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Abstract 

Background:  

A possible driver of obesity is insensitivity (passive overconsumption) to food energy density 

(ED, kcal/g); however, it is unclear whether this insensitivity applies to all meals. 

Objectives:  

We assessed the influence of ED on energy intake (kcal) across a broad and continuous range 

of energy densities comprised of non-covertly manipulated, real-world meals. We also 

allowed for the possibility that the association between energy intake and ED is non-linear.  

Methods:  

We completed a secondary analysis of 1,519 meals which occurred in a controlled 

environment as part of a study conducted by Hall and colleagues to assess the effects of food 

ultra-processing on energy intake. To establish the generalizability of the findings, the 

analyses were repeated in 32,162 meals collected from free-living humans using data from 

the UK National Diet and Nutrition Survey (NDNS). Segmented regressions were performed 

to establish ED ‘breakpoints’ at which the association between consumed meal ED and mean 

centered meal caloric intake (kcal) changed.  

Results:  

Significant breakpoints were found in both the Hall dataset (1.41 kcal/g), and the NDNS 

dataset (1.75 and 2.94 kcal/g). Centered meal caloric intake did not increase linearly with 

consumed meal ED, and this pattern was captured by a two-component (‘volume’ and 

‘calorie content’ (biologically derived from the sensing of fat, carbohydrate, and protein)) 

model of physical meal size (g), in which volume is the dominant signal with lower energy-

dense foods and calorie content is the dominant signal with higher energy-dense foods. 

Conclusions:  
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These analyses reveal that, on some level, humans are sensitive to the energy content of 

meals and adjust meal size to minimize the acute aversive effects of overconsumption. Future 

research should consider the relative importance of volume and calorie content signals, and 

how individual differences impact everyday dietary behavior and energy balance. 
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Introduction 

Food energy density (ED, kcal/g) refers to the energy content (kcal) of a specified weight 

of food (g) and can differ considerably between foods. For example, cucumber and pecan 

nuts have an ED of 0.15 kcal/g and 7.26 kcal/g, respectively. Literature over decades links 

excess energy intake (kcal) to an inability to ‘compensate’ for differences in meal ED by 

selecting smaller meals with increasing ED (1-3). Two main methodologies, (i) energy intake 

during ad libitum meals (4) and (ii) test meals following a food or beverage preload (preload 

test-meal paradigm) (4), assess the effects of ED on energy intake via compensatory changes 

in meal size. However, these two methods produce different findings regarding sensitivity to 

food energy content. 

 With respect to satiation, many well-designed ad libitum meal studies find little or no 

sensitivity to ED within a meal (i.e., the same weight of food is consumed irrespective of 

ED). In most of these studies, ED was covertly manipulated over a short period of time (e.g., 

< 10 total exposure days) (1-3, 5, 6). In other words, differences in meal caloric content have 

little impact on the amount of food ingested, and this insensitivity can persist over several 

days (2, 3). This effect of ED on energy intake, particularly in the case of high-fat food 

consumption, is sometimes referred to as ‘passive overconsumption’ (7).  

By contrast, studies of satiety (preload test-meal paradigm) provide strong evidence that 

calories in a preload can influence subsequent energy intake. These demonstrate a variable 

degree of short-term compensation in response to covertly manipulating the preload ED, even 

including sugar in a beverage (8-14). These studies demonstrate that calories can influence 

behavior and subsequent food intake after a meal has ended. Furthermore, partial 

compensation to the manipulation of ED is found in ad libitum studies that expose 

participants to covertly manipulated diets over long periods of time (e.g., > 10 total exposure 

days) (15-17). Compensation in these various studies represents an ‘unlearned’ response to 
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the satiating effect of calories (single or first exposure) (9, 18) as well as a potentially learned 

response (repeated exposure) (9, 18-21). 

In relation to these apparently contradictory findings and a separate finding of a non-

linear relationship between absolute ED and its effect on behavior, specifically portion size 

selection (22), we set out to re-evaluate the association between meal ED and meal energy 

intake. Importantly, we did this using a broad and continuous range of energy densities and 

‘real world’ foods, rather than covertly manipulated test meals.  

We analyzed data from a recent study investigating the effects of ultra-processing on 

energy intake over time and under controlled conditions (23) and assessed whether the 

association between energy intake and ED is non-linear. To investigate the generalizability of 

these findings, we then performed the same analysis on data collected from free-living 

humans in the UK (24). Based on our results, we developed a unifying ‘two-component 

model’ which explains the previous findings from ad libitum and preload test-meal studies 

and the relationship we observe between ED and energy intake.  

