Susquehanna and Bradford counties) and southwestern corner (Washington and Greene

counties). This is because the depth of Marcellus Shale base in these regions ranges from 5,000

to 8,500 feet, higher than other parts of Pennsylvania, suggesting that these areas are especially

productive (PSU Web, 2009).

4.2 Local Air Quality: MODIS AOD

There are two NASA satellites with MODIS instruments: Aqua and Terra. We use the data

provided by Terra because it has a longer observation period (starting from Feb. 2000, whereas
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Aqua starts from May 2002). There are 4 levels of MODIS data available: L0 to L3. The higher

level means the data is more pre-processed, but has lower spatial resolution. We use level 2

data7 because it provides daily AOD observations at 3km× 3km pixel resolution8. L2 data not

only satisfies the requirements of our research design, but is also properly processed and can be

directly used in our analysis.9

With the prior that the pre-production and production periods primarily affect local air

quality, we define the P-area, our study unit, as an area surrounding a well with the 3km radius.

There are two difficulties in determining a P-area’s AOD (i) L2 AOD data is for 3km × 3km

square pixels, whereas P-areas are 3km radius circles. (ii) The pixels in the L2 data change

every day according to the orbit of the satellite. We overcome these difficulties as follows: First

we overlap all pixels with P-areas to find the square-circle intersections between pixels and every

particular P-area for each day separately. Second, We assign every pixel a daily weight based

on the daily intersection area to calculate the daily weighted average of AOD for each P-area.

For example, suppose on a day d, a P-area overlaps with pixel 1 and pixel 2 only. Pixel 1

has x1d km
2 intersection area with P-area on day d and has AOD equals to q1d. Pixel 2 has

x2d km
2 intersection area with P-area and AOD of q2d. Then on day d the weight of pixel 1

is x1d
x1d+x2d

, and the weight of pixel 2 is x2d
x1d+x2d

. The weighted average AOD of P-area becomes

q1dx1d
x1d+x2d

+ q2dx2d
x1d+x2d

. In general, where a P-area overlaps with J pixels on day d, the weighted

average AOD for P-area i is:

AODid =q1d

(
x1d

x1d + x2d + · · ·+ xJd

)
+ · · ·+ qjd

(
xjd

x1d + x2d + · · ·+ xJd

)
+ · · ·+ qJd

(
xJd

x1d + x2d + · · ·+ xJd

)

4.3 Weather

Our key control variables include daily information on local weather. We do so for three reasons:

First, the weather variables account for the possible correlation between weather conditions and

the choice of spud date. Second, the weather variables are important confounders of the strong

7We use version 6.1 MOD04 3K HDF data file. In the data file, we choose the layer “Cor-
rrected Optical Depth Land”.

8The level 2 data also provide 5km× 5km resolution.
9L0 is raw spectral channel, and L1 is calibrated and geolocated radiance. Neither of them can be directly
used. L3 also provide AOD , but the resolution becomes 1◦ × 1◦ global grid, and the data is either 8 days
or 1 month.
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association between AOD and PM2.5 (Kumar et al., 2007; Foster et al., 2009), and both pre-

production and production activities affect AOD through PM2.5. Third, wind information helps

us address the spatial spillover, which occurs due to the spatial clustering of wells in PA.

The weather data is from the Parameter-elevation Regressions on Independent Slopes Model

(PRISM), a spatial climate database. PRISM provides weather data including precipitation,

mean temperature and mean dew point temperature at a daily frequency. One advantage of

PRISM is that it is based on a spatial resolution of 4 km2 pixels, which is comparable with the

size of a well’s P-area and the spatial resolution of AOD data. We process the daily precipitation,

temperature and dew point data in a similar manner to the AOD data. That is, we overlay the

4 km2 grid of weather data with P-areas and calculate the weighted average for each P-area

using the (time-invariant) interaction areas as weights.

Daily information on wind speed and direction is from the National Centers for Environ-

mental Prediction (NCEP)-U.S. Department of Energy Reanalysis II (NCEPRII). These daily

data sets are available at resolution of 2.5 degree in latitude and longitude. We assign wind

information to each P-area based on the 2.5 degree square that the centroid well is located in.

Wind speed serves as an additional control variable, and wind direction is used to address the

spatial spillover effects.10

5 Results

5.1 Model Estimation

Defining the Pre-production and Production Treatments

The duration of the two phases is unique to each well. Hence, we use each well’s timeline: permit

date, spud date, drilling and production phase, and plug date, to define its two treatments.

Specifically, the first day of the pre-production phase is set either on the spud date or on the

permit date, depending on which date is later.11 Since the data sources do not report the

10The wind is decomposed into two component: U wind speed and V wind speed. U wind is the east-west
component of wind. Positive U wind means the wind is from west to east, and negative U wind is from east
to west. V wind is the north-south component of wind. Positive V wind means the wind is from south to
north, and negative V wind is from north to south. The combination of U wind and V wind provides the
wind direction and wind speed.

11In general, a well should be permitted before being spud, but there are few cases in which permit date was
later than the spud date.
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end of the pre-production phase, we set it as the day before the first day of production, under

the assumption that wells start to produce immediately after the pre-production phase ends.

See Appendix A.1 for additional details on how we use the production report to assign the

pre-production and production treatment.

Clustered the Standard Error

When estimating the model, we cluster the standard errors by well pads. A well pad may

consist of multiple wells, where P-areas frequently overlap. Yet, in our sample, 7,884 out of

20,677 unconventional wells do not have well pad information. We therefore assume that wells

close to each other are located on the same well pad, and artificially assign the well pad ID

to every individual well. In particular, any well that is closer than 63m to any other well is

designated to be in the same well pad (Muehlenbachs et al., 2015). By comparing artificially

designated well pad ID and original well pad ID if any, only 1.9% of wells with original well pad

ID is mistakenly assigned into different artificial well pad.

5.2 Descriptive Statistics

The final sample is an unbalanced panel data consisting of 22,067 wells on 4,691 days, from

February 24, 2000 – September 20, 2018. Out of the 22,067 permitted wells, 11,470 wells

experienced pre-production or/and production phases and are included in the treatment group,

the remaining 9,207 wells were not spudded and are included in the control group.12 The

majority of the wells in our sample were permitted after 2007 and are located in southwestern

and northeaster corner of PA, as seen previously in Figure 4.

For the wells that have been spudded (i.e., wells in the treatment group), the pre-production

phase lasts on average 406 days. Once the pre-production phase ends, wells produce for as long

as 1,805 days (5 years), on average, until the production is completed. Table 1 presents summary

statistics for our main analysis sample. We compare the mean statistics from the full sample

and subsamples with treatment group observations in the pre-treatment period, pre-production

period, production period, and control group observations separately. The mean daily AOD is

0.23 per P-area, with a standard deviation of 0.26. As shown in Table 1, through the whole

12In our data set, out of the 11,470 wells in the treatment group, 2,184 wells experienced pre-production phase
only, 94 wells had information on production phase only, and 9,192 wells experienced both phases.
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Table 1: Descriptive Statistics

Panel I: Key Variables

Treated

Full Sample Pre-Treatment Construction Production Control

AOD 0.2275 0.2397 0.2005 0.1946 0.2267
(0.2608) (0.2726) (0.2215) (0.2160) (0.2619)

Precipitation (mm) 1.2192 1.2141 1.1974 1.2287 1.2230
(4.4304) (4.4876) (4.0946) (4.2256) (4.4521)

Temperature (Celsius) 12.3195 12.3527 12.0260 12.4069 12.2875
(7.9863) (7.8705) (8.3065) (8.3144) (7.9817)

Dew Point (Celsius) 5.4960 5.4368 5.2807 5.7628 5.4972
(8.5333) (8.4274) (8.7536) (8.8462) (8.5307)

Wind Speed (m/s) 3.9783 3.9655 3.9954 3.9791 3.9886
(2.1202) (2.1165) (2.1345) (2.1190) (2.1230)

