Please note that this article, which is not highlighted on the weekly PNAS Tipsheet, is provided as a nonfinal proof. Nonfinal proofs are accepted versions that may not incorporate authors' corrections to the proofs and late additions or changes regarding conflicts of interest, funding sources, or author affiliations. PNAS publishes daily online through a rolling publication process. Due to the large volume of articles we publish, the journal does not provide updates to the media for articles that are not highlighted on the weekly PNAS Tipsheet. Reporters interested in covering this article, which is not highlighted on the weekly PNAS Tipsheet, should check directly with the authors of the articles for any such late additions, which may be included in the published articles.

Large numbers cause magnitude neglect: The case of government expenditures

Christina Boyce-Jacino ${ }^{\text {a,b,1, }}$, Ellen Peters ${ }^{\text {© (D) }}$, Alison Galvanid ${ }^{\text {d }}$, and Gretchen B. Chapmanª ${ }^{\text {(D) }}$

Edited by Susan Fiske, Princeton University, Princeton, NJ; received February 22, 2022; accepted May 27, 2022

Abstract

Four studies demonstrate that the public's understanding of government budgetary expenditures is hampered by difficulty in representing large numerical magnitudes. Despite orders of magnitude difference between millions and billions, study participants struggle with the budgetary magnitudes of government programs. When numerical values are rescaled as smaller magnitudes (in the thousands or lower), lay understanding improves, as indicated by greater sensitivity to numerical ratios and more accurate rank ordering of expenses. A robust benefit of numerical rescaling is demonstrated across a variety of experimental designs, including policy relevant choices and incentive-compatible accuracy measures. This improved sensitivity ultimately impacts funding choices and public perception of respective budgets, indicating the importance of numerical cognition for good citizenship.

numerical cognition | policy | information presentation | numeracy
In an interview about a Central American initiative, US President Joe Biden misquoted the program price tag as "almost $\$ 800$ billion" when the true amount was $\$ 750$ million.* Like Biden, many people confuse large budgetary amounts. In a set of four experiments, we demonstrate how difficulties in representing and reasoning about large numbers have consequences for evaluating government programs and how large numbers can be better presented so that people can use them effectively.

Numeracy and Its Implications for Citizenship

Difficulties in discriminating among large numbers stem from how numbers are cognitively represented. Following a logarithmic function, as numbers increase in magnitude, their internal representations become harder to distinguish because representations of large numbers are noisier and thus overlap more (1,2). For example, $\$ 2$ and $\$ 4$ are perceived as further apart than $\$ 1,002$ and $\$ 1,004$ (3). Under a linear numerical representation, an absolute difference of $\$ 2$ would be interpreted as the same in both cases, whereas under a logarithmic function, discrimination is a function of the ratio between two numbers. For federal expenditures, logarithmic number representations imply that people will discriminate more easily between small costs but will struggle to discriminate between large costs, displaying cost insensitivity instead. In this way, basic numerical processing has implications for participatory democracy.
The processing of numbers can be facilitated by manipulating how numerical information is presented. For instance, putting numbers into perspective or reexpressing unfamiliar numbers in familiar units can increase compression of numerical representations and thus increase discriminability among values (4,5). For example, instead of describing an area as being " $695,000 \mathrm{~km}^{2}$," including a reference makes it easier to understand: $695,000 \mathrm{~km}^{2}$ is about the size of Texas (5). Alternatively, numbers can be rescaled, for example, in terms of per household costs (6). Both strategies transform large numbers to smaller magnitudes, thus placing the values on an easier-to-discriminate portion of the numerical representation function and increasing sensitivity.

The Current Studies

In four preregistered studies, we assessed whether nonexperts' ability to discriminate between price tags for large government programs improves when prices are expressed as per capita values rather than national values. These studies demonstrate a simple way to remove a significant barrier to good citizenship. The current studies go beyond previous work (e.g., 6) by testing predictions derived from literature on basic processes in numerical cognition using paradigms that employ the timely context of the COVID-19

Significance

Comprehension of government expenditures requires understanding immense monetary amounts, yet numbers of such magnitude are difficult to understand. Our findings highlight the implications of basic numerical processing for participatory democracy. Basic principles of numerical cognition predict that a simple rescaling manipulation will increase nonexperts' ability to discriminate among different price tags for large government programs, a prediction that was supported in four experiments. By converting large numbers into smaller ones, regardless of their unit familiarity, people are better able to process numerical information and, subsequently, incorporate differences in budgetary magnitudes into their judgments and decisions.