Methods  

Overview of the Hall et al. study on food ultra-processing and energy intake 

Hall, et al. (23) assessed a potential causal association between the consumption of 

ultra-processed foods, ad libitum energy intake, and subsequent changes in body weight. 

Twenty (10 male and 10 female) weight-stable adults (mean ± SE, age = 31.2 ± 1.6 years, 

BMI = 27 ± 1.5 kg/m2) resided in a metabolic ward in the National Institutes of Health 

Clinical Center for 28 days (ethical approval provided by the Institutional Review Board of 

the National Institute of Diabetes & Digestive & Kidney Diseases (ClinicalTrials.gov 

Identifier NCT03407053)). Participants were randomly assigned to receive either an ultra-

processed or an unprocessed diet for two weeks, followed immediately by the alternate diet 
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for another two weeks. Specific details regarding this study’s methodology, including the diet 

composition of the two seven-day rotating menus can be found in the Hall, et al. (23) paper.  

In summary, participants were provided with three daily meals (breakfast, lunch, and 

dinner) plus snacks; however, our secondary analysis focuses only on the data from the 

meals. The two diets were matched for a variety of characteristics: total calories, energy 

density (including beverages), macronutrients, fiber, sugars, and sodium. However, the meals 

differed in their level of processing based on the NOVA classification scheme (25). 

Additionally, the participants rated the diets as equally pleasant and familiar, and the three 

daily meals plus snacks were provided in large portions (twice the individual’s estimated 

energy requirements for weight maintenance). Importantly, on average, the ‘presented meals’ 

(i.e., the meals served to the participant) differed in their non-beverage energy density based 

on diet type (ultra-processed meals: 1.96 kcal/g, unprocessed meals: 1.06 kcal/g). This 

provided the rare opportunity to assess ad libitum energy intake across a broad and 

continuous range of energy densities using familiar foods in a highly controlled environment. 

Secondary analysis of the Hall dataset on food ultra-processing and energy intake (kcal) 

To determine whether the relationship between meal ED and meal energy intake is 

linear (as would be predicted if people did not compensate for energy content by changing 

meal size (g)), the consumed meal caloric intake (kcal), meal size (g) and ED of each meal 

was calculated. Meals were collapsed across diet types (i.e., unprocessed or ultra-processed), 

and we excluded meals that were ‘plate cleaned’ (i.e., > 95% of the served portion was 

consumed) (n = 159 meals) and all calorie and non-calorie containing beverages. In a few 

meals (5% of meals served to each participant), cereal or oatmeal were presented alongside 

milk. In these cases, we did not exclude milk because neither cereal nor oatmeal were 

consumed without milk. However, we cannot rule out the possibility that a proportion of the 

milk was consumed separately, as a beverage.  
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To control for both individual (participant level) and ‘meal type’ (breakfast, lunch, 

and dinner) differences in energy intake, we mean centered meal caloric intakes for each 

participant and for each meal type across the 28 days (20 participants x 3 meal types x 28 

days = 1680 total centered meals). So, for example, for participant one, there were 28 

centered meal caloric intakes for ‘breakfast’, 28 centered meal caloric intakes for ‘lunch’ and 

28 centered meal caloric intakes for ‘dinner’. Centered meals with Z-scores less than or 

greater than ± 3.29 were treated as outliers and removed, resulting in a final data set with 

1,519 meals (Supplementary Figure 1).  

Overview of the UK National Diet and Nutrition Survey (NDNS) 

The 2000-2001 UK NDNS comprises dietary data obtained between July 2000 and 

June 2001 (24). The aim of the survey was to provide a cross-sectional record of the eating 

habits and nutritional status of the UK population. A multi-stage random-probability design 

was used to invite participants; 152 postal sectors were selected during the first stage, and 

from each sector, 40 addresses were randomly chosen. Individuals who were neither pregnant 

nor breast feeding, and those aged between 19 and 64 were eligible for inclusion. All 

provided written informed consent and the NDNS received ethical approval from a Multi-

center Research Ethics Committee (MREC) and National Health Service Local Research 

Ethics Committees (LRECs). 

