
1

DeepER: A Deep Learning based Emergency
Resolution Time Prediction System

Gissella Bejarano, Adita Kulkarni, Xianzhi Luo, Anand Seetharam, Arti Ramesh
Department of Computer Science, SUNY Binghamton, USA
(gbejara1, akulka17, xluo22, aseethar, artir)@binghamton.edu

Abstract—Accurately predicting resolution time for emer-
gency incidents is crucial for public safety and smooth func-
tioning of cities as it helps in planning resources that will be
available for immediate assistance. In this paper, we present
DeepER, a deep learning based emergency resolution time
prediction system that predicts future resolution times based
on past data. DeepER is an encoder-decoder based sequence-
to-sequence model that uses Recurrent Neural Networks (RNNs)
as the neural network architecture. The basic cell in DeepER is
a Long Short-Term Memory (LSTM) cell. We perform experi-
ments on the NYC Emergency Response Incidents data provided
by NYC Open Data. We compare the performance of the
model with ARIMA and Linear Regression using two metrics—
Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). DeepER achieves an average performance improvement
of 3% and 16% with respect to RMSE and 10% and 27%
with respect to MAE over ARIMA and Linear Regression,
respectively.

I. INTRODUCTION

A number of emergency incidents (e.g. fire, building
collapse, etc.) are reported on a regular basis in cities around
the world. It is important that city officials are able to allocate
sufficient resources to ensure public safety, smooth function-
ing of cities and address such incidents in a timely manner. To
engage the public in coordinating these emergency response
services smoothly, governments and city officials have made
such data openly available to everyone. By adopting a data-
driven approach, cities can efficiently allocate resources, plan
prudently, and thus minimize the loss to human life and
property and improve resolution time.

One of the major challenges in this regard is estimating the
resolution time for emergency events in the future. While
emergencies are unpredictable by nature and often happen
unexpectedly, it is possible to leverage past resolution time
data to predict the resolution time of future events. This is
because the nature of the event (e.g., fire), the extent of dam-
age, and the number of personnel and equipment available
on site are keys factors that dictate the total time needed
to address the issue. For example, if multiple emergencies
occur in a colocated manner, then it is likely that the time
needed to address each of these issues will be higher than
usual because of the division of resources. Therefore, if a

data-driven analysis suggests that resolution time for future
events will be higher than a desired value for a particular
incident type, then this analysis can provide insights into
budget spending, personnel hiring, and resource allocation.

Hence, in this paper, we design DeepER, a deep learn-
ing based emergency resolution time prediction system that
predicts the future resolution time of incidents based on his-
torical data. We consider three important emergency incident
types, namely, Fire, Law and Structural. We model emer-
gency resolution time prediction as a time series prediction
problem. At the core of DeepER there is a sequence-to-
sequence encoder-decoder neural network architecture. Both
the encoder and the decoder in DeepER are Recurrent Neural
Networks (RNNs) and the basic cell is an LSTM cell. The
encoder receives the previous resolution times as input and
encodes them into a hidden context vector. This hidden vector
is given as an input to the decoder, which generates future
resolution times.

To evaluate the performance of DeepER, we perform
extensive experiments on the publicly available NYC Emer-
gency Response Incidents dataset [1]. We use the data for
a period of approximately eight years for the three incident
types. This dataset is challenging from the perspective of
time series analysis and prediction because emergency events
by nature occur at random times (i.e., lack periodicity),
have limited correlation to each other and may not follow
seasonal trends. Because of this reason, we design DeepER
as a sequence-to-sequence model so that it can unearth the
dependencies among the data points in the sequence even
though the time period between two consecutive events in the
sequence is varying. DeepER leverages these hidden patterns
in data to make superior predictions.

We compare the performance of DeepER with two widely
used baselines— Linear Regression and Auto Regressive
Integrated Moving Average (ARIMA). We use two metrics to
evaluate the models— Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE). DeepER achieves an average
performance improvement of 3% and 16% with respect to
RMSE and 10% and 27% with respect to MAE over ARIMA
and Linear Regression, respectively. Our results demonstrate
that DeepER is a practically viable system that provides

2

superior prediction performance and can be used to aid city
planning and management. We conclude the paper with a
discussion of some of the insights we obtain while conducting
this investigation.