Author affiliations: ${ }^{\text {a Carnegie }}$ Mellon University; ${ }^{\text {b }}$ US Army Research Institute for the Behavioral and Social Sciences; 'University of Oregon; and ${ }^{\text {dYale University }}$

Author contributions: C.B.-J. and G.B.C. designed research; C.B.-J. performed research; C.B.-J. and G.B.C. analyzed data; and C.B.-J., E.P., A.G., and G.B.C. wrote the paper.

The authors declare no competing interest.
This article is a PNAS Direct Submission.
Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
${ }^{1}$ To whom correspondence may be addressed. Email: christina.m.boyce-jacino.ctr@army.mil.
This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas 2203037119/-/DCSupplemental.
pandemic, incentive-compatible judgments, objective assessment of judgment accuracy, and policy choices.

Researchers sometimes study how people process numbers in the context of numeracy. Broadly defined as mathematical and probabilistic reasoning skills, numeracy is typically measured with a series of mathematics problems $(7,8)$ and is critical to success in several domains ($9-11$). Following our preregistration, we included a measure of numeracy as a covariate in the current studies, and additional exploratory considerations of numeracy are included in SI Appendix.
Experiment 1. In March 2020, Amazon Mechanical Turk (MTurk) participants $(n=392)$ saw one of four statements about possible US COVID-19 relief packages. As shown in Fig. 1, the statements varied in their scope (national or individual) and magnitude (large or small) such that participants reading about a national stimulus package saw that "The House and Senate passed a $\$ 100$ billion [$\$ 2$ trillion] relief package to address the Covid-19 national crisis." Those reading about an individual level stimulus package read that "The relief package passed by the House and Senate to address the Covid-19 national crisis includes cash payments to individual taxpayers. Consider a payment of $\$ 1,200$ [$\$ 24,000$] per individual." Note that the ratio between stimulus amounts in each scale condition is held constant at 20:1. In each condition, participants rated the effectiveness of each program, defined as how well the program would address the economic impact of COVID-19.
Results. Fig. 2 and Table 1 show an interaction such that participants differentiated more between high and low individuallevel payments than they did between high and low national stimulus packages $(\beta=-25.03, \mathrm{SD}=5.40)$. These results suggest that people distinguish between two small numbers more easily than two large numbers even when the ratio is held constant. Note that we speak only to differences within national and individual conditions, not across. Because the national amounts represent the entire cost of the recovery package, which included far more than individual payments, while the individual amounts represent cash payments to individuals, the two conditions are not directly equivalent. Finally, we find that higher numeracy was correlated with lower ratings of effectiveness ($\beta=-3.21$, SD $=1.42$). In SI Appendix, we report additional, exploratory analyses regarding the moderating effect of numeracy.

Given that both the national and individual conditions used a 20:1 ratio between magnitudes, the interaction pattern indicates that numerical representation must not have a logarithmic function as surmised by previous work. Instead, the function must be more curvilinear to account for current and prior results (6).

Experiment 2a. In our next experiment, we employ an incentive-compatible, objective measure of numerical understanding in the form of a recall ranking task. MTurk

Fig. 1. Experiment design and text for Experiment 1.

