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IMPORTANCE Phthalate exposure is widespread among pregnant women and may be a risk
factor for preterm birth.

OBJECTIVE To investigate the prospective association between urinary biomarkers of
phthalates in pregnancy and preterm birth among individuals living in the US.

DESIGN, SETTING, AND PARTICIPANTS Individual-level data were pooled from 16 preconception
and pregnancy studies conducted in the US. Pregnant individuals who delivered between
1983 and 2018 and provided 1 or more urine samples during pregnancy were included.

EXPOSURES Urinary phthalate metabolites were quantified as biomarkers of phthalate
exposure. Concentrations of 11 phthalate metabolites were standardized for urine dilution
and mean repeated measurements across pregnancy were calculated.

MAIN OUTCOMES AND MEASURES Logistic regression models were used to examine the
association between each phthalate metabolite with the odds of preterm birth, defined as
less than 37 weeks of gestation at delivery (n = 539). Models pooled data using fixed effects
and adjusted for maternal age, race and ethnicity, education, and prepregnancy body mass
index. The association between the overall mixture of phthalate metabolites and preterm
birth was also examined with logistic regression. G-computation, which requires certain
assumptions to be considered causal, was used to estimate the association with hypothetical
interventions to reduce the mixture concentrations on preterm birth.

RESULTS The final analytic sample included 6045 participants (mean [SD] age, 29.1 [6.1]
years). Overall, 802 individuals (13.3%) were Black, 2323 (38.4%) were Hispanic/Latina,
2576 (42.6%) were White, and 328 (5.4%) had other race and ethnicity (including
American Indian/Alaskan Native, Native Hawaiian, >1 racial identity, or reported as other).
Most phthalate metabolites were detected in more than 96% of participants. Higher odds of
preterm birth, ranging from 12% to 16%, were observed in association with an interquartile
range increase in urinary concentrations of mono-N-butyl phthalate (odds ratio [OR],
1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR, 1.16 [95% CI, 1.00-1.34]),
mono(2-ethyl-5-carboxypentyl) phthalate (OR, 1.16 [95% CI, 1.00-1.34]), and
mono(3-carboxypropyl) phthalate (OR, 1.14 [95% CI, 1.01-1.29]). Among approximately
90 preterm births per 1000 live births in this study population, hypothetical interventions to
reduce the mixture of phthalate metabolite levels by 10%, 30%, and 50% were estimated
to prevent 1.8 (95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-18.3) preterm
births, respectively.

CONCLUSIONS AND RELEVANCE Results from this large US study population suggest that
phthalate exposure during pregnancy may be a preventable risk factor for preterm delivery.
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P reterm birth is a leading cause of neonatal mortality
and morbidity.1 The societal burden of preterm birth is
particularly high in the US,2 with approximately 10%

of pregnancies delivered preterm annually.3 While the under-
lying risk factors for most preterm births are unknown,
exposure to environmental chemicals like phthalates may play
a role.

Phthalates are synthetic chemicals used in everyday con-
sumer products such as personal care items and food process-
ing or packaging.4 Exposure can occur through many sources,
including household dust, diet, and personal care products like
cosmetics.5 Consequently, phthalate exposure is ubiquitous
among pregnant individuals.6,7 Human and animal studies
suggest that prenatal phthalate exposure is associated with ad-
verse effects on children’s neurodevelopment and male re-
productive tract development.8,9 While several studies have
found positive associations between prenatal biomarkers of
phthalate exposure and preterm birth,10-16 others have shown
null17-20 or inverse21-23 associations. This may be partly due to
the limited number of preterm births included, differences in
exposure assessment methods, and variation in the baseline
risk of preterm birth and phthalate exposure.

The purpose of this analysis was to pool individual-level
data from 16 prospective studies conducted in the
US11,12,14,17,21-32 and examine associations between prenatal uri-
nary biomarkers of phthalate exposure and preterm birth. We
also considered the potential influence of exposure to an over-
all phthalate mixture and evaluated how hypothetical inter-
ventions to reduce this exposure could impact preterm birth.