Panel II: Spillover Variables

Treated

Full Sample Pre-Treatment Construction Production Control

Pre-production treatment 0.2227 0.1115 1.8842 0.3392 0.1760
in 0-2 km ring (0.9799) (0.6676) (2.5011) (1.2325) (0.8339)

Pre-production treatment 0.7874 0.5145 2.7146 1.6458 0.6796
in 2-5 km ring (2.3467) (1.9266) (4.1321) (3.2900) (2.1039)

Pre-production treatment 2.2152 1.4814 6.0632 4.6138 1.9974
in 5-10 km ring (5.2077) (4.3891) (7.8726) (6.8318) (4.8720)

Production treatment 0.8618 0.2343 1.1749 3.8689 0.6429
in 0-2 km ring (2.2909) (1.1308) (2.3953) (3.9253) (1.8729)

Production treatment 3.0912 1.1458 5.8850 11.5251 2.5108
in 2-5 km ring (7.2320) (4.2817) (8.8516) (11.4143) (6.2403)

Production treatment 8.2211 3.3991 16.1812 27.5720 7.1076
in 5-10 km ring (18.5921) (11.5792) (23.0690) (28.6077) (16.7869)

Density Pre-production 30.8528 20.2306 87.1349 62.1165 28.5484
(Number of wells, 20 km) (50.6045) (42.4766) (63.8144) 56.6762 48.9225

Density Production 113.8012 47.4958 223.1352 363.2004 103.0471
(Number of wells, 20 km) (203.3654) (121.7000) (226.0386) (262.6684) (192.5515)

Density Inactive 17.5413 7.4077 30.1685 54.2171 16.5211
(Number of wells, 20 km) (35.1427) (24.4105) (36.2823) (49.1666) (32.5558)

Number of observations 31,531,987 12,894,727 1,004,184 3,607,236 14,025,840

Number of wells 20,677 11,470 11,376 9,286 9,207

AOD is missing for all observations receiving pre-production treatments with centroid well OBJECTID 383270.
107 wells are transformed from conventional to unconventional, their pre-production phases are not considered.
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study period (Feb. 2000 – Sep. 2018), the treated areas’ pre-treatment P-areas’ average AOD

is higher than control, but treated P-areas’ average AOD is smaller. This might be explained

by the combination of (i) the majority of wells were constructed and producing in later years

and (ii) the AOD is declining over time in our sample, as shown in the first panel of Figure A1.

The mean statistics of weather variables are relatively stable across full sample and subsamples.

The rest of Figure A1 describes the yearly trend of weather variables.

In Panel II of Table 1, we summarizes the mean statistics of the spatial spillover variables.

The non-random spatial clustering is clearly shown: subsample of pre-production observations

has the largest mean values for the spatial spillover treatments of pre-production across all 3

distance bins as well as the highest density of wells in the pre-production phase in a 20km

radius around centroid well. Likewise, the subsample of production observations has the largest

mean value of spatial spillover treatments of production across all 3 distance bins as well as

the highest density of wells under production in a 20km radius around centroid well. These

statistics suggest the existence of the nonrandom spatial and temporal spillovers. We also find

the subsample of production observations has a higher average density of inactive wells than

the other samples.

5.3 Testing the Common Trend Assumption

The validity of our difference-in-differences estimation depends on the credibility of our control

group P-areas to provide a reliable counterfactual. One way to assess the credibility is to test if

the treatment and control groups share a common trend prior to the occurrence of the treatment.

To test common trend assumption, we compare the daily differences between pre-treatment

observations from the treated group and their corresponding control group observations on the

same dates. Because we have staggered treatments on a large number of treated P-areas, the

pre-treatment observations from the treated group covers all dates of our sample period, so all

control observations are used in the test. We take a subset of data that consists of pre-treatment

observations for treated P-areas and all observations for control group P-areas, and estimate

the following model:

qid = Aid
′Λ + Zid

′ζ + µi + σd + σd × Ti + uid, (3)
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where Ti is the group fixed effect, with Ti = 1 indicating P-area i is in the treated group (i.e.,

pre-production or production), and Ti = 0 indicating P-area i is in the control group. σd is

the day dummies. The coefficients on the interaction term σd× Ti capture the difference in the

time trend in AOD between the treated and control groups. Standard errors are clustered by

pad. Under the null hypothesis of a common trend, the coefficients on σd× Ti are insignificant.

Rejecting the null hypothesis implies the absence of the common trend of AOD between the

two groups.

Figure A2 shows the estimated coefficients of σd × Ti along with 99% confidence intervals.

Because 87% of the coefficients are not significantly different from zero, we conclude that the

pre-treatment trends in AOD in both groups are similar, and thus the P-areas with permitted

but not spudded centroid wells serve as a suitable control group, providing us an appropriate

counterfactual for pollution in the absence of shale gas development.

5.4 Main Results

Table 2 summarizes the average treatment effect of each P-area’s own centroid well. Our baseline

DID model shows that, on average, a P-area’s AOD increases significantly when its centroid well

is in pre-production and production. However, the estimates confound the effect due to wind

blown pollution from upwind wells. Hence, our preferred benchmark estimates is based on the

spatial DID model. Similar to the baseline DID model, the spatial DID model also shows that

a well’s pre-production and production activities significantly increase the daily AOD in its P-

area. In terms of the magnitudes, the baseline model overestimates the treatment effect, possibly

because there is temporally non-random variation of pre-production and production activities

(see Figure 4), and the coefficients pick up the non-random airborne spillovers. According to

the results from the spatial DID model, pre-production activity significantly increases a well’s

P-area AOD by 0.00429, which is 2.19% relative to the average AOD in our sample. Similarly,

a well’s production activities significantly increases AOD in its P-area by 1.35%. At the same

time, we find that a well’s pre-production activities increase its P-area’s AOD more than the

production activities. Our results are similar in magnitude to Zou (2019), who found a 1.6%-

1.8% increasing in AOD when the ground PM monitor is off.

The results from the spatial DID model show that the spillover effects from wells in upwind
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areas increase local AOD. Furthermore, while this effects attenuates by distance, both for pre-

production and production treatments, it is statistically detectable at least as far as 10km from

its emission source. Additionally, pre-production activities from upwind wells have a larger

spillover effect than production activities in all the three distance rings.

5.5 Overall AOD Impact of Shale Gas Industry

We use the estimates reported in Table 2 to estimate overall increasing in AOD in each P-area

due to unconventional shale gas development. Let the overall AOD increases in P-area i on

date d be sid, then

ŝid = η̂cT
c
id + η̂pT

p
id +

∑
3bins

β̂bin,cwbin
id Hbin,c

d +
∑
3bins

β̂bin,pwbin
id Hbin,p

d . (4)

η̂c, η̂p, β̂
bin,c and β̂bin,p are estimated coefficients from our main result shown in the last column

of Table 2. We find that the overall effect of fracking increases AOD by 0.00276 for the whole

sample, and 0.01031 for the subsample of observations under treatment. This represents a 1.27%

and 5.67% increase in AOD above the background level which we estimate as b̂id = qid − ŝid,

where qid is the observed AOD level.13

6 Robustness Checks

To evaluate the validity and robustness of the causal effects found in our main analysis, we

conduct several additional analyse. First, we consider the fact that unobserved confounders

such as the local communities’ preferences and bargaining power in leasing land to the shale

gas industry that correlate with both well location and social-economic conditions, so local air

quality may lead to non-random sorting of wells into treatment and control groups. To address

this, we consider three different subsamples: one includes wells from the treatment group only,

and the other two use two different matching criteria. Second, considering the uncertainty

regarding the start and end of the pre-production phase due to data limitations, we use two

alternative pre-production phase definitions. Finally, we conduct two falsification tests. All of

these sensitivity analyses support the average treatment affects in our main analysis.

13The percentage estimation is calculated by ŝid/b̂id.
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Table 2: Summary results of average treatment effects: main analysis

DID Spatial DID

Treatments Coefficient Std. Err. Coefficient Std. Err.