Fig. 2. Results for Experiment 1 showing rated effectiveness as a function of condition. Rating distributions are represented by violin plots where the width of the violin represents the frequency of data at each value and the center dot of each plot represents the mean effectiveness rating for that condition.
participants ($n=401$) began by learning about the cost of eight programs under time pressure (see Fig. $3 A$). Participants saw prices as national program costs (e.g., $\$ 3$ billion) or in price per capita (e.g., a $\$ 3$-billion program costs $\$ 10$ per capita). After seeing each program's cost, participants ranked the set of eight programs by price (see SI Appendix for details). At the time of ranking, participants did not see the costs of the programs; rather, they had to recall them. Requiring that rank-order judgments be based on memory adds difficulty to an otherwise easy task, and while ranking costs does not require participants to preserve interval information, it does require them to properly encode program cost. Furthermore, the rank-order task was presented identically in the national and per capita conditions, and participants were paid for accuracy. We predicted higher rank-order accuracy in the per capita condition, reasoning that more overlap among large-number representations would cause greater confusion among numerical ranks.
Results. We scored participants for correctly ranking each of the 28 pairs that resulted from ordering eight programs. For example, if they ranked the most expensive program above the least expensive, they would be correct on that pair. As shown in Fig. $4 A$, participants in the per capita condition were more accurate, correctly ranking on average $19.22(\mathrm{SD}=5.91)$ program pairs, compared to an average $17.90(\mathrm{SD}=5.45)$ among national-cost participants $[t(399)=2.30, P=0.021]$. A regression analysis (Table 2) confirmed that accuracy increased when cost information was presented in per capita terms ($\beta=0.262$, SD $=0.125$). Numeracy correlated with greater accuracy $(\beta=0.199$, SD $=0.068$). Additional program features were explored in preregistered analyses (see SI Appendix).

Rescaling magnitudes into smaller units may make them more familiar; thus, it is possible that familiarity, and not rescaling per se, drives increased accuracy. To test this account, in Experiment 2b, we scaled costs by an arbitrary and unfamiliar "capitol dome" unit.

Experiment 2b. In a replication and extension of Experiment 2a, we test the robustness of using a rescaling rule to improve numerical processing by scaling down total expenditures using an unfamiliar unit. Our unit in this experiment is a capitol dome, equivalent to the estimated material costs of the US Capitol Building dome ($\$ 20$ million) such that a program costing $\$ 1$ billion would cost 50 capitol domes. In using this unit, we can

Table 1. Linear regression results for Experiment 1
(1)

	Rating	Rating
Magnitude	$36.26 * * *$	$35.08^{* * *}$
	(3.89)	(3.87)
Scale	-2.95	-3.65
	(3.87)	(3.82)
Magnitude \times scale	$-26.41^{* * *}$	$-25.03^{* * *}$
	(5.47)	(5.40)
Numeracy		-3.21^{*}
		(1.42)
Politics		1.83
		(1.60)
White race		-7.81^{*}
		(3.07)
Gender		2.56
		(2.92)
Age		-0.76
		(1.29)
Education		1.81
		(1.53)
N		392
R^{2}		0.248

We regressed on effectiveness rating (0 to 100, with higher numbers indicating greater effectiveness) with the primary predictors (1) and additional covariates (2) (numeracy, politics: $0=$ conservative and $100=$ liberal; gender: $0=$ male and $1=$ female).
directly test the role that familiarity or self-relevance (i.e., a per capita rescaling rule) could play in increasing discriminability above and beyond the role of numerical processing.

MTurk participants $(n=399)$ completed the same survey as in Experiment 2a except that participants in the treatment condition saw program costs in terms of the dome unit. We predicted that participants in the dome condition would be better able to process the program cost information and would therefore be more accurate on the program ranking task.

Results. As in Experiment 2a, for each participant, we created 28 ranked pairs from our eight programs and scored participants based on whether or not they ranked the programs in each pair correctly. We find first that participants in the per capita condition were more accurate, correctly ranking on average 19.9 $(\mathrm{SD}=5.86)$ program pairs, compared to on average 18.3 $(\mathrm{SD}=5.32)$ for national-cost participants $[t(399)=2.75, P=$ 0.006]. A mixed-model logistic regression confirmed that condition significantly affected pair score, with scores higher in the dome condition than the control ($\beta=0.286$, $\mathrm{SD}=0.094$). Numeracy played a role as well, with those scoring higher on numeracy having higher rank accuracy ($\beta=0.197$, $\mathrm{SD}=0.052$). Additional analyses are reported in SI Appendix.

The results of this experiment suggest that a rescaling rule that simply transforms large numbers into smaller ones will benefit participants on tasks involving numerical processing. This effect stands regardless of familiarity with a unit.