The rest of the paper is organized as follows. In Section II,
we present related work. We present the dataset and discuss
the problem investigated in this paper in Section III. We
then describe the DeepER system in Section IV and the
implementation details in Section V. We present experimental
results in Section VI and discuss some of our insights from
this work in Section VII.

II. RELATED WORK

With the growth and development of smart cities and
cyber-physical systems, a variety of machine learning ap-
proaches have been adopted to address different problems
in these domains [2], [3], [4], [5], [6], [7]. In this section,
we first present work related to assisting the operations of
emergency and non-emergency services and then discuss
prior research related to smart cities.

In the recent years, a number of research papers have
adopted data-driven approaches to aid the functioning of
emergency and non-emergency services in cities. For exam-
ple, DeFazio et al. use Gaussian Conditional Random Fields
(GCRFs) to predict response times of non-emergency 311
calls in NYC [8]. The authors in [9] adopt a rolling forecast
model to predict the number of emergency calls based on the
number of 911 calls in NYC. Similarly, the authors analyze
NYC non-emergency call requests and present a Random
Forest model to predict the number of requests [10].

In [11], authors analyze the intra-region temporal correla-
tion and the inter-region spatial correlation of data collected
from NYC and build a framework to predict the number of
crimes for certain regions. Similarly, the authors propose a
neural network based continuous conditional random field
model for fine-grained crime prediction in Chicago and NYC
[12]. The potential of deep learning models for a variety of
time series prediction tasks has also been explored recently.
For example, deep learning models have been adopted for
emergency event prediction in [13]. Similarly, the authors
use LSTM based deep models for gas consumption and
occupancy detection using WiFi beacons in [14] and [15], re-
spectively. Recurrent Neural Network (RNN) based encoder-
decoder models similar to the one designed in this paper
have also been used for prediction problems in a variety
of different domains. For example, such models have been
used for water consumption, gym center occupancy, wireless
channel quality and air pollution prediction [16], [17], [18],
[19].

In contrast to existing work, we design DeepER, a deep
learning model to predict the resolution time of emergency
services and validate the efficacy of the model using the

emergency incidents response data from NYC collected over
a period of approximately eight years.

III. DATA

We use the emergency response incidents data from NYC
Open Data provided by the Office of Emergency Manage-
ment [1]. We use around 8 years of data starting May 2011
to December 2019. The dataset consists of 13 incident types
with 7 attributes each. We use three attributes from the
dataset — Incident type, Creation date, and Close date. In this
study, we focus on three of the most important and frequent
emergency types — Fire, Law, and Structural. We calculate
the resolution time for each incident by subtracting the
creation date from the close date and converting it to minutes.
Figure 1 shows the resolution times for these incidents. We
observe that the time required to resolve events related to Law
is the least followed by Fire and Structural, respectively. We
also observe from Figure 1 that there is significant variation
in resolution time for events belonging to the same incident
type.

Additionally, we observe from the data that each of these
three incident types have multiple subtypes, which we extract
from the type description. Fire, Law, and Structural have 52,
29, and 73 subtypes, respectively. Figure 2 shows the incident
subtypes that contribute the most events for each of the most
general incident types. We observe that 2nd alarm, Suspicious
Package (denoted as Package), and Collapse are the subtypes
that account for the highest number of events in Fire, Law,
and Structural, respectively.

A. Preprocessing

As is the case with most data-driven solutions to real-
world problems, the first step involves pre-processing the
data to identify missing values and outliers. We observe that
the dataset contains non-trivial number of missing values
for events. A missing value is encountered when an event
does not have a valid close date. In the entire dataset, we
observe that Fire, Law, and Structural have 32%, 12%, and
23% missing values, respectively. For each incident type, we
replace these missing points by sampling from the actual
distribution of the remaining points. To determine the actual
distribution for each incident type, we fit the data to more
than 80 different distributions. We perform the Kolmogorov-
Smirnov goodness of fit test (KS test) and use the p-value of
the KS test to pick the best distribution for the dataset under
consideration.