Own Effects
Pre-production treatment 0.00624∗∗∗ (0.00040) 0.00429∗∗∗ (0.00039)
Production treatment 0.00463∗∗∗ (0.00040) 0.00258∗∗∗ (0.00036)

Spillover Effects
Pre-production treatments in 0–2 km ring 0.00101∗∗∗ (0.00010)
Pre-production treatments in 2–5 km ring 0.00050∗∗∗ (0.00004)
Pre-production treatments in 5–10 km ring 0.00008∗∗∗ (0.00002)
Production treatments in 0–2 km ring 0.00066∗∗∗ (0.00008)
Production treatments in 2–5 km ring 0.00026∗∗∗ (0.00003)
Production treatments in 5–10 km ring 0.00002∗∗∗ (0.00001)

Control Variables
Weather, well densities in 20km
circular area, Two-way FEs Y Y

Adjusted R2 0.76 0.76
Sample Size 31,531,987 31,531,987

Note: The full results are reported in Appendix Table A3. The daily weather controls are mean
precipitation, mean dew point, mean temperate and wind speed. The 20 km circular background
condition include numbers of wells of three different operation status: pre-production, production,
and inactive. Standard errors are clustered by well pads.

6.1 Using Treatment Group Only

Each well in the treatment group began pre-production or production phases at a different point

in time, staggering the treatments in our sample. As Goodman-Bacon (2018) and Athey and

Imbens (2018) have discussed, not only observations in the control group, but treatment group

observations during the pre-treatment period and post-treatment period can also provide a valid

counterfactual. For the sake of eliminating any confounding unobserved factors, we re-estimate

the standard and spatial difference-in-differences models using a subsample of P-areas from the

treatment group only.

The average treatment effects are reported in Table 3 are highly consistent with the main

results: pre-production treatment and production treatment increase the AOD significantly; pre-

production increases AOD more than production activities; and spillover effects from upwind

wells’ pre-production and production operations are significant and attenuate with distance.

The magnitudes of the estimated coefficients are comparable to these in Table 2.
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Table 3: Robustness check: using treatment group P-areas only

DID Spatial DID

Treatments Coefficient Std. Err. Coefficient Std. Err.

Own Effects
Pre-production treatment 0.00651∗∗∗ (0.00040) 0.00475∗∗∗ (0.00040)
Production treatment 0.00488∗∗∗ (0.00060) 0.00281∗∗∗ (0.00059)

Spillover Effects
Pre-production treatments in 0–2 km ring 0.00086∗∗∗ (0.00010)
Pre-production treatments in 2–5 km ring 0.00048∗∗∗ (0.00004)
Pre-production treatments in 5–10 km ring 0.00008∗∗∗ (0.00002)
Production treatments in 0–2 km ring 0.00060∗∗∗ (0.00009)
Production treatments in 2–5 km ring 0.00025∗∗∗ (0.00003)
Production treatments in 5–10 km ring 0.00003∗∗∗ (0.00001)

Control Variables
Weather, well densities in 20km
circular area, Two-way FEs Y Y

Adjusted R2 0.76 0.76
Sample Size 17,506,147 17,506,147

Note: The full results are reported in Appendix Table A4. The weather controls are daily mean pre-
cipitation, daily mean dew point, daily mean temperate, wind speed. The 20 km circular background
condition include numbers of wells of three different operation status: pre-production, production,
and inactive. Standard errors are clustered by well pads.

6.2 Using Matched Samples

Figure 4 suggests non-randomness of the treatment across locations and permit issue dates.

For example, there is a cluster of wells in the northeastern part of PA receiving permit during

2012–2015, whereas there is another cluster of wells in the southwestern part receiving permit

after 2015. We trim this sample using two matching strategies to eliminate possible systematic

differences driven by such non-randomness. In both matching strategies, wells in the control

group are used repeatedly. The first strategy uses one-to-one matching by distance, permit year,

and permit month. That is, each P-area in the treatment group is matched with the closest

P-area in the control group, such that the centroid wells from the two P-areas are permitted in

the same month and same year. The second strategy is one-to-one matching by distance, permit

year, and county. In this case, each P-area in the treatment group is matched with its closest

P-area in the control group from the same county, and the centroid wells of the two P-areas were

permitted in the same year. These two matching strategies allow us to exclude control group

observations from P-areas that are temporally and geographically distant from the regional

clusters in the treatment group, so as to obtain a potentially more reliable counterfactual.
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The first matching strategy gives us 11,368 wells in the treatment group and 3,000 wells in

the control group. The average distance between a matched treatment P-area and a control P-

area is 16.43 KM. The second matching strategy gives us 11,293 wells in the treatment group and

2,833 wells in the control group. The average distance between the matched treatment P-area

and control P-area is 3.45 KM. For both subsamples, we find that the AOD balance is slightly

improved, with the difference in the average AOD between the pre-treatment observations and

control observations reduced from 0.013 to about 0.011. Figure A3 and Figure A4 demonstrate

the locations of the wells in two matched subsamples. Using the two matched subsamples, we

re-run the DID and spatial DID model, with the results reported in Table 4. The results are

remarkably consistent with the main findings reported in Table 2.

Table 4: Robustness check: using matched samples

Matched sample 1 Matched sample 2

DID Spatial DID DID Spatial DID

Own Effects
Pre-production treatment 0.00609∗∗∗ 0.00436∗∗∗ 0.00624∗∗∗ 0.00452∗∗∗

(0.00039) (0.00038) (0.00039) (0.00038)
Production treatment 0.00449∗∗∗ 0.00262∗∗∗ 0.00475∗∗∗ 0.000291∗∗∗

(0.00051) (0.00048) (0.00051) (0.00049)
Spillover Effects

Pre-production treatments in 0–2 km ring 0.00093∗∗∗ 0.00093∗∗∗

(0.00010) (0.00010)
Pre-production treatments in 2–5 km ring 0.00043∗∗∗ 0.00048∗∗∗

(0.00004) (0.00004)
Pre-production treatments in 5–10 km ring 0.00008∗∗∗ 0.00008∗∗∗

(0.00002) (0.00002)
Production treatments in 0–2 km ring 0.00061∗∗∗ 0.00060∗∗∗

(0.00008) (0.00009)
Production treatments in 2–5 km ring 0.00026∗∗∗ 0.00027∗∗∗

(0.00003) (0.00003)
Production treatments in 5–10 km ring 0.00002∗∗∗ 0.00002∗∗∗

(0.00001) (0.00001)

Control Variables
Weather, well densities in 20km
circular area, Two-way FEs Y Y

Adjusted R2 0.76 0.76 0.76 0.76
Sample Size 21,949,389 21,949,389 21,583,079 21,583,079

Note: The full results are reported in Appendix Table A5 and Table A6. The weather controls are daily
mean precipitation, daily mean dew point, daily mean temperate, wind speed. The 20 km circular back-
ground condition include numbers of wells of three different operation status: pre-production, production,
and inactive. Standard errors are clustered by well pads.
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6.3 Using Extended Pre-production Phase

In the main analysis, we assume that pre-production operations start on the spud date. But, the

activities associated with pre-production phase might begin before the spud date. For example,

building roads for accessing the well site and delivering equipment to the well site takes several

weeks (Hill, 2018), both of which usually take place before spudding a well. Taking this into

consideration, we extend the pre-production phase by one week and one month before the spud

date, respectively, and re-estimate our model under these new definitions of the pre-production

treatment.

Table 5 reports the results. The results of both baseline DID and spatial DID are not

sensitive to the change of pre-production phase length. These results suggest the possibility

that some pre-production activities may have commenced months before spud date, but the

accuracy of our results stands.