Analysis of data from the UK NDNS  

Participants (N = 1,724; 958 females, 766 males; mean ± SE, age = 42.10 ± 0.29 

years; BMI = 26.83 ± 0.13 kg/m2) used a diet diary to record all of the food and drink that 

they consumed over seven days. For eating events occurring at home, each food item was 

individually weighed and recorded, and any uneaten food was subtracted from the initial 

portion. For out-of-the-home eating events, participants recorded approximate amount or 

quantities served, and noted any leftovers. We removed all calorie and non-calorie containing 
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beverages using a purpose-written script in R which excluded beverages using food codes 

from the User Guide provided by the UK Data Archive. Remaining beverages which were 

not identified in the User Guide were manually removed by the lead author on five separate 

instances. We did not exclude milk when it was consumed with cereal or porridge or water 

when it was used to prepare a powdered soup. Lastly, we calculated the consumed eating 

event size (g), eating event caloric intake (kcal), and eating event ED for each of the 60,777 

recorded eating events.   

Our aim was to make the NDNS dataset comparable to the Hall dataset which only 

included data from meals. We therefore excluded eating events where less than 200 kcal had 

been consumed and where the eating event ED was greater than 4 kcal/g (26). The 200 kcal 

cut-off corresponds with previous research using the NDNS dataset suggesting the average 

caloric content of snacks to be approximately 200 kcal (27). The NDNS provides no 

information about meal type (i.e., breakfast, lunch, or dinner) and so we use the term ‘meal’ 

to refer to all eating events that were not excluded. Meal caloric intakes were mean centered 

within each individual and centered meals with Z-scores less than or greater than ± 3.29 were 

removed from the analyses. The final dataset comprised 32,162 meals (Supplementary 

Figure 2). 

Statistical analysis 

Initially, we plotted centered meal caloric intakes by consumed meal ED for visual 

inspection of any evidence for non-linearity and the remaining analyses were conducted in 

the R statistical environment (28) with several helper packages (29, 30). To quantify whether 

a non-linear fit may better explain the data, a Ramsey Regression Equation Specification 

Error Test (RESET) was conducted following the procedure outlined by Ramsey (31) and 

using the R package ‘lmtest’ (32). If the Ramsey RESET returned a significant result, then a 

segmented regression was run on the centered meal caloric intake data following the 
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procedure described by Muggeo (33) and using the R package ‘segmented’ (34). A 

segmented regression or ‘broken stick’ regression is an iterative approach which establishes 

the existence of one or multiple breakpoints. First, a simple linear model (without a 

breakpoint) is computed and evidence for a breakpoint is assessed. If a breakpoint is 

identified (p < 0.05), then a segmented regression is used to establish the location. The 

process then repeats until no further breakpoints are identified. This approach also constrains 

the segments to be ‘continuous’ (adjacent regression lines begin and end at the same location) 

(33). To confirm that a segmented fit is superior to a linear fit, we used the Akaike’s and the 

Bayesian information criterion (‘stats’ package, (28)).  

Results  

Secondary analysis of the Hall dataset: evidence for a non-linear association between 

consumed meal ED (kcal/g) and mean centered meal caloric intake (kcal) in a controlled 

setting 

Visual inspection of the plot containing centered meal caloric intake by consumed 

meal ED (Figure 1) indicated a potential non-linear pattern in the data. Centered meal caloric 

intake appeared to increase with increasing ED until ~1.5 kcal/g and then decreased slightly. 

The Ramsey RESET (F(2, 1515) = 99.32,  p < 0.001) indicated that a non-linear fit would 

better explain the data, and the segmented regression returned a one-breakpoint solution ('0 

vs 2', p < 0.001; ‘1 vs 2’, p = 0.08) at 1.41 kcal/g (SE = 0.04), demonstrating a significant 

change in the relationship between consumed meal ED and centered meal caloric intake at 

this point (Table 1, Figure 2). Respectively, we observed a significant positive and negative 

association below and above 1.41 kcal/g (Table 1). Tests of the Akaike’s and Bayesian 

information criterion supported a segmented fit (Supplementary Table 1). We also noted 

that the increase in centered meal caloric intake before the 1.41 kcal/g breakpoint and 

subsequent decrease after the breakpoint was also observed in the raw meal caloric intake 
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data (Supplementary Figure 3). To assess the robustness of this evidence for non-linearity, 

we conducted sensitivity analyses, once including (i) plate cleaned meals and again using (ii) 

presented meal ED (to account for possible spurious correlations between consumed meal ED 

and centered meal caloric intake). Here, for both analyses, two-breakpoint solutions were 

returned (i)1.08 & 2.89 kcal/g and (ii)1.02 & 1.84 kcal/g (Supplementary Figures 4 & 5). 