We also observe that the dataset contains some outliers—
values that are significantly different from the rest of the data
points. By studying the values, we believe that such values
might be the result of manually closing some unfinished
entries at a later date. For example, we observe some extreme
outliers in the dataset (greater than 100,000 minutes). We

3

500 1000 1500 2000 2500 3000

Timesteps

0

500

1000

1500

2000

2500

R
es

o
lu

ti
o
n

 T
im

e

(a) Fire

200 400 600 800 1000

Timesteps

0

100

200

300

400

500

600

700

R
es

o
lu

ti
o
n

 T
im

e

(b) Law

200 400 600 800 1000 1200 1400

Timesteps

0

500

1000

1500

2000

2500

3000

3500

R
es

o
lu

ti
o
n

 T
im

e

(c) Structural

Fig. 1: Trends in datasets

2nd A
larm

3rd A
larm

1st
Alarm

4th A
larm

5th A
larm

Haz M
at

Sub Types

0

200

400

600

800

1000

#
 e

v
en

ts

(a) Fire

Package
Other

Device

Haz M
at

Explosio
n

Sub Types

0

200

400

600

800

#
 e

v
en

ts

(b) Law

Colla
pse

Stre
et C

olla
pse Other

Stabilit
y Problem

Scaffo
ld

Partia
l C

olla
pse

Sub Types

0

50

100

150

200

250

#
 e

v
en

ts

(c) Structural

Fig. 2: Incident Types

identify outliers as those points whose resolution time is
greater than the quantile 90 of that incident type. For Fire,
Law, and Structural, we observe that there are 7%, 9%, and
8% outliers, respectively. Figure 3 shows the distribution of
the three different incident types before and after preprocess-
ing. We observe from the figure that the raw dataset has a
large number of outliers. We once again replace these outliers
by sampling from the distribution of the valid data points. In
comparison to Figure 3a, we observe that Figure 3b presents
a significantly refined distribution.

Fire Law Structural

0

2000

4000

6000

8000

R
e
s
o

lu
ti

o
n

 T
im

e

(a) Before preprocessing
Fire Law Structural

0

2000

4000

6000

8000

R
e
s
o

lu
ti

o
n

 T
im

e

(b) After preprocessing

Fig. 3: Datasets before and after preprocessing

We observe some other interesting issues in the dataset.
We observe that for Fire and Structural most of outliers are
located in the first few years of the dataset. In comparison,
most of the missing points are located during the last few
years. Additionally, for Fire and Structural we observe larger
resolution times during the initial years than the last few

years. However, the opposite is true for Law, where the
resolution times during the initial years is lower than the
resolution times in the later years.

IV. PROBLEM STATEMENT AND MODEL

In this section, we first discuss the future resolution time
prediction problem studied in this paper and then describe
DeepER, a deep learning based system that predicts future
resolution time based on past data.

A. Problem Statement

Our aim is to design a system that accurately predicts
future resolution times of incidents from historical data. For
this purpose, we cast the problem as a time series prediction
problem. We consider a sequence of n events with resolution
times X = x1 , x2 xn, and predict the resolution time
of the next k events Y= y1, y2, yk. What makes this
problem challenging and different from classic time series
prediction problems is that though these events occur chrono-
logically, the actual time elapsed between two consecutive
events varies. This is because each event corresponds to an
emergency (i.e., unplanned) and thus the time when it occurs
is completely random. Hence, in some cases one may have
considerable time between two consecutive events, whereas
in other cases multiple events can occur in a short duration
of time. Therefore, our goal is to design a flexible model that
examines the resolution time of a sequence of prior events
and predicts the resolution time of future events and does

4

Preprocessing

Fire

Law

Structural

NYC
Emergency
Response

Data

Train

 Validation

Test

DeepER

Predictions

Predictions

…...