Table 5: Robustness check: spatial DID using extended pre-production phase

Extended by 7 days Extended by 30 days

DID Spatial DID DID Spatial DID

Own Effects
Extended pre-production treatment 0.00626∗∗∗ 0.00434∗∗∗ 0.00620∗∗∗ 0.00433∗∗∗

(0.00040) (0.00039) (0.00039) (0.00038)
Production treatment 0.00466∗∗∗ 0.00260∗∗∗ 0.00470∗∗∗ 0.00264∗∗∗

(0.00049) (0.00046) (0.00049) (0.00046)

Spillover Effects
Pre-production treatments in 0–2 km ring 0.00101∗∗∗ 0.00101∗∗∗

(0.00010) (0.00010)
Pre-production treatments in 2–5 km ring 0.00050∗∗∗ 0.00050∗∗∗

(0.00004) (0.00004)
Pre-production treatments in 5–10 km ring 0.00008∗∗∗ 0.00008∗∗∗

(0.00002) (0.00002)
Production treatments in 0–2 km ring 0.00066∗∗∗ 0.00066∗∗∗

(0.00008) (0.00008)
Production treatments in 2–5 km ring 0.00026∗∗∗ 0.00026∗∗∗

(0.00003) (0.00003)
Production treatments in 5–10 km ring 0.00002∗∗ 0.00002∗∗

(0.00001) (0.00001)
Control Variables

Weather, well densities in 20km
circular area, Two-way FEs Y Y Y Y

Adjusted R2 0.76 0.76 0.76 0.76
Sample Size 31,531,987 31,531,987 31,531,987 31,531,987

Note: The full results are reported in Appendix Table A7.
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6.4 Falsification Test

To validate the causal nature of our estimates, we implement falsification tests by excluding

observations with true treatments and assigning placebo treatments on alternative days. We

consider 2 placebo tests with arbitrary placebo treatments: in the first placebo test, we assign a

placebo treatment from 1,080 days (about 3 years) before the pre-production phase to 720 days

(about 2 years) before pre-production phase. In the second placebo test, we assign a placebo

treatment from 1,440 days (about 4 years) before the pre-production phase to 1,080 days (about

3 years) before the pre-production phase. We assign a single placebo treatment for each test

and do not distinguish between placebo pre-production and placebo production treatments.

The results are reported in Table 6: the coefficients on the placebo treatments are statis-

tically insignificant, while the true spillover effects remains positive and significant. Thus, our

results survive the two falsification tests, showing little evidence that the true treatments effect

are distorted by AOD trends in the pre-treatment period.

Table 6: Robustness check: falsification tests

Placebo Test 1 Placebo Test 2

DID Spatial DID DID Spatial DID

Placebo Treatment 0.00019 0.00036 -0.00015 0.00008
(0.00034) (0.00033) (0.00034) (0.00034)

True Spillover Effects
Pre-production treatments in 0–2 km ring 0.00120∗∗∗ 0.00119∗∗∗

(0.00012) (0.00012)
Pre-production treatments in 2–5 km ring 0.00055∗∗∗ 0.00055∗∗∗

(0.00005) (0.00005)
Pre-production treatments in 5–10 km ring 0.00013∗∗∗ 0.00013∗∗∗

(0.00002) (0.00002)
Production treatments in 0–2 km ring 0.00070∗∗∗ 0.00070∗∗∗

(0.00010) (0.00010)
Production treatments in 2–5 km ring 0.00029∗∗∗ 0.00029∗∗∗

(0.00004) (0.00004)
Production treatments in 5–10 km ring 0.00002∗ 0.00002∗

(0.00001) (0.00001)

Control Variables
Weather, well densities in 20km
circular area, Two-way FEs Y Y Y Y

Adjusted R2 0.76 0.77 0.76 0.77
Sample Size 26,920,567 26,920,567 26,920,567 26,920,567

Note: The full results are reported in Appendix Table A8. Standard errors are clustered by well pads.
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7 Welfare Analysis

Is the estimated increase in AOD due to shale gas development economically meaningful? To

answer this question, we use a concentration response function to estimate the increase in

mortality due to the increase in local PM pollution associated with the overall increase in AOD

due to the shale gas development.

7.1 Convert AOD to PM 2.5

Epidemiological concentration response functions describe the magnitude of a population level

health response from exposure to pollution. A first step in applying a concentration response

function is to translate the change in AOD to a change in PM 2.5 concentration. To do this, we

utilize the random coefficient model proposed by Lee et al. (2011). To predict the daily PM 2.5

concentrations for each P-area14, we use daily PM 2.5 concentration data from all 41 monitors

located in Pennsylvania to estimate the random coefficient model, and then use the estimated

coefficients to predict the daily change in PM 2.5 concentration for each P-area due to fracking

activities. Specifically, we estimate the following regression:

PMjd = (α+ ud) + (β + vd)qjd +mj + εjt, (5)

where j denotes the monitor site, and d denotes date. qjd is the average AOD value in a 3KM

radius area surrounding each PM 2.5 monitor. mj is the monitor specific random intercept,

ud is the date specific random intercept, and vd is the daily random component in the slope of

AOD. We assume mj ∼ N(0, σ2m), (ud, vd) ∼ N((0, 0),Σ), and

Σ =

 σ2u σuσv

σuσv σ2v

 ,
and estimate equation 5 using maximum likelihood. Figure A5 shows that the predicted PM

2.5 concentration fits the true PM 2.5 concentration in the vicinity of ground monitors with

R2 = 0.78. Let α̂ and β̂ be the estimated coefficients, let ûd and v̂d be the daily value of random

components. Recall that the background AOD impact is b̂it = qid− ŝid, where qid is the observed

14We do not observe daily PM 2.5 concentration on a fine geographic scale. This is our original motivation
for using satellite-based AOD data rather than ground level measures of PM 2.5 concentration.
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AOD, and ŝid is the estimated AOD impact due to the shale gas development. The estimated

PM 2.5 concentration and ambient/background PM 2.5 concentration can be represented by

̂PM2.5id = α̂+ ûd + (β̂ + v̂d)qid + m̂i, (6)

˜PM2.5id = α̂+ ûd + (β̂ + v̂d)b̂id + m̂i. (7)

where i is the P-area index and d is the date index. qid is the observed AOD, and m̂i is the

estimated random intercept of each P-area. Then, the daily change in PM2.5 concentration due

to shale gas development ∆ ̂PM2.5id is estimated as

∆ ̂PM2.5id = ̂PM2.5id − ˜PM2.5id = (β̂ + v̂d)ŝid. (8)

We find that on average, shale gas development increases the daily PM concentration by

0.017mg/m3 for the whole sample, and 0.062mg/m3 for the P-areas in the treatment group.

7.2 Mortality Impact

We estimate the change in mortality rates due to the estimated change in PM 2.5 concentration

at the census block group level by year. We obtain the mortality data from CDC WONDER at

the county level, which is the finest spatial resolution at which mortality data are available to the

public. We obtain population data from the American Community Survey at the census block

group level. Let the mortality rate for census block group k in year t be λkt. We assume that

mortality is uniformly distributed across census block groups within a county, so λk′t = λk′′t if

census block group k′ and k′′ are in the same county. Let the impact in PM 2.5 concentration of

shale gas development on census block group k be ∆PM2.5kt. We approximate ∆PM2.5kt by

averaging the yearly average overall impact in PM 2.5 concentration of P-areas whose centroid

wells are located in census block group k. That is, ∆PM2.5kt = 1
Nkt

∑
i∈Ik,d∈t ∆ ̂PM2.5id, where

Nkt is the total number of centroid wells in census block k and date in year t (i ∈ Ik and d ∈ t).

(Krewski et al., 2009; Lepeule et al., 2012) estimate mortality concentration-response func-

tions for PM 2.5 concentration. They utilize a Cox proportional-hazard model with log-linear

functional form, which is also used by the EPA for Regulatory Impact Analysis (Fowlie et al.,
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Table 7: Mortality Impact, 671 census block group containing P-areas

Year Cardio COPD All Death Population

2010 0.69
(3,104.83)

0.09
(555.43)

1.22
(9,522.19)

841,848

2011 1.16
(3,084.53)

0.15
(568.97)

2.10
(9,765.50)

845,607

2012 1.32
(3,022.89)

0.17
(543.39)

2.42
(9,670.84)

843,169

2013 1.11
(3,090.76)

0.15
(579.48)

2.04
(9,912.32)

845,133

2014 1.35
(3,053.58)

0.18
(555.91)

2.53
(9,866.78)

843,801

2015 1.96
(3,122.42)

0.28
(589.06)

3.70
(10,159.49)

838,444

2016 1.48
(3,111.75)

0.19
(553.01)

2.73
(10,074.72)

833,749

2017 1.78
(3,133.03)

0.23
(592.83)

3.36
(10,488.52)

828,150

Total 10.85
(24,723.80)

1.44
(4,538.08)

20.11
(79,420)

Numbers in parentheses describe the death count.