Experiment 3. Finally, we investigated whether presenting smaller magnitudes also alters support for federal programs. In this experiment, our measure of numerical discrimination focused on whether participants chose to fund the less expensive of two purportedly equivalent-impact programs. MTurk participants $(n=399)$ responded to eight pairs drawn from eight federal programs by choosing to fund one program in each pair. Four of the eight pairs were matched on all qualities (e.g., scope, target domain, effectiveness) except for price, in an effort to highlight cost as the singular important feature. The remaining pairs were mixed such that we would expect participants to use cues beyond price in their decisions. Counterbalanced assignment of price to program ensured that program details other than price could not result in a net preference.
As before, we presented cost information to participants either as the national program costs (e.g., $\$ 300$ million) or in per capita costs (e.g., $\$ 1$ per capita). We predicted that participants would select the less expensive program more frequently in the per capita condition compared to the national-price condition.

Fig. 3. Survey progression for Experiment $2 a(A)$ (the procedure for Experiment $2 b$ is not shown but is equivalent to that of $2 a$) and Experiment 3 (B). (A) The progression for Experiment 2 a is as follows: in part 1, participants begin by seeing the description and program icon for each program. They then complete an attention measure where they match each program icon to the program name. In part 3, they are presented with cost information under time pressure. In part 4, they rank each program according to its cost, as they remember it. In Experiment 2b, program costs are presented in a domes condition instead of per capita. (B) Experiment 3 proceeds similarly where participants begin (part 1) by learning the program name and description. They then proceed directly to learning the cost information in part 2, where they are also asked to choose which of the two programs to fund.

Fig. 4. Results for Experiment 2a (A), Experiment $2 \mathrm{~b}(B)$, and Experiment $3(C)$. A and B show participants' rank-order responses depicted as the number of pairs (out of 28) ordered correctly. C shows the fraction of pairs (out of eight) where the participant chose the less expensive program. All panels present violin plots in which the width of the curve corresponds with the frequency of data points and in which the center dot represents the mean of the distribution.

Results. As shown in Fig. $4 B$, participants chose the cheaper program (our measure of numerical discrimination) more often in the per capita condition $(M=0.694, S D=0.255)$ than the national-cost condition ($M=0.629, S D=0.209 ; \beta=0.397$, SD $=0.103$; see Table 2). Greater numeracy also predicted more choices of the less expensive program ($\beta=0.198, \mathrm{SD}=0.059$), as did better performance on an attention-check measure ($\beta=0.217, \mathrm{SD}=0.044$). Although the present results include both choice pairs matched on all nonprice qualities as well as choice pairs that were unmatched, in SI Appendix we present additional analyses that explore this specific feature of the program pairs.

Discussion

Numerical comprehension is a basic building block of good decision-making, and our work demonstrates the limitations of that comprehension, due to fundamental properties of numerical cognition. Basic principles of numerical cognition lead directly to predictions about a manipulation that improves discrimination among large magnitudes. Across four studies, we found robust evidence for a rescaling manipulation which improves discrimination among price tags for large government programs. Specifically, scaling down large numbers caused greater price discrimination in program-effectiveness ratings, improved rank ordering of program magnitudes, and led to greater preference for less expensive policies intended to be equivalent otherwise. This relatively simple change to how information is presented ameliorates misunderstandings, thereby improving the potential for participatory democracy.

The current work offers the following insights. First, Experiment 1 replicated the central findings of Saiewitz and Piercey (6) and demonstrated that rescaling's effect persisted for smaller ratio differences. Our study had the added contributions of
employing a diverse US sample, judgments of policy impact, and the highly important context of COVID-19 aid, where motivated processing could have increased sensitivity, regardless of magnitude. Experiment 1 also demonstrated an important boundary condition on numerical representation effects. Despite a constant ratio between numbers, participants were more sensitive to cost magnitude at the individual than national scale, a finding that has implications for the functional form of numerical cognitive representation.