Fig. 4: DeepER System Overview

not depend on the actual time frame in which the events
occurred.

B. DeepER System Details

In this subsection, we describe DeepER, a sequence-to-
sequence based encoder-decoder model that considers the
resolution times of a sequence of prior events to predict
the resolution time of future events. Figure 4 provides an
overview of the DeepER system. DeepER consists of a data
preprocessing block that splits the data by incident types and
prepares the training, validation, and test datasets (details in
Section V). The preprocessing block also replaces the outlier
and missing values according to the steps outlined in Section
III-A. The system then presents the data sequences as input
to the deep learning model that uses them to generate the
predictions.

1) Sequence-to-Sequence Models: Before delving into the
system details, we discuss the appropriateness of sequence-
to-sequence models for the emergency resolution time predic-
tion problem studied here. In comparison to classic statistical
regression models, sequence-to-sequence models are better
suited for this problem as they map entire input sequences
to output sequences and do not just focus on capturing
simple trends in the data. Additionally, as the points in the
dataset are not equally spaced in time and the events lack
a seasonal and periodic behavioral pattern, we design deep
learning based sequence-to-sequence models because such
models are capable of learning the underlying dependencies
and correlations in the data using an interconnected neu-
ral network architecture during the training phase and are
especially useful when the dependencies are not apparent
and cannot be easily defined. The trained model leverages
this knowledge to make accurate predictions at test time by
considering the current input sequence.

2) Encoder-decoder based RNN Model: DeepER consists
of two components, an encoder and a decoder as shown in
Figure 5. Both the encoder and the decoder comprise of
recurrent neural networks (RNN). An RNN is a network of
neural nodes that are arranged in layers. Internally, the RNN
has a hidden state ht that is updated at each time step t using
the input xt and the previous hidden state ht−1. At each time

x
1

x
2

x
n

ŷ
1

ŷ
2

ŷ
k

C

...

...

...

...

Encoder

Decoder

Fig. 5: Encoder-decoder based RNN

step t, the hidden state of the RNN is given by,

ht = φ(ht−1, xt) (1)

where, φ is any non-linear activation function and 1 ≤ t ≤
n.

As we can observe from Figure 5, the encoder takes
an input sequence x1, x2,, xn that corresponds to the
resolution time of events for the last n time steps. The
encoder then generates a hidden encoded vector C. After the
entire input has been processed, the summary C is provided
as input to the decoder. The decoder then generates ŷ1, ŷ2,
...., ŷk, the predicted resolution times for the future k events.
The loss function used is the sigmoid activation function and
it is applied to the output of the decoder. This ensures that
the predicted values are in the [0-1] range.

The basic cell structure used in the encoder is LSTM that
captures the important dependencies in the data. LSTM cells
also possess the ability to ‘forget’ that enables them to over-
come well-known vanishing/exploding gradient. To achieve
this an LSTM cell has three main gates—input, output, and
forget. The input gate receives the pertinent information in
the current step and the output gate determines the hidden
state for the next step. The forget gate is responsible for
discarding unimportant information so that the model can
capture the relevant long-term dependencies. We refer the
reader to [20], [21] for additional details.

5

V. IMPLEMENTATION DETAILS

In this section, we discuss implementation details regard-
ing training, validation, and testing as well as important
design decisions (e.g., hyper-parameter selection).

From our discussion in the Section III-A, we observe
that missing points and outliers are not spread uniformly
throughout the duration of the dataset. Additionally, the entire
duration of the dataset is approximately nine years and there-
fore, we observe gradual changes in the average resolution
times of events for the same incident type. We attribute
these variations to possible changes adopted by the different
emergency management agencies. These issues inherent to
the dataset necessitate some important design decisions. As
the underlying characteristics of the data change over time, if
we adopt a simple approach and split the data chronologically
into training and test, then we will end up training solely on
the data for the initial few years and testing on the last few
years. This is unlikely to provide good performance because
the distribution of the test data sequences are different from
the distribution of the training sequences. Hence, we adopt
a more careful approach where we ensure representation of
data from each year in training, validation, and test datasets.