2019). We use the same method to estimate the impact in mortality rate:

∆Deathskt = Popktλkt
(
1− exp(−γ̂∆PM2.5kt)

)
, (9)

where γ̂ is the proportional hazard coefficient estimated by Lepeule et al. (2012), and Popkt

is the block group k’s population in year t. Appendix A.8 shows the detailed derivation of

Equation 9.

Following previous studies, we estimate mortality due to all causes, cardiovascular disease,

and chronic obstructive pulmonary disease (COPD). Let γ̂ALL, γ̂CARD, and γ̂COPD be the esti-

mated coefficient of the proportional hazard coefficients. Lepeule et al. (2012)’s study suggests

that for every 1 ug/m3 increment in PM 2.5 concentration, γ̂ALL = 0.0131, γ̂CARD = 0.0231,

and γ̂COPD = 0.0157. Table 7 reports the estimated impact on mortality of the shale gas indus-

try through PM 2.5 pollution for 671 census block groups in Pennsylvania where unconventional

wells are located. Table 8 reports the estimated impact on mortality of all causes in top 4 coun-

ties in terms of the numbers of active shale gas wells. Our results suggest that from 2010 to 2017,

shale gas development caused an additional 20.11 deaths in a population of 840,000 through PM
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Table 8: Mortality Impact of All Death, counties with most P-areas with active wells

Year Washington Susquehanna Bradford Greene

2010 0.28
(1,043.55)

0.05
(343.67)

0.11
(440.22)

0.10
(377.18)

2011 0.40
(1,085.06)

0.12
(354.03)

0.22
(436.16)

0.16
(351.16)

2012 0.43
(1,085.50)

0.14
(316.28)

0.20
(416.10)

0.18
(367.02)

2013 0.39
(1,101.69)

0.13
(347.16)

0.14
(453.45)

0.17
(354.29)

2014 0.50
(1,096.74)

0.18
(377.50)

0.15
(467.68)

0.22
(319.16)

2015 0.78
(1,133.99)

0.32
(383.46)

0.21
(484.69)

0.36
(385.46)

2016 0.65
(1,112.75)

0.19
(350.74)

0.14
(442.50)

0.28
(371.86)

2017 0.83
(1,161.92)

0.24
(373.37)

0.16
(469.44)

0.34
(366.65)

Total 4.26
(8,821.21)

1.34
(2.846.20)

1.33
(3,610.24)

1.82
(2,892.78)

P-areas (Active Wells) 1,785 1,553 1,465 1,336

All P-areas 2,776 2,519 3,338 2,100

Numbers in parentheses describe the death count.
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2.5 emissions. Among all counties, Washington County is mostly affected, with an additional

4.26 deaths between 2010 and 2017. Using a value of statistical life of $7.4 million (2006 dollars)

(https://www.epa.gov/environmental-economics/mortality-risk-valuation), the total mortality

effect of additional 20.11 deaths can be translated to an economic loss of $148.814 million. This

is a lower bound of the total economic loss which is expected to be larger when considering all

types of pollution associated with shale gas development.

8 Conclusion and Discussion

The paper estimates use satellite based AOD data to detect the PM pollution from shale gas

wells at hyperlocal area. We find significant impact in PM concentration due to the shale gas

wells pre-production and production activities in the vicinity of well, with the marginal increase

in AOD is higher during pre-production (2.19% relative to the baseline AOD) than during

production (1.35% of baseline). Our results suggest that the PM pollution from shale gas wells

can travel through wind for up to 10 kilometers, but the pollution disperses and the impact

decreases in distance. Accounting for airborne spillovers, fracking increases AOD by 1.27%

for the whole sample, and by 5.67% for the subsample of P-areas with a treated well. These

overall increases in AOD imply that daily PM concentrations increased by 0.017mg/m3 and

0.062mg/m3, respectively, in the average P-area. Besides, we estimate the impact in mortality

caused by the PM emissions from shale gas wells. We find that from 2010 to 2017, there are 671

census block groups across 40 counties that have shale gas wells located in, and there are about

840,000 populations living around shale gas wells. The estimated PM emissions from shale gas

wells causes additional 20.11 deaths among these communities.

Currie et al. (2017) and Hill (2018) find that the shale gas development has negative impact

in local health outcomes, but there is limited knowledge about through what channels shale

gas development affecting health. While there are several studies showing how the shale gas

development generates air and water pollution, there is no previous research directly link these

pollution to local health outcomes. Our study contribute to the literature by filling this gap.

This paper not only provides understandings of how the shale gas wells affect the air quality

through PM emissions, but also shows empirical evidence that shale gas wells cause extra

mortality in the local communities through generating PM pollution.
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Since we only focus on the PM pollution fro shale gas industry, we are not able to estimate

the overall externalities. Future researches are needed for investigating the welfare impact of

shale gas industry through other channels, such as other air pollutants and water contamination.
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A Appendix

A.1 Production Data and Assignment of Treatments

We utilize the information on spud date, plug date, and production period to determine the

on-site activities and sources of air pollution on a specific day. We assume a well is subject

to pre-production activities from the spud date till the start of production. Assuming the

production period is continuous, we define the production period from the first production date

to either the last production date or the plug date, depending on which date is later.15 We use

the well production reports to determine the start and end of production for each well. The

production reports are available annually before July 2010 , then biannual between July 2010

and December 2014, and eventually every month.

The production reports do not have the specific starting and completion dates. We use the

report date and duration to derive the first and last date of the production phase: for each

well, we find the earliest production report cycle with positive production, and then define the

first production date as the last date in that production report cycle minus production days

plus one. The last production date is defined as the first date in the last production report

cycle plus production days minus one. The estimated last production date is used to verify the

reliability of and to fix the measurement error in the plug date provided in “Oil Gas Locations

– Unconventional” data set.

For some wells with limited and incomplete information, we make additional assumptions

to define the pre-production phase. For instance, some wells were spudded but not producing

so only the start date of the pre-production phase is available, but the end date is unknown.

Others were spudded and producing but spud date is missing so only the pre-production end

date is available, but the pre-production start date remains unknown. In these cases we use the

average pre-production phase length of wells within a 50 km radius to define the pre-production

phase. There are 1,698 wells with estimated pre-production phase length.

We do not consider the post-production period in this paper, so all observations after pro-

duction period end date are removed. In the whole sample, we have 10,479 P-areas under

15There are 50 wells with plug date before the last date of production. 47 of them have plug date more
than 500 days before production end date. All 50 wells have positive production after their listed plug date.
Therefore, we assume these plug dates are incorrectly measured.
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treatments. There are 1,846 P-areas with only pre-production treatment, 15 P-areas with only

production treatment, and 8,618 P-areas with both treatments. The remaining 8,391 P-areas do

not experience any treatment. Our definition of treatments is very consistent with well status

as reported in “Oil Gas Locations – Unconventional”. Among 10,479 wells with treatments,

only 5 of them are labelled as “Proposed But Never Materialized” or “Operator Reported Not

Drilled”. Based on their production report, they are mistakenly labelled.