In Experiments 2 a and 2 b , we employed an incentivecompatible recall ranking task with an objectively correct answer to explore how information presentation can impact numerical discrimination. Incentive-compatible tasks have not previously been employed in numerical cognition studies, and the impact of the rescaling manipulation in this task despite the incentive for accuracy suggests that noisy processing of very large numbers is due to cognitive mechanisms, not low motivation to engage in the task. Even though ranking should have preserved ordinality in both conditions, we see lower accuracy in the national-level condition, suggesting that noisy representations of larger numbers produce greater confusion between budget numbers (2). If a noisy numerical representation is conceptualized as a distribution centered around the precise value, our results can be explained by positing that the variance in the distributions increases more than proportionally with magnitude. An analogous account is that people encode a fuzzy trace, or gist, rather than the precise numerical value (12). Experiment 2 b demonstrates that the influence of rescaling is due to numerical magnitude rather than effects of self-relevance or familiarity.

The findings from Experiments 2 a and 2 b indicated a robust rescaling effect even though participants were able to compare programs to one another. Extant research on separate versus joint evaluations $(13,14)$ suggests that we would expect greater

Experiment 2a
(1)

Experiment 2b
(2)

	Score	Score	Choice of cheaper
Condition	$0.259 *$	$0.286^{* *}$	$0.471^{* * *}$
Numeracy	(0.107)	(0.094)	(0.117)
	$0.235^{* * *}$	$0.198^{* * *}$	$\left(0.222^{* *}\right.$
Attention check	(0.063)	$0.052)$	(0.066)
	0.121	(0.053)	$\left(0.065^{* * *}\right.$
Politics	(0.062)	0.056	-0.001
	0.086	(0.045)	(0.058)
Age	(0.054)	0.017	0.114^{*}
	-0.057	(0.033)	(0.048)
Gender	(0.045)	-0.099	-0.010
N	$-0.201 *$	(0.089)	(0.113)
Clusters	(0.098)	11,172	3,192

In Experiments 2a and 2b, we predicted score ($1=$ correct and $0=$ incorrect) at the level of each ranked pair of programs (28 per participant). In Experiment 3 , we examined participant choices on the level of each program pair (eight observations per participant; $1=$ chose cheaper program and $0=$ chose more expensive program). In all three models, covariates included condition (total cost vs. per capita or dome presentation), numeracy, an attention-check measure, and a set of demographics (political orientation: $0=$ conservative and $100=$ liberal; gender: $0=$ male and $1=$ female). The analysis is clustered on the level of participant. *P $<0.05, * * P<0.01, * * * P<0.001$.
numerical sensitivity in a comparative setting regardless of numerical presentation. Nonetheless, we found a significant effect of rescaling, suggesting an important role of scaling in numerical sensitivity.

Finally, Experiment 3 again adopted a joint evaluation setting but assessed how per capita presentation affects policy choices of which government programs to fund. A counterbalanced study design allowed us to draw inferences about numerical discrimination from choice of the less expensive program. Presenting large monetary amounts in a way better understood by participants enabled them to better discriminate between programs.

Together, this work both illuminates basic cognitive processes and also contributes to our understanding of barriers to good citizenship, demonstrating the importance of presenting information in a manner amenable to the workings of the human mind. We demonstrate that rescaling large numbers facilitates improved decision-making by allowing people to better recognize the difference between two numbers, thus allowing for improved discrimination. Extensions of the present work should explore scaling effects in other domains requiring communication of large numbers, such as public health. Future work could also explore other ways to improve discriminability, such as experience. Whereas the numerical cognition literature suggests that the logarithmic representation of numbers is fixed in adults, research on the role of experience, such as decisions by sampling (15), suggests that comprehension of large numbers might be improved by simply experiencing more large numbers. More broadly, future work could investigate the ancillary effects of scaling large numbers. For instance, although we propose that transforming a program cost in the billions to one in the tens improves how well numerical information is understood and used, the use of smaller numbers may also alter perceptions of program benefits. Results from such studies would enhance our ability to provide prescriptive advice for how to help lay people be more actively engaged citizens.

Materials and Methods

All experiments were carried out with the approval of Carnegie Mellon University's Institutional Review Board (Protocol ID STUDY2017_00000392). Participants gave fully informed consent prior to taking part in each survey.