Sequence Length Learning Rate Units in Hidden Layer
10-3 0.01 10
10-3 0.001 50
10-3 0.0001 100
15-5 0.01 10
15-5 0.001 50
15-5 0.0001 100

TABLE I: Hypararameter combinations for experiments

To do so, we divide the entire dataset into eight peri-
ods: seven periods of one year each and one period of
approximately one and half year, approximately. We split
each of these years in training, validation, and test sets
following the usual percentages of 50%, 25%, and 25%,
respectively. This ensures that the training, validation, and
test sets contains data from all the years. Additionally, to
remove any form of seasonal dependencies that may exist in
the dataset, we permute the split order of training, validation
and test within each year. Such permutation ensures that
the training, validation, and test data contain samples from
all months of the year; in the absence of such reordering
the training data will be confined to primarily the first few
months, the validation confined to the middle months, and
test containing data from the last few months of each year. In
addition to helping in achieving good prediction performance
across the entire duration of the dataset across the years, this
important pre-processing step also makes our model more
readily extensible to real-world deployment as the model is
trained on the different variations that may be present in the
data.

A. Training, Validation, and Testing
We use Pytorch to implement the deep learning model.

We train our models on a Linux machine with 8-core Intel
i7 processor and 64 GB RAM. We use a sliding window
approach with a stride of 1 to transform the time series into
instances of sequences of length n and prediction of length
k. We use unguided training as the training methodology. In
this approach, the previous predicted output is used by the
decoder as an input to the next step of the decoder during
both training and test. Unguided approach is likely to provide
better results at test time because it allows greater exploration
of the state space during training. The loss function used to
guide the training is the mean squared error.

During the training phase, we experimented with various
hyperparameters and then finally decided upon 6 hyperpa-
rameter combinations that are best suited for our dataset
(Table I). A sequence length of 10-3 in Table I means that
the model takes 10 points are input and predicts 3 points
into the future. For each hyperparameter combination, we
iterate over 100,000 epochs, saving the state of the model
after every 5000 iterations. We then select the particular
model combination that provides the best performance on
the validation set.

For quantifying the best performance, we do not simply
pick the model with the lowest loss. Such an approach
usually works well when the data has overall less variation
and exhibits seasonality. However, in our dataset, events
occur at random times and are of varying intensity (as each
event is an emergency), thus resulting in higher variation
among the values. This makes our dataset challenging to
predict, resulting in the model adopting a safe approach
and predicting values close to the mean value. Therefore,
in addition to the loss function, we also consider another
heuristic, the magnitude of the standard deviation among the
predictions on the validation set, to select the best model.
This approach ensures that the trained model provides su-
perior quantitative and qualitative performance. Additionally,
testing on a validation set and selecting from the myriad of
combinations ensures that we do not overfit the model to the
training dataset.

VI. EXPERIMENTAL RESULTS

In this section, we compare the performance of DeepER
with two baselines: i) Linear Regression and ii) Auto-
Regressive Integrated Moving Average (ARIMA).

Linear Regression is a statistical model that fits the best
straight line to the given data.

ARIMA is a statistical model that has three components
— AR (autoregressive term), I (differencing term), and MA
(moving average term), specified by the parameters p, d, and
q, respectively. We use the pmdarima toolkit in python for
our experiments, which picks the optimal combination of the
parameters for the input data.

6

1 2 3 4 5

Timesteps

500

600

700

800

900

M
A
E

Linear

ARIMA

DeepER

(a) Fire

1 2 3 4 5

Timesteps

100

150

200

250

M
A
E

Linear

ARIMA

DeepER

(b) Law

1 2 3 4 5

Timesteps

750

800

850

900

950

M
A
E

Linear

ARIMA

DeepER

(c) Structural

Fig. 6: MAE Results for the 15-5 setting

1 2 3 4 5

Timesteps

900

1000

1100

1200

1300

R
M
S
E

Linear

ARIMA

DeepER

(a) Fire

1 2 3 4 5

Timesteps

250

300

350

400

450
R
M
S
E

Linear

ARIMA

DeepER

(b) Law

1 2 3 4 5

Timesteps

1200

1300

1400

1500

R
M
S
E

Linear

ARIMA

DeepER

(c) Structural

Fig. 7: RMSE Results for the 15-5 setting

We use two well-known metrics for evaluation—Root
Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). Equations 2 and 3 show how they are calculated,
where yij is the ith test sample for jth time step, ŷij is
the predicted value of yij , and h is the total number of test
samples.