A.2 Additional Summary Description

Table A1: Bivariate Correlations Between Variables

AOD Pre-production treatment Production treatment Pre-production treatment Pre-production treatment Pre-production treatment Production treatment Production treatment
in 0-2 km ring in 2-5 km ring in 5-10 km ring in 0-2 km ring in 2-5 km ring

AOD 1 - - - - - - -

Pre-production treatment -0.0188 1 - - - - - -

Production treatment -0.0454 -0.0652 1 - - - - -

Pre-production treatment -0.0254 0.3075 0.0427 1 - - - -
in 0-2 km ring
Pre-production treatment -0.0485 0.1489 0.1315 0.2564 1 - - -
in 2-5 km ring
Pre-production treatment -0.0752 0.1340 0.1655 0.2262 0.4439 1 - -
in 5-10 km ring
Production treatment -0.0513 0.0248 0.4718 0.0949 0.1987 0.2546 1 -
in 0-2 km ring
Production treatmen -0.0710 0.0701 0.4191 0.1369 0.2608 0.3606 0.5865 1
in 2-5 km ring
Production treatmen -0.0900 0.0777 0.3741 0.1427 0.2801 0.4274 0.4922 0.7381
in 5-10 km ring
Density Pre-production -0.0928 0.2409 0.2037 0.3730 0.6088 0.7789 0.3059 0.4044
(Number of wells, 20 km)
Density Production -0.0928 0.0873 0.4789 0.1630 0.3008 0.4229 0.6113 0.7995
(Number of wells, 20 km)
Density Inactive -0.0592 0.0479 0.3648 0.0684 0.1182 0.1652 0.4376 0.5254
(Number of wells, 20 km)
Precipitation (mm) 0.0276 -0.0009 0.0008 -0.0014 -0.0057 -0.0128 -0.0007 -0.0055

Dew Point (Celsius) 0.3704 -0.0046 0.0112 -0.0065 -0.0137 -0.0247 0.0081 0.0012

Temperature (Celsius) 0.3852 -0.0067 0.0039 -0.0082 -0.0147 -0.0239 0.0012 -0.0044

Wind Speed (m/s) -0.1207 0.0015 0.0001 0.0049 0.0044 0.0046 0.0070 0.0042

prod 10 Density Pre-production Density Production Density Inactive Precipitation (mm) Dew Point (Celsius) Temperature (Celsius) Wind Speed (m/s)
in 5-10 km ring (Number of wells, 20 km) (Number of wells, 20 km) (Number of wells, 20 km)

AOD - - - - - - - -

Pre-production treatment - - - - - - - -

Production treatment - - - - - - - -

Pre-production treatment - - - - - - - -
in 0-2 km ring Pre-production treatment - - - - - - - -
in 2-5 km ring Pre-production treatment - - - - - - - -
in 5-10 km ring Production treatment - - - - - - - -
in 0-2 km ring Production treatment - - - - - - - -
in 2-5 km ring Production treatment 1 - - - - - - -
in 5-10 km ring Density Pre-production 0.4475 1 - - - - - - -
(Number of wells, 20 km)
Density Production 0.8542 0.5218 1 - - - - -
(Number of wells, 20 km)
Density Inactive 0.5024 0.2064 0.6089 1 - - - -
(Number of wells, 20 km)
Precipitation (mm) 0.0110 -0.0141 -0.0114 -0.0041 1 - - -

Dew Point (Celsius) -0.0059 -0.0303 -0.0043 0.0095 0.1916 1 - -

Temperature (Celsius) -0.0094 -0.0308 -0.0095 -0.0096 0.1091 0.9490 1 -

Wind Speed (m/s) 0.0025 0.0050 0.0030 0.0143 0.1030 -0.2275 -0.2536 1
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Figure A1: Time Trend – AOD and weather variables

A.3 Common Trend Test

Figure A2: Common Trend Test

Table A2: Common Trend Significance Dates

Significance Level 10% 5% 1% 0.1% Overall

Number of Significant Dates 1,337 1,028 598 315 4,609
Significant Dates Ratio 29.01% 22.30% 12.97% 6.83%
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A.4 Additional Discussion of Main Results

Figure 2, 3 and 4 show the geographical location of all unconventional wells in PA. We find

clusters of unconventional wells in northeast and southwest PA, with a spatial segregation

between the treatment and control groups as shown in figure 2 and 3. This can be explained by

figure 4, as the distribution of treatment group with both pre-production and production are

quite similar to wells with permits issued in 2008-2011, and the distribution of control group

is quite similar to wells with permits issued in 2012-2015. These wells belong to the control

group because of the late development of the local shale gas industry, and it is possible they

will operate in the future.

The coefficients of ”Density Pre-production” and ”Density Production” are significantly

negative, but the coefficient of ”Density Inactive” is significantly positive. That is because the

density variables have ambiguous effect in the baseline model: First, larger densities means less

infrastructure construction and lower AOD. Second, larger densities means more pre-production,

production and inactive wells nearby, which increases AOD. Inactive wells may also contribute

to AOD because of the cleanup process after the well no longer operated.

Table A3 reports the estimation results of the baseline model and spatial difference-in-

differences model. Column (1) and (2) report the results from the baseline model, and column

(3) and (4) report the results from spatial difference-in-differences model. Column (1) gives

very counter-intuitive results, as pre-production phase does not affect air quality, and produc-

tion period makes air quality even better. Without controlling density variables, the estimation

is heavily biased, because the segregation of treatment group and control group causes the treat-

ments to be non-random in location and time, and makes tow groups incomparable. Column (3)

does not include density variables, but by doing spatial difference-in-differences, the coefficients

of ”Pre-production” and ”Production” become significantly positive. However, some coefficients

of spatial spillover variables are still counter-intuitive. That is because spatial spillover vari-

ables are correlated with number of wells nearby, and partially account for the densities. It also

means that density variables are confounders of both treatment dummy variables and spatial

spillover variables, and excluding density variables in the regression may downward bias the

estimation results. Column (2) and column (4) include density variables in the regression, and

the treatment effects of pre-production phase and production period are significantly positive.
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Table A3: Main Analysis

AOD
DID Spatial DID

(1) (2) (3) (4)

Own Effects

Pre-production treatment 0.00028 0.00624∗∗∗ 0.00191∗∗∗ 0.00429∗∗∗

(0.00033) (0.00040) (0.00033) (0.00039)

Production treatment −0.00078∗∗∗ 0.00463∗∗∗ 0.00102∗∗∗ 0.00258∗∗∗

(0.00030) (0.00049) (0.00032) (0.00036)

Spillover Effects

Pre-production treatment from 0–2 km ring 0.00029∗∗∗ 0.00101∗∗∗

(0.00008) (0.00010)

Pre-production treatment from 2-5 km ring −0.00015∗∗∗ 0.00050∗∗∗

(0.00004) (0.00004)

Pre-production treatment from 5–10 km ring −0.00066∗∗∗ 0.00008∗∗∗

(0.00002) (0.00002)

Production treatments from 0–2 km ring 0.00037∗∗∗ 0.00066∗∗∗

(0.00006) (0.00008)

Production treatments from 2–5 km ring 0.00009∗∗∗ 0.00026∗∗∗

(0.00002) (0.00003)

Production treatments from 5–10 km ring −0.00035∗∗∗ 0.00002∗∗

(0.00001) (0.00001)

Covariates

Number of Pre-production treatment wells in 0-20km −0.00013∗∗∗ −0.00016∗∗∗

(0.00000) (0.00000)

Number of production wells in 0-20km −0.00008∗∗∗ −0.00009∗∗∗

(0.00000) (0.00000)

Number of inactive wells in 0-20km 0.00023∗∗∗ 0.00022∗∗∗

(0.00001) (0.00001)

Daily precipitation 0.00018∗∗∗ 0.00020∗∗∗ 0.00018∗∗∗ 0.00020∗∗∗

(0.00003) (0.00003) (0.00003) (0.00003)

Daily mean dew point 0.01319∗∗∗ 0.01247∗∗∗ 0.01300∗∗∗ 0.01245∗∗∗

(0.00012) (0.00011) (0.00012) (0.00011)

Daily mean temperature −0.00339∗∗∗ −0.00286∗∗∗ −0.00315∗∗∗ −0.00287∗∗∗

(0.00009) (0.00009) (0.00009) (0.00009)