Methods
Study Population
In May 2019, we systematically reviewed the literature to iden-
tify epidemiologic studies conducted in the US with data on
urinary phthalate metabolites quantified during pregnancy and
gestational age at delivery (eMethods 1 and 2 in the Supple-
ment). We focused on US studies to facilitate generalizability
of results to the US general population, which experiences
relatively high levels of phthalate exposure33 and high rates
of preterm birth.34 Of 21 unique studies, 17 had sufficient
sample size (N > 50) and 16 corresponding authors agreed to
collaborate (eFigure 1 in the Supplement). Participating stud-
ies received ethics approval from the institutional review board
or human research ethics committees from their respective in-
stitutions. Participants provided written or verbal informed
consent. Analysis of anonymized data sets sent to the Na-
tional Institute of Environmental Health Sciences was deemed
to not be human subjects research by the National Institute of
Environmental Health Sciences institutional review board. We
followed the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guideline for
cohort studies.

Study acronyms and design characteristics are provided
in Table 1, and eligibility criteria are described in eTable 1 in
the Supplement. All studies prospectively enrolled partici-
pants during prepregnancy (North Carolina Early Pregnancy

Study [EPS]14 and Environment and Reproductive Health Study
[EARTH]27) or pregnancy and all participants had live births
between 1983 and 2018. The only case-control study in-
cluded was LIFECODES,11 a study of preterm birth nested
within a prospective cohort. Studies provided gestational age
at delivery (defined by last menstrual period, early preg-
nancy ultrasonography, date of conception in pregnancies
using assisted reproductive technologies, or some combina-
tion thereof). We defined preterm birth as delivery prior to 37
weeks’ gestation. Our final analytic sample included 6045 par-
ticipants after excluding 1136 of 7181 participants in the total
pooled sample (eFigure 1 and eTable 2 in the Supplement).

Phthalate Exposure Assessment
Participants provided urine samples during pregnancy for
quantification of phthalate monoester metabolites. Urinary
phthalate metabolites are the preferred biomarker of phthal-
ate exposure35 and are highly stable in urine samples stored
at ≤20 °C, as they were for all cohorts.36,37 All studies col-
lected spot urine samples, except for EPS14 and Markers of
Autism Risk in Babies-Learning Early Sign (MARBLES)29 that
pooled multiple samples prior to measurement (eTable 1 in the
Supplement). Phthalate metabolite measurements were per-
formed separately by cohort. Most studies measured at the
US Centers for Disease Control and Prevention (CDC) or using
CDC-developed methods, and targeted the same metabolites
as the CDC biomonitoring program. Briefly, after enzymatic
hydrolysis of phthalate metabolite conjugates, phthalate me-
tabolites were extracted from urine using online solid phase
extraction, separated by high-performance liquid chromatog-
raphy, and detected by isotope dilution tandem mass spectro-
metry. The analysis of deidentified specimens at the CDC was
determined not to constitute engagement in human subjects
research. We included 11 metabolites based on availability in
at least 50% of participants (eTable 4 in the Supplement):
monoethyl phthalate, mono-N-butyl phthalate (MBP), mono-
isobutyl phthalate, monobenzyl phthalate, mono(2-
ethylhexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthal-
ate, mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono
(2-ethyl-5-oxohexyl) phthalate, mono(3-carboxypropyl)
phthalate (MCPP), monocarboxy-isooctyl phthalate, and
monocarboxy-isononyl phthalate.

Key Points
Question Is phthalate exposure during pregnancy associated with
preterm birth?

Findings In this pooled analysis of 16 studies in the US including
6045 pregnant individuals, phthalate metabolites were quantified
in urine samples collected during pregnancy. Higher urinary
metabolite concentrations for several prevalent phthalates were
associated with greater odds of delivering preterm, and
hypothetical interventions to reduce phthalate exposure levels
were associated with fewer preterm births.

Meaning In this large observational study, urinary biomarkers of
common phthalates used in consumer products were a risk factor
for preterm birth.
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Statistical Analyses
Using multiple imputation by chained equations, we simulta-
neously imputed (1) phthalate biomarker concentrations be-
low the limit of detection without instrument-read values
(eMethods 3 in the Supplement) and (2) missing covariates
(eTable 5 in the Supplement). We performed all subsequent
analyses on the imputed