RMSEj =

√∑h
i=1 (ŷij − yij)

2

h
(2)

MAEj =

∑h
i=1 |ŷij − yij |

h
(3)

A. RMSE and MAE

In this section, we discuss the RMSE and MAE results
for all the models. Table II shows the average RMSE and
MAE results for sequence lengths 10-3 and 15-5, where the
average performance is calculated over 3 and 5 time steps,
respectively. Recall that a sequence length 10-3 means that
the model takes 10 events as input and predicts 3 events
as output into the future. We see that DeepER outperforms
the baselines with respect to both MAE and RMSE for all
incident types on average for the 15-5 setting. For the 10-
3 setting, DeepER outperforms both baselines for Fire and
Law. However, for Structural, it outperforms Linear but not
ARIMA. Therefore, from Table II, we observe that DeepER
provides overall better performance for the 15-5 setting.

Figures 6 and 7 shows the MAE and RMSE results for
the three incident types for the 15-5 sequence setting as

Incident Model 10-3 15-5
Type MAE RMSE MAE RMSE

Fire
Linear 786 1256 769 1204
Arima 660 1087 657 1071

DeepER 584 1069 564 1019

Law
Linear 186 381 226 407
Arima 133 323 159 338

DeepER 116 309 119 315

Structural
Linear 965 1504 900 1436
Arima 818 1299 806 1300

DeepER 839 1307 794 1296

TABLE II: Average RMSE

it provides the best predicitons. We observe that DeepER
significantly outperforms the baselines with respect to both
MAE and RMSE. The only exception is the one step predic-
tion for Structural where DeepER exhibits poor performance.
Interestingly, from the figures, we observe that DeepER is
able to better predict the resolution time of events further into
the future. This is in contrast to most time series prediction
problems where the prediction performance deteriorates as
the model predicts further into the future. The primary reason
behind this behavior is that the data points in our dataset
correspond to emergency events and hence lack seasonality,
strong correlation, and trends. DeepER is still able to gen-
erate better predictions for our challenging problem than the
baselines because of its sequence-to-sequence behavior that
maps entire input sequences to output sequences and ability
to glean complex underlying dependencies in the data that
are not apparent.

7

VII. DISCUSSION

In the previous section, we demonstrated that DeepER
provides superior prediction performance than the baseline
models. In this section, we discuss some additional learnings
from our exploration of this dataset.

A. Qualitative Results

We next discuss the qualitative prediction performance
of DeepER as well as the baselines. Figure 8 shows the
1-step prediction performance for DeepER, ARIMA, and
linear regression for Fire. From the figure, we observe that
all models struggle to predict the values accurately. From
our experience of working with similar models in the past
[16], [17], [18], we have observed that sequence-to-sequence
models are generally able to make really superior predictions.
This does not appear to be the case always for this prediction
task primarily because of the challenging non-periodic and
non-seasonal nature of the emergency events dataset.

We observe from Figure 8 that the resolution times for
some events is significantly higher in comparison to majority
of the points. Because of this pattern, any prediction model
will find it difficult to accurately predict such high peaks.
But, despite this challenging nature of the dataset, we observe
that DeepER provides a significantly smoothened prediction
performance in comparison to the baselines and accurately
predicts the underlying pattern. If we overlook the peaks, we
can see that the prediction performance of DeepER for the
remaining data points is good.

In comparison, we observe that the next step predictions
for both ARIMA and Linear Regression closely mirror the
actual resolution time of the previous time step. This occurs
because both these baselines only use the past trend to predict
the future. This is the root cause behind their poor perfor-
mance because the resolution time of the current request is
significantly different from the previous one.