Wind Speed −0.00155∗∗∗ −0.00157∗∗∗ −0.00154∗∗∗ −0.00158∗∗∗

(0.00008) (0.00008) (0.00008) (0.00008)

Well FE Y Y Y Y

Date FE Y Y Y Y

Cluster PAD PAD PAD PAD

Observations 31,531,987 31,531,987 31,531,987 31,531,987
R2 0.76073 0.76259 0.76122 0.76268
Adjusted R2 0.76054 0.76240 0.76103 0.76248
Residual Std. Error 0.12761 (df = 31506614) 0.12712 (df = 31506611) 0.12748 (df = 31506608) 0.12709 (df = 31506605)

Wind speed is the daily wind speed at the location of centroid well of each P-area;
Standard errors are clustered by well pad;
Standard errors: ∗∗∗p < .01,∗∗ p < .05,∗ p < .1;
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A.5 Full Results of Robustness Check

Table A4: Sensitivity Analysis 1 – Using Treatment Group Only

AOD
Baseline Model Spatial Diff-in-diff Model

(1) (2) (3) (4)

Pre-production treatmen 0.00058∗ 0.00651∗∗∗ 0.00200∗∗∗ 0.00475∗∗∗

(0.00033) (0.00040) (0.00035) (0.00040)

Production −0.00069∗ 0.00488∗∗∗ 0.00070∗ 0.00281∗∗∗

(0.00038) (0.00060) (0.00042) (0.00059)

Pre-production 2 0.00019∗∗ 0.00086∗∗∗

(0.00009) (0.00010)

Pre-production 5 −0.00015∗∗∗ 0.00048∗∗∗

(0.00004) (0.00004)

Pre-production 10 −0.00064∗∗∗ 0.00008∗∗∗

(0.00002) (0.00002)

Production 2 0.00032∗∗∗ 0.00060∗∗∗

(0.00007) (0.00009)

Production 5 0.00008∗∗∗ 0.00025∗∗∗

(0.00003) (0.00003)

Production 10 −0.00034∗∗∗ 0.00003∗∗

(0.00001) (0.00001)

Density Pre-production −0.00013∗∗∗ −0.00016∗∗∗

(0.00000) (0.00000)

Density Production −0.00009∗∗∗ −0.00010∗∗∗

(0.00000) (0.00000)

Density Inactive 0.00021∗∗∗ 0.00021∗∗∗

(0.00001) (0.00001)

Daily Precipitation 0.00016∗∗∗ 0.00019∗∗∗ 0.00016∗∗∗ 0.00019∗∗∗

(0.00003) (0.00003) (0.00003) (0.00003)

Daily mean dew point 0.01374∗∗∗ 0.01296∗∗∗ 0.01355∗∗∗ 0.01294∗∗∗

(0.00014) (0.00014) (0.00014) (0.00014)

Daily mean temperature −0.00342∗∗∗ −0.00284∗∗∗ −0.00318∗∗∗ −0.00285∗∗∗

(0.00011) (0.00011) (0.00011) (0.00011)

Wind Speed −0.00181∗∗∗ −0.00185∗∗∗ −0.00180∗∗∗ −0.00186∗∗∗

(0.00008) (0.00008) (0.00009) (0.00008)

Well FE Y Y Y Y

Date FE Y Y Y Y

Cluster PAD PAD PAD PAD

Observations 17,506,147 17,506,147 17,506,147 17,506,147
R2 0.76242 0.76444 0.76294 0.76454
Adjusted R2 0.76221 0.76423 0.76272 0.76432
Residual Std. Error 0.12672 (df = 17490026) 0.12618 (df = 17490023) 0.12658 (df = 17490020) 0.12615 (df = 17490017)

Standard errors: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A5: Sensitivity Analysis 2 – Standard Diff-in-Diff Using Matched Samples

AOD
Matched sample 1 Matched sample 2 Matched sample 1 Matched sample 2

(1) (2) (3) (4)

Pre-production 0.00050 0.00047 0.00609∗∗∗ 0.00624∗∗∗

(0.00032) (0.00032) (0.00039) (0.00039)

Production −0.00051 −0.00057∗ 0.00449∗∗∗ 0.00475∗∗∗

(0.00031) (0.00032) (0.00051) (0.00051)

Density Pre-production −0.00013∗∗∗ −0.00013∗∗∗

(0.00000) (0.00000)

Density Production −0.00009∗∗∗ −0.00009∗∗∗

(0.00000) (0.00000)

Density Inactive 0.00021∗∗∗ 0.00021∗∗∗

(0.00001) (0.00001)

Daily precipitation 0.00018∗∗∗ 0.00017∗∗∗ 0.00020∗∗∗ 0.00019∗∗∗

(0.00003) (0.00003) (0.00003) (0.00003)

Daily mean dew point 0.01347∗∗∗ 0.01347∗∗∗ 0.01271∗∗∗ 0.01270∗∗∗

(0.00013) (0.00014) (0.00012) (0.00013)

Daily temperature −0.00341∗∗∗ −0.00344∗∗∗ −0.00284∗∗∗ −0.00286∗∗∗

(0.00010) (0.00010) (0.00010) (0.00010)

Wind Speed −0.00173∗∗∗ −0.00174∗∗∗ −0.00176∗∗∗ −0.00177∗∗∗

(0.00008) (0.00008) (0.00008) (0.00008)

Well FE Y Y Y Y

Date FE Y Y Y Y

Cluster PAD PAD PAD PAD

Observations 21,949,389 21,583,079 21,949,389 21,583,079
R2 0.76163 0.76201 0.76361 0.76400
Adjusted R2 0.76142 0.76180 0.76340 0.76379
Residual Std. Error 0.12710 (df = 21930365) 0.12700 (df = 21564321) 0.12657 (df = 21930362) 0.12647 (df = 21564318)

The matched subsample 1 is matched by distance, permit year and permit month.
The matched subsample 2 is matched by distance, permit year and county.
Standard errors: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A6: Sensitivity Analysis 3 – Spatial Diff-in-Diff Using Matched Samples

AOD
Matched sample 1 Matched sample 2 Matched sample 1 Matched sample 2

(1) (2) (3) (4)

Pre-production 0.00191∗∗∗ 0.00192∗∗∗ 0.00436∗∗∗ 0.00452∗∗∗

(0.00033) (0.00033) (0.00038) (0.00038)

Production 0.00088∗∗∗ 0.00092∗∗∗ 0.00262∗∗∗ 0.00291∗∗∗

(0.00034) (0.00034) (0.00048) (0.00049)

Pre-production 2 0.00022∗∗ 0.00021∗∗ 0.00093∗∗∗ 0.00093∗∗∗

(0.00009) (0.00009) (0.00010) (0.00010)

Pre-production 5 −0.00015∗∗∗ −0.00015∗∗∗ 0.00043∗∗∗ 0.00048∗∗∗

(0.00004) (0.00004) (0.00004) (0.00004)

Pre-production 10 −0.00065∗∗∗ −0.00065∗∗∗ 0.00008∗∗∗ 0.00008∗∗∗

(0.00002) (0.00002) (0.00002) (0.00002)

Production 2 0.00033∗∗∗ 0.00031∗∗∗ 0.00061∗∗∗ 0.00060∗∗∗

(0.00007) (0.00006) (0.00008) (0.00009)

Production 5 0.00008∗∗∗ 0.00009∗∗∗ 0.00026∗∗∗ 0.00027∗∗∗

(0.00002) (0.00002) (0.00003) (0.00003)

Production 10 −0.00035∗∗∗ −0.00035∗∗∗ 0.00002∗∗ 0.00002∗∗

(0.00001) (0.00001) (0.00001) (0.00001)

Density Pre-production −0.00016∗∗∗ −0.00016∗∗∗

(0.00000) (0.00000)

Density Production −0.00009∗∗∗ −0.00009∗∗∗

(0.00000) (0.00000)

Density Inactive 0.00021∗∗∗ 0.00020∗∗∗

(0.00001) (0.00001)