Regardless, evidence for non-linearity was preserved. 

UK NDNS dataset: similar results in participants in free-living conditions 

Figure 3 shows centered meal caloric intake by consumed meal ED. Unlike in Figure 

1, the large number of superimposed datapoints made it difficult to determine non-linearity 

and potential breakpoints from simple visual inspection. However, the Ramsey RESET test 

demonstrated a non-linear pattern (F(2, 32,158) = 852.77, p < 0.001), and two breakpoints ('0 

vs 2', p < 0.001; '1 vs 2', p = 0.046) were identified at 1.75 kcal/g (SE = 0.02) and 2.94 kcal/g 

(SE = 0.15), respectively (Table 2, Figure 4). Again, we observed a significant positive 

association below the first breakpoint as well as a negative association between the 

breakpoints and above the second breakpoint (Table 2), and both the Akaike’s and the 

Bayesian information criterion were met (Supplementary Table 1). Regardless of the calorie 

cut-off used for the inclusion criteria (e.g., meal caloric intake > 600 kcal), the patterns of 

results were broadly similar; meal caloric intake increased until the first breakpoint and then 

decreased. A two-breakpoint solution was returned when the inclusion criterion for meals 

was set at both 400 and 600 kcal (i.e., meals < 400 or 600 kcal were excluded). However, 

when the criterion was set at 800, 1,000, and 1,200 kcal a one breakpoint solution was 

returned. Regardless of whether a one or two breakpoint solution was selected, the first 

breakpoint occured between 1.75 kcal/g and 2.30 kcal/g (Supplementary Table 2). 

Discussion 

Evidence for sensitivity to ED 
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Evidence for a non-linear association between centered meal caloric intake and 

consumed meal ED was found in both the Hall and the UK NDNS datasets. Centered meal 

caloric intake increased with ED until the first breakpoint (segment A) and decreased 

thereafter (segment B, and, in the NDNS dataset, segment C (Figure 2 & Figure 4)). It is 

axiomatic that the observed trends in caloric intake resulted from participants consuming 

different sized meals (g) across the ED range. In segment A of both datasets, participants 

consumed similar sized meals (Supplementary Figure 6 & 7), resulting in the positive 

association between consumed ED and centered meal caloric intake. That is, there was no 

indication that participants compensated for the increasing ED by reducing their meal size. 

However, the negative slopes in segment B of both datasets and segment C of the NDNS 

dataset reflect a degree of overcompensation; specifically, participants consumed smaller 

meals than necessary to adjust for the increasing meal ED. The overcompensation may, in 

part, be driven by cognitive restraint, specifically the conscious restriction of meal size due to 

concerns about effects of energy-rich meals on body weight (27). This over-compensatory 

reduction in the meal size of high energy-dense foods is important in curbing overall energy 

intake, given that meals in the NDNS dataset with an ED above the first breakpoint (1.75 

kcal/g) contribute ~60% of total energy intake (Supplementary Figure 8). 

In summary, had participants been insensitive to meal energy content, then they 

would have eaten the same amount of food resulting in a linear increase in centered meal 

caloric intake with ED (we found the converse). It should be acknowledged that the patterns 

are not identical across datasets, which may reflect differences in study populations (US vs 

UK) or study conditions (controlled vs free-living). Nevertheless, we see evidence for 

overcompensation in higher energy-dense meals in both datasets. Future research should 

repeat these analyses in datasets from other countries.  
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A two-component model of meal size (g): ‘volume’ and ‘calorie content’ 

satiation signals 

These findings can be captured by a two-component (‘volume’ and ‘calorie content’) 

model of meal size (similar to Smith (35) and Deutsch (36)) in which volume is the dominant 

signal with energy-dilute foods and calorie content is the dominant signal with energy-rich 

foods (Figure 5). The volume signal is a largely unconditioned response that affects food 

intake via gastric distension, whereas the calorie-content signal (biologically derived from the 

sensing of fat, carbohydrate, and protein) reduces meal size based on learned (anticipatory) 

and unlearned (immediate) effects of calories. Both the volume and calorie-content signals 

can impact meal size via food portion-size selection (expected satiety) (37, 38) or within a 

meal directly (39, 40). While feedback from the volume signal is constant across a range of 

energy densities, it is more salient with lower energy-dense meals. Low energy-dense foods 

are relatively dilute in calories and are high in intra-cellular water content and fiber (41). This 

means that there is little feedback from the calorie-content signal, so the primary determinant 

of meal size is negative feedback from the volume signal via gastric distension. 