0 20 40 60 80 100 120 140 160 180 200

Prediction for each test sample

500

1000

1500

2000

2500

3000

3500

R
es

o
lu

ti
o

n
 T

im
e

(m
in

)

Linear

ARIMA

DeepER

Real

Fig. 8: Fire: One step Real vs Predicted Performance

B. Further Insights into Data Preprocessing

As mentioned in Section III-A, we ensure that the training,
validation, and test data include sequences from all years

of the dataset. While cross-validation is commonly used to
establish the significance of the results, we design this well-
crafted split of the dataset to render greater credibility to
our results primarily because of the fairly limited number of
data points. Additionally, as noted earlier, the dataset contains
a non-trivial number of outliers and missing values. Table
III shows the number and percentage of missing and outlier
points in each of the training, validation and test sets if the
data is split chronologically. This uneven distribution of the
outlier and missing values further necessitates a carefully
constructed split to ensure that training, validation, and test
sets contain a more uniform distribution of such points.
We note that while the dataset is relatively small in size,
each event corresponds to an emergency and therefore, it is
crucial to use all available data points and generate superior
predictions because such predictions are critical to improving
human safety.

Incident Type Training Validation Testing

Fire
Total 1529 764 764

Outliers 8% 6% 5%
Missing 14% 47% 53%

Law
Total 519 260 260

Outliers 8% 6% 13%
Missing 2% 17% 27%

Structural
Total 754 377 377

Outliers 8% 6% 13%
Missing 2% 17% 27%

TABLE III: Statistics of Outliers and Missing values in a
Chronological Split

C. Limitations of Enriching DeepER

We observe from Section III that each incident type con-
sists of multiple subtypes. We attempt to perform resolution
time prediction at the subtype level, but realize that because
this is an emergency events dataset, the number of data points
is not sufficient for training, validation, and testing of deep
learning models for each subtype separately. We also use
these subtypes as features in DeepER, but observe that this
enhanced model did not improve prediction performance. We
believe that dearth of data at the subtype level is the primary
reason behind it not contributing to DeepER’s prediction
performance.

D. Practicality of DeepER

With the increase in computational power over the last
decade, deploying deep learning based systems to solve real-
world problems is becoming relatively easy. As is the case
with most deep learning models, DeepER requires some com-
putational time for training. However, once trained, DeepER
requires limited amount of time to generate predictions, a
desired attribute in a practical system. Additionally, as more
data becomes available, DeepER can be easily retrained thus

8

enabling it to adapt to changing situations. We anticipate
DeepER to be retrained at comparatively infrequent intervals
(i.e., only when significant number of new emergency events
have been resolved).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented DeepER, a deep learning based
emergency resolution time prediction system that predicts
future resolution times based on past data. We performed
experiments on the NYC Emergency Response Incidents data
provided by NYC Open Data. We compared the performance
of DeepER with ARIMA and Linear Regression using two
metrics— Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE). DeepER achieved an average perfor-
mance improvement of 3% and 16% with respect to RMSE
and 10% and 27% with respect to MAE over ARIMA and
Linear Regression, respectively. We also draw upon important
learnings and insights from the data, which can be utilized
for designing deep learning models for data in the emergency
response domain and other related domains where the data
can lack an overt predictable trend. As part of our future
work, we plan to extend this analysis to other cities so that it
gives greater validity to our results. We want to also engage
with city officials so that DeepER can be adopted to aid
the planning and preparation of city emergency response
systems.

REFERENCES

[1] “Nyc open data,” https://data.cityofnewyork.us/Public-
Safety/Emergency-Response-Incidents/pasr-j7fb.

[2] I. Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens, “Deep
multi-output forecasting: Learning to accurately predict blood glucose
trajectories,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ser. KDD
’18. New York, NY, USA: ACM, 2018, pp. 1387–1395. [Online].
Available: http://doi.acm.org/10.1145/3219819.3220102

[3] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, April
2015.