Daily precipitation 0.00018∗∗∗ 0.00017∗∗∗ 0.00020∗∗∗ 0.00019∗∗∗

(0.00003) (0.00003) (0.00003) (0.00003)

Daily mean dew point 0.01328∗∗∗ 0.01328∗∗∗ 0.01269∗∗∗ 0.01268∗∗∗

(0.00013) (0.00013) (0.00013) (0.00013)

Daily mean temperature −0.00316∗∗∗ −0.00320∗∗∗ −0.00285∗∗∗ −0.00288∗∗∗

(0.00010) (0.00010) (0.00010) (0.00010)

Wind Speed −0.00171∗∗∗ −0.00173∗∗∗ −0.00177∗∗∗ −0.00178∗∗∗

(0.00008) (0.00008) (0.00008) (0.00008)

Well FE Y Y Y Y

Date FE Y Y Y Y

Cluster PAD PAD PAD PAD

Observations 21,949,389 21,583,079 21,949,389 21,583,079
R2 0.76214 0.76252 0.76370 0.76409
Adjusted R2 0.76193 0.76231 0.76350 0.76389
Residual Std. Error 0.12697 (df = 21930359) 0.12686 (df = 21564315) 0.12655 (df = 21930356) 0.12644 (df = 21564312)

The matched subsample 1 is matched by distance, permit year and permit month.
The matched subsample 2 is matched by distance, permit year and county.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A7: Robustness check: spatial DID using longer pre-production windows

Window 1 Window 2 Window 1 Window 2

window 0.00626∗∗∗ 0.00620∗∗∗ 0.00434∗∗∗ 0.00433∗∗∗

(0.00040) (0.00039) (0.00039) (0.00038)

prod 0.00466∗∗∗ 0.00470∗∗∗ 0.00260∗∗∗ 0.00264∗∗∗

(0.00049) (0.00049) (0.00046) (0.00046)

window 2 0.00101∗∗∗ 0.00101∗∗∗

(0.00010) (0.00010)

window 5 0.00050∗∗∗ 0.00050∗∗∗

(0.00004) (0.00004)

window 10 0.00008∗∗∗ 0.00008∗∗∗

(0.00002) (0.00002)

prod 2 0.00066∗∗∗ 0.00066∗∗∗

(0.00008) (0.00008)

prod 5 0.00026∗∗∗ 0.00026∗∗∗

(0.00003) (0.00003)

prod 10 0.00002∗∗ 0.00002∗∗

(0.00001) (0.00001)

Treatment window Count −0.00013∗∗∗ −0.00013∗∗∗ −0.00016∗∗∗ −0.00016∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

Treatment prod count −0.00008∗∗∗ −0.00008∗∗∗ −0.00009∗∗∗ −0.00009∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

Plug Count 0.00023∗∗∗ 0.00023∗∗∗ 0.00022∗∗∗ 0.00022∗∗∗

(0.00001) (0.00001) (0.00001) (0.00001)

PPT 0.00020∗∗∗ 0.00020∗∗∗ 0.00020∗∗∗ 0.00020∗∗∗

(0.00003) (0.00003) (0.00003) (0.00003)

TDMEAN 0.01247∗∗∗ 0.01247∗∗∗ 0.01245∗∗∗ 0.01245∗∗∗

(0.00011) (0.00011) (0.00011) (0.00011)

TMEAN −0.00286∗∗∗ −0.00286∗∗∗ −0.00287∗∗∗ −0.00287∗∗∗

(0.00009) (0.00009) (0.00009) (0.00009)

Wind Speed −0.00157∗∗∗ −0.00157∗∗∗ −0.00158∗∗∗ −0.00158∗∗∗

(0.00008) (0.00008) (0.00008) (0.00008)

Well and Date FEs Y Y Y Y

Observations 31,531,987 31,531,987 31,531,987 31,531,987
R2 0.76259 0.76259 0.76268 0.76268
Adjusted R2 0.76240 0.76240 0.76248 0.76248
Residual Std. Error 0.12712 0.12712 0.12709 0.12709
Residual Std. Error (df = 31506611) (df = 31506611) (df = 31506605) (df = 31506605)

Note: Window 1 start from 7 days before spud date, Window 2 starts from 30 days before spud date.
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Table A8: Robustness check: falsification tests

AOD
Baseline Model Spatial Diff-in-diff Model

(1) (2) (3) (4)

Placebo Treatment 0.00019 −-0.00015 0.00036 0.00008
(0.00034) (0.00034) (0.00033) (0.00034)

Pre-production 2 0.00120∗∗∗ 0.00119∗∗∗

(0.00012) (0.00012)

Pre-production 5 0.00055∗∗∗ 0.00055∗∗∗

(0.00005) (0.00005)

Pre-production 10 0.00013∗∗∗ 0.00013∗∗∗

(0.00002) (0.00002)

Production 2 0.00070∗∗∗ 0.00070∗∗∗

(0.00010) (0.00010)

Production 5 0.00029∗∗∗ 0.00029∗∗∗

(0.00004) (0.00004)

Production 10 0.00002∗ 0.00002∗

(0.00001) (0.00001)

Density Pre-production −0.00015∗∗∗ −0.00015∗∗∗ −0.00017∗∗∗ −0.00017∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

Density Production −0.00008∗∗∗ −0.00008∗∗∗ −0.00008∗∗∗ −0.00009∗∗∗

(0.00000) (0.00001) (0.00000) (0.00000)

Density Inactive 0.00023∗∗∗ 0.00023∗∗∗ 0.00022∗∗∗ 0.00022∗∗∗

(0.00001) (0.00001) (0.00001) (0.00001)

Daily precipitation 0.00029∗∗∗ 0.00029∗∗∗ 0.00029∗∗∗ 0.00029∗∗∗

(0.00003) (0.00003) (0.00003) (0.00003)

Daily mean dew point 0.01272∗∗∗ 0.01272∗∗∗ 0.01270∗∗∗ 0.01270∗∗∗

(0.00012) (0.00012) (0.00012) (0.00012)

Daily mean temperature −0.00321∗∗∗ −0.00321∗∗∗ −0.00321∗∗∗ −0.00321∗∗∗

(0.00010) (0.00010) (0.00010) (0.00010)

Wind Speed −0.00155∗∗∗ −0.00155∗∗∗ −0.00157∗∗∗ −0.00157∗∗∗

(0.00008) (0.00008) (0.00008) (0.00008)

Well FE Y Y Y Y

Date FE Y Y Y Y

Cluster PAD PAD PAD PAD

Observations 26,920,567 26,920,567 26,920,567 26,920,567
R2 0.76519 0.76519 0.76526 0.76526
Adjusted R2 0.76497 0.76497 0.76504 0.76504
Residual Std. Error 0.12952 0.12952 0.12950 0.12950
Residual Std. Error (df = 26895198) (df = 26895198) (df = 26895192) (df = 26895192)

Note: Standard errors are clustered by wells pad.
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A.6 Additional maps of wells

Figure A3: Matched sample 1 – wells matched by distance, permit year, and permit month

Figure A4: Matched sample 2 – wells matched by distance, permit year, and county
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A.7 Convert AOD to PM 2.5

Figure A5: PM 2.5 Prediction, PM 2.5 Monitors in Pennsylvania

A.8 Cox proportional-hazard model

Estimating the Cox proportional-hazard model yields the relative mortality rate (RR), which

is the ratio of mortality rates under different pollution concentration.

RR =
λ(X,PM ′2.5)

λ(X,PM ′′2.5)
= exp(γ̂(PM ′2.5 − PM ′′2.5)). (10)

X is a vector of covariates related with mortality, λ(X,PM ′2.5) and λ(X,PM ′′2.5) are mortality

rates under two different PM 2.5 concentrations PM ′2.5 and PM ′′2.5. γ̂ is the estimated coefficient

of RR, which indicates the mortality impact by changing PM 2.5 concentration from PM ′2.5 to

PM ′′2.5.
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