Experiment 1.
Participants. US-based participants ($n=404$) were recruited on MTurk in April 2020 and completed the survey for monetary compensation. As per preregistration (see https://aspredicted.org/blind.php?x=9r9wm6), 12 participants were removed from analysis for failure to pass an attention check, leaving 392 in the analysis. Of the participants, 56.6% were male and 41.6% were 30 to 39 y old.
Design and procedure. Participants were randomly assigned to one of four conditions in a between-subjects design, 2 (scale: national vs. individual) $\times 2$ (magnitude: large vs. small), and read a description of COVID-19 stimulus package legislation (see Fig. 1). All participants answered the question: "How effective do you think this relief package will be in addressing the economic impact of the Covid-19 national emergency?" (0 to 100 scale). They also completed a 13 -item numeracy test, consisting of an 11-item test (7) and two original questions using numbers in the millions and billions, as well as a demographic questionnaire (political affiliation, gender, age, education, race).

Experiment 2a.

Participants. US-based MTurk participants ($n=401$) completed the survey for monetary compensation. As per preregistration (see https://osf.io/nbwsy/?view_ only=02e8b6b177d44acea5be39ed52fc3e12), no exclusion criteria were applied. Of the participants, 51.8% were male and 43.1% were 30 to 39 y old.
Design and procedure. Participants were randomly assigned to one of two conditions (national cost vs. per capita) in a between-subjects design. Their task was to rank order a set of government programs according to cost. In the nationalcost condition, participants saw the cost in numerical form (e.g., $\$ 600$ million), and in the per capita condition, cost was in terms of a per capita cost. We approximated the US population to be 300 million, so a program costing $\$ 600$ million would cost $\$ 2$ per capita.

The experiment proceeded in four parts (see Fig. 3A). In part 1, participants were familiarized with the names of eight programs (see SI Appendix for details) and a representative icon for each. Each program was presented individually, and to advance, participants had to select the true name of the program from a list. In part 2, the participants matched each program with its corresponding icon. This task served as our attention-check measure. In part 3, participants learned how much each program cost. This information was given individually for each program and under time pressure: participants had 3 s to view the name, icon, and price tag. In part 4, participants then completed an incentivized task in which they ranked the programs according to cost from memory. Participants received a $\$ 5$ bonus if their rank order was completely correct (34 received this bonus). Finally, they completed the same numeracy and demographic items as in Experiment 1.

Experiment 2b.
Participants. US-based MTurk participants $(n=399)$ completed the survey for monetary compensation. No exclusion criteria were applied, as per preregistration (see https://osf.io/kmdzu/?view_only=f3e8da71bacc4655bade7f07f7b8cf0a).
Design and procedure. The design and the procedure of Experiment $2 b$ were the same as those for Experiment 2a except that a different rescaling rule was used. In this experiment, we scaled federal budget items by a capitol dome unit equal to $\$ 20$ million. We applied this rule such that a program costing $\$ 40$ million would cost 2 capitol domes. Across all eight programs, dome costs ranged from 1 to 750 capitol domes.

Experiment 3.

Participants. US-based MTurk participants $(n=399)$ completed the survey for monetary compensation. No exclusion criteria were applied, as per preregistration (see https://osf.io/tacdk??view_only=d72695169ed6495a931ccc7414f3e630). Of the participants, 46.6% were male and 33.3% were 30 to 39 y old.
Design and procedure. Participants were randomly assigned to one of two conditions (national cost vs. per capita) in a between-subjects design. As in Experiment 2a, participants saw cost information for eight federal programs where cost was either in total numerical form (national-cost condition: e.g., $\$ 600$ million) or in terms of per capita costs (per capita condition: e.g., $\$ 2$ per capita). Programs were designed such that each million-dollar program had a similar program costing billions. These matched programs were similar on all dimensions except cost (see SI Appendix for details). To communicate this equivalence, we assigned each program an efficacy grade within a domain. For example, the wind power program had an "A-" in the domain of "renewable energy." Its partner program, solar energy, had the same letter grade and domain.