[4] L. Peng, L. Chen, Z. Ye, and Y. Zhang, “Aroma: A deep multi-task
learning based simple and complex human activity recognition method
using wearable sensors,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 2, pp. 1–16, 07
2018.

[5] Y. Guan and T. Plötz, “Ensembles of deep lstm learners for activity
recognition using wearables,” Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 1, no. 2, pp. 11:1–11:28, Jun. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3090076

[6] W. Cheng, Y. Shen, Y. Zhu, and L. Huang, “A neural
attention model for urban air quality inference: Learning
the weights of monitoring stations,” 2018. [Online]. Available:
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16607

[7] A. A. Varamin, E. Abbasnejad, Q. Shi, D. C. Ranasinghe, and
H. Rezatofighi, “Deep auto-set: A deep auto-encoder-set network for
activity recognition using wearables,” in Proceedings of the 15th
EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, ser. MobiQuitous ’18. New
York, NY, USA: ACM, 2018, pp. 246–253. [Online]. Available:
http://doi.acm.org/10.1145/3286978.3287024

[8] D. DeFazio, A. Ramesh, and A. Seetharam, “Nycer: A non-emergency
response predictor for nyc using sparse gaussian conditional random
fields,” in Proceedings of the 15th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and
Services, ser. MobiQuitous ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 187–196. [Online]. Available:
https://doi.org/10.1145/3286978.3287010

[9] A. Chohlas-Wood, A. Merali, W. Reed, and T. Damoulas, “Mining 911
calls in new york city: Temporal patterns, detection, and forecasting,”
in AAAI Workshop: AI for Cities, 2015.

[10] Y. Zha and M. M. Veloso, “Profiling and prediction of non-emergency
calls in nyc,” in AAAI 2014, 2014.

[11] X. Zhao and J. Tang, “Modeling temporal-spatial correlations for
crime prediction,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, ser. CIKM 17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 497506.
[Online]. Available: https://doi.org/10.1145/3132847.3133024

[12] F. Yi, Z. Yu, F. Zhuang, and B. Guo, “Neural network based contin-
uous conditional random field for fine-grained crime prediction,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI, 2019, pp. 10–16.

[13] B. Cortez, B. Carrera, Y.-J. Kim, and J.-Y. Jung, “An
architecture for emergency event prediction using lstm
recurrent neural networks,” Expert Systems with Applications,
vol. 97, pp. 315 – 324, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417417308606

[14] N. Pathak, A. Ba, J. Ploennigs, and N. Roy, “Forecasting gas usage for
big buildings using generalized additive models and deep learning,” in
2018 IEEE International Conference on Smart Computing (SMART-
COMP), 2018, pp. 203–210.

[15] B. Qolomany, A. Al-Fuqaha, D. Benhaddou, and A. Gupta, “Role of
deep lstm neural networks and wi-fi networks in support of occupancy
prediction in smart buildings,” in 2017 IEEE 19th International Con-
ference on High Performance Computing and Communications; IEEE
15th International Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS),
2017, pp. 50–57.

[16] G. Bejarano, A. Kulkarni, R. Raushan, A. Seetharam, and A. Ramesh,
“Swap: Probabilistic graphical and deep learning models for water
consumption prediction,” in Proceedings of the 6th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, ser. BuildSys 19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 233242. [Online]. Available:
https://doi.org/10.1145/3360322.3360846

[17] A. Kulkarni, A. Seetharam, and A. Ramesh, “Deepfit: Deep learning
based fitness center equipment use modeling and prediction,” in
Proceedings of the 16th EAI International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services,
ser. MobiQuitous 19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 394403. [Online]. Available:
https://doi.org/10.1145/3360774.3360803

[18] A. Kulkarni, A. Seetharam, A. Ramesh, and J. D. Herath, “Deepchan-
nel: Wireless channel quality prediction using deep learning,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 1, pp. 443–456,
2020.

[19] V. Reddy, P. Yedavalli, S. Mohanty, and U. Nakhat, “Deep air:
Forecasting air pollution in beijing, china,” 2018.

[20] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[21] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