With respect to the above model, which posits two signals influencing meal caloric 

intake, we can apply the following reasoning. In both datasets, the positive association 

between ED and centered meal caloric intake observed in the lower energy-dense meals (i.e., 

segment A) was driven by participants consuming a similar sized meal across the range of 

energy densities. Thus, it would appear that feedback from the volume signal reached a 

tolerable upper limit, capping lower energy-dense meals at a similar size. 

 With respect to the calorie-content signal, frequently consuming a food provides the 

opportunity to learn from delayed post-ingestive experiences (e.g., malaise if overconsumed) 

(42, 43). High energy-dense foods will provide relatively greater post-ingestive caloric 

feedback via the calorie-content signal. For the signal to operate effectively, it is critical that 
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the usual relationship between taste and calorie content is preserved. This allows participants 

to use previous post-ingestive experiences to guide the amount of food consumed either via 

pre-meal planning (expected satiety) (44) or during a meal via ‘conditioned satiation’ (39, 

40). Importantly, the reduction in meal size in response to increasing ED (segments B & C) is 

not only present at an individual level, but might also be reflected on a larger scale, such as in 

full-service and fast-food restaurant meals (45). 

Finally, the success of the two-component model is that it explains complexity in the 

relationship between ED, meal size, and energy intake. However, it is not exhaustive, and 

does not consider a role for individual macronutrients or effects of moderators such as eating 

rate (46) and appetition (47). 

Reconciling ad libitum and preload test-meal studies with the two-component model 

Short-term ad libitum studies (e.g., < 10 total exposure days) report ED has little to no 

influence on meal size. Based on the model, this insensitivity is seen for two reasons. First, 

ED is often manipulated covertly, which undermines the learned calorie-content signal. 

Second, the meals or diets are often energy dilute (e.g., < 2 kcal/g), which means the volume 

signal dominates. In combination, this explains the tendency to consume a consistent weight 

of food in many ad libitum studies. Indeed, it has been previously observed that this tendency 

might only occur below a certain low ED (48) and the Volumetrics Eating Plan (49) 

illustrates how this strategy can generate sustained weight loss (50). 

By contrast, preload test-meal studies demonstrate some sensitivity to food ED and 

reflect an unconditioned calorie-content signal. Here, an interval exists between the preload 

and the test-meal. Therefore, the calorie content of the preload, even when covertly 

manipulated, can be detected (by the gut e.g., Wilbrink, et al. (51)) to effect subsequent test-

meal intake. Moreover, for longer-term ad libitum studies, the effects of ED on meal size 

could be explained by the capacity of the calorie-content signal to influence satiation 
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indirectly, via associative learning. Specifically, the orosensory features of the food become 

associated with the post-ingestive consequences of its calorie (macronutrient) content which, 

over time, come to modify meal size, a phenomenon similar to ‘expected satiety’ (38, 52). 

Differences in sensitivity to energy density in food choice and food intake  

It may seem paradoxical that there are contrasting patterns of sensitivity to ED in 

studies of food choice and food intake. In choice studies, a clear linear association (positive) 

is observed between ED and preference, but only in lower energy-dense foods (~<1.75 

kcal/g) (22, 53). In foods with progressively higher ED (~>1.75 kcal/g), this relationship 

weakens until choice and ED become unrelated (22). Whereas for food intake, the present 

results demonstrate the converse - greater sensitivity to ED in higher ED meals. 

These different findings may reflect an adaptation that maximizes caloric intake in an 

environment in which ED varies substantially, while at the same time avoiding the acute 

aversive effects of short-term overconsumption (42, 54). Differences in the ED of energy-

dilute foods matter because stomach capacity is limited. When only energy-dilute foods are 

available, choosing the least energy-dilute (most energy-dense) food will ensure that energy 

intake is maximized. By contrast, with energy-rich options, absolute stomach capacity is 

relatively unimportant, and the priority shifts to avoiding acute, negative soporific effects 

caused by an overconsumption of calories (42). Accordingly, we observe a compensatory 

reduction in meal size with ED, which, as noted above, is driven by a largely learned 

anticipation of the effects of the food’s calories on satiety (i.e., the calorie-content signal).  