1. S. Dehaene, V. Izard, E. Spelke, P. Pica, Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science 320, 1217-1220 (2008).
2. C. R. Gallistel, R. Gelman, Mathematical Cognition (Cambridge University Press, 2005).
3. E. Peters, P. Slovic, D. Västfjäll, C. K. Mertz, Intuitive numbers guide decisions. Judgm. Decis. Mak. 3, 619-635 (2008).
4. P. J. Barrio, D. G. Goldstein, J. M. Hofman, "Improving comprehension of numbers in the news" in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (Association for Computing Machinery, 2016), pp. 2729-2739.
5. J. Hullman, Y. S. Kim, F. Nguyen, L. Speers, M. Agrawala, "Improving comprehension of measurements using concrete re-expression strategies" in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Association for Computing Machinery, 2018), pp. 1-12.
6. A. Saiewitz, M. D. Piercey, Too big to comprehend? A research note on how large number disclosure format affects voter support for government spending bills. Behav. Res. Account. 32, 149-158 (2020).
7. I. M. Lipkus, G. Samsa, B. K. Rimer, General performance on a numeracy scale among highly educated samples. Med. Decis. Making 21, 37-44 (2001).

In part 1, participants saw a program name, description, icon, and information about its effectiveness. For each program, they were asked to select the correct performance "letter grade" and evaluation domain from a list. Their answers to those questions serve as our attention-check measure. In the second part, participants saw eight pairs of programs with corresponding costs. Each pair consisted of programs either matched (same domain, one price tag in the millions, one in the billions, and same program efficacy grade) or unmatched (different domains, one cost millions and one billions, but they had different efficacy grades). All participants saw four matched programs and four pairs of unmatched programs which were chosen randomly from the set of all possible 12 unmatched pairings (see SI Appendix for analysis of matched vs. unmatched pairs). For each pair, they selected which of the two programs they supported funding. After making their eight choices, participants completed a numeracy scale and a demographic questionnaire.

Data Availability. Data for experiments 1 through 4 data have been deposited in the Open Science Framework (OSF; https://osf.io/a3pe9/?view_only=011d00 14f6234f739b5a4d502eb73b76). Preregistration template data are available at As Predicted for Experiment 1 (https://aspredicted.org/blind.php?x=9r9wm6) and OSF for Experiments 2a (https://osf.io/nbwsy/?view_only=02e8b6b177d 44acea5be39ed52fc3e12), 2b (https://osf.io/kmdzu/?view_only=f3e8da71bacc4 655bade7f07f7b8cf0a), and 3 (https://losf.io/tacdk/?view_only=d72695169ed6 495a931ccc7414f3e630).

ACKNOWLEDGMENTS. Financial support for this study was provided in part by NSF Grants SES-1948887 awarded to C.B.-J., SES-2017651 and SES-1558230 awarded to E.P. and SES-1851702 awarded to G.B.C. The funding agreements ensured the authors' independence in designing the study, interpreting the data, writing, and publishing the report. Timothy Liu assisted with Experiment 1.
8. L. M. Schwartz, S. Woloshin, W. C. Black, H. G. Welch, The role of numeracy in understanding the benefit of screening mammography. Ann. Intern. Med. 127, 966-972 (1997).
9. T. Davis, E. M. Kennen, J. A. Gazmararian, M. V. Williams, "Literacy testing in health care research" in Understanding Health Literacy: Implications for Medicine and Public Health, J. G. Schwartzberg J. B. VanGeest, C. C. Wang, Eds. (American Medical Association Press, Chicago, IL, 2005). p. 15779.
10. V. F. Reyna, W. L. Nelson, P. K. Han, N. F. Dieckmann, How numeracy influences risk comprehension and medical decision making. Psychol. Bull. 135, 943-973 (2009).
11. T. Låg, L. Bauger, M. Lindberg, O. Friborg, The role of numeracy and intelligence in health-risk estimation and medical data interpretation. J. Behav. Decis. Making 27, 95-108 (2014)
12. V. F. Reyna, P. G. Brust-Renck, How representations of number and numeracy predict decision paradoxes: A fuzzy-trace theory approach. J. Behav. Decis. Making 33, 606-628 (2020).
13. C. K. Hsee, J. Zhang, General evaluability theory. Perspect. Psychol. Sci. 5, 343-355 (2010).
14. C. K. Hsee, The evaluability hypothesis: An explanation for preference reversals between joint and separate evaluations of alternatives. Organ. Behav. Hum. Decis. Process. 67, 247-257 (1996)
15. N. Stewart, N. Chater, G. D. Brown, Decision by sampling. Cognit. Psychol. 53, 1-26 (2006).

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

Q: 1_Please review 1) the author affiliation and footnote symbols, 2) the order of the author names, and 3) the spelling of all author names, initials, and affiliations and confirm that they are correct as set.
Q: 2_Please review the author contribution footnote carefully. Ensure that the information is correct and that the correct author initials are listed. Note that the order of author initials matches the order of the author line per journal style. You may add contributions to the list in the footnote; however, funding may not be an author's only contribution to the work.

Q: 3_Please note that the spelling of the following author name(s) in the manuscript differs from the spelling provided in the article metadata: Alison Galvani. The spelling provided in the manuscript has been retained; please confirm.

Q: 4_Your article will appear in the following section of the journal: Social Sciences (Psychological and Cognitive Sciences). Please confirm that this is correct.

Q: 5_You have chosen to publish your PNAS article with the delayed open access option under a CC BY-NCND license. Your article will be freely accessible 6 months after publication, without a subscription; for additional details, please refer to the PNAS site: https://www.pnas.org/authors/fees-and-licenses. Please confirm this is correct.

Q: 6_Certain compound terms are hyphenated when used as adjectives and unhyphenated when used as nouns. This style has been applied consistently throughout where (and if) applicable.

Q: 7_If you have any changes to your Supporting Information (SI) file(s), please provide revised, ready-topublish replacement files without annotations.
Q: 8_For each affiliation, please provide the following: 1) unit (laboratory, division, department name, etc.) and 2) city, state, and postal code.

Q: 9_Please confirm that the email address listed in the correspondence footnote for Christina Boyce-Jacino (christina.m.boyce-jacino.ctr@army.mil) is correct. (It is different from the one provded in the metadata.) If not, please provide the correct address.

Q: 10_Please confirm that the edited sentences ("In March 2020" and "Those reading about") preserve your intent.

Q: 11_Please note that these statements do not match those in Fig. 1 exactly.
Q: 12_Italics should not be used for emphasis per journal style so they were removed. Is this acceptable?
Q: 13_Please confirm that the edited sentence ("Although") preserves your intent.
Q: 14_Please confirm that the edited sentence ("Specifically") conveys your intent.
Q: 15_Claims of priority or primacy are not allowed, per PNAS policy (https://www.pnas.org/authors/submit-ting-your-manuscript); therefore, the sentence "The current work is novel in several ways" has been edited as "The current work offers the following insights." If you have concerns with this course of action, please reword the sentence or explain why the deleted term should not be considered a priority claim and should be reinstated.

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

Q: 16_Claims of priority or primacy are not allowed, per PNAS policy (https://www.pnas.org/authors/submit-ting-your-manuscript); therefore, the term "novel" has been deleted from this sentence ("In Experiments 2 a and 3 b "). If you have concerns with this course of action, please reword the sentence or explain why the deleted term should not be considered a priority claim and should be reinstated.

Q: 17_For consistency with the other dollar values, $\$ 2.00$ was changed to $\$ 2$ at both mentions. Please confirm that this is correct.

Q: 18_Authors are required to provide a data availability statement describing the availability or absence of all shared data (including information, code analyses, sequences, etc.), per PNAS policy (https://www.pnas. org/authors/editorial-and-journal-policies\#materials-and-data-availability). As such, please indicate whether the data have been deposited in a publicly accessible database, including a direct link to the data, before your page proofs are returned. The data must be deposited BEFORE the paper can be published. Please also confirm that the data will be accessible upon publication.
Q: 19_Please confirm 1) whether the preregistration data is correct as included here and 2) whether the full URLs can be shortened to DOI links for the OSF data.

Q: 20_Please confirm that footnote * is correct.
Q: 21_Please confirm that the correct publisher name has been inserted for refs. 4 and 5.
Q: 22_Please confirm whether the inserted page number for ref. 9 is correct.
Q: 23_For Table 1, please 1) specify the types of values presented (means with SD, etc) and 2) provide a description for the asterisks used in the table.

Q: 24_For Table 2, please specify the types of values presented (means with SD, etc).