Concluding remarks   

Because ad libitum and preload test-meal studies report contrasting findings regarding 

the effects of ED on energy intake, we explored this association in two datasets. Uniquely, we 

measured the influence of meal ED on meal energy intake 1) across a broad and continuous 

range of energy densities, 2) using non-covertly manipulated, ‘real world’ foods and, 3) 
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allowed for the possibility that the association is non-linear. We observed a consistent non-

linear pattern which we explain using a two-component model comprising volume and 

calorie content signals. This model also reconciles differing results in ad libitum and preload 

test-meal studies investigating covert manipulation of meal ED. Indeed, our findings 

challenge the idea of ‘passive overconsumption’ of energy-rich foods and show that, by 

contrast, surprisingly, people show overcompensation. 
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Table 1 

Slope parameter estimates, 95% confidence intervals (CI), t values, and p values from a 

segmented regression model predicting centered meal caloric intake (kcal) from consumed 

meal energy density (kcal/g) in the Hall dataset (n = 1,519). 

 Slope 

parameter 

95% CI t value p value 

Slope 1 (< 1.41kcal/g) 469.13 396.58, 541.67 13.19 < 0.001 

Slope 2 (> 1.41 kcal/g) -44.42 -71.94, -16.90 -3.02 0.003 
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Table 2 

Slope parameter estimates, 95% confidence intervals (CI), t values, and p values from a 

segmented regression model predicting centered meal caloric intake from consumed meal 

energy density in the NDNS dataset (n = 32,162). 

 Slope 

parameter 

95% CI  t value p value 

Slope 1 (< 1.75 kcal/g) 174.86 162.78, 186.94 31.60 < 0.001 

Slope 2 (1.75 kcal/g – 

2.94 kcal/g) 

-107.91 -118.99, -96.84 -15.54 < 0.001 

Slope 3 (> 2.94 kcal/g) -59.19 -81.12, -37.26 -5.56 < 0.001 
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Figure 1 Centered meal caloric intake (kcal) by consumed meal energy density (kcal/g) in the 

Hall dataset (n = 1,519). Meals were centered within each participant and meal type. Meals 

which were plate cleaned (i.e., more than 95% of the served portion consumed) and meals 

with Z-scores less than or greater than ± 3.29 were removed. In this scatterplot, each point 

represents one meal.  
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Figure 2 Mean centered meal caloric intakes (kcal), predicted from a segmented regression 

model relating consumed meal energy density (kcal/g) to consumed centered meal caloric 

intake (kcal) in the Hall dataset (n = 1,519). The breakpoint located at 1.41 kcal/g (SE = 0.04) 

and is represented by a black circle. The dashed and solid lines represent different segments 

and the shading around the segments indicates 95% confidence intervals. Segment A indicates 

the slope of the segment between 0 and 1.41 kcal/g and segment B models the slope above 

1.41 kcal/g. 
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Figure 3 Centered meal caloric intake (kcal) by consumed meal energy density (kcal/g) in the 

NDNS dataset (n = 32,162). Meals were centered within each participant and meals with Z-

scores less than or greater than ± 3.29 were removed. In this scatterplot, each point represents 

one meal. To aid graphical illustration, centered meal caloric intakes above 1,000 kcal or 

below -500 kcal are excluded from this figure (0.51% of total meals). They were, however, 

included in the reported analyses.  
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Figure 4 Mean centered meal caloric intakes (kcal), predicted from a segmented regression 

model relating consumed meal energy density (kcal/g) to consumed centered meal caloric 

intake (kcal) in the NDNS dataset (n = 32,162). The breakpoints located at 1.75 kcal/g (SE = 

0.02) and 2.94 kcal/g (SE = 0.15). The dashed and solid lines represent different segments and 

the shading around the segments indicates 95% confidence intervals. Segment A indicates the 

slope of the segment between 0 and 1.75 kcal/g, segment B indicates the slope of the segment 

between 1.75 and 2.94 kcal/g, and segment C models the slope above 2.94 kcal/g. 
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Figure 5 Two-component model of meal size (g): volume and calorie-content satiation 

signals. This is modelled using an 875-kcal meal as an example and demonstrates perfect 

compensation. The white section indicates the dominance of the ‘volume’ signal, the dark 

grey section the dominance of the ‘calorie-content’ signal and the lighter grey section 

indicates where a breakpoint might occur which is the location where the relative dominance 

of the signals changes. 

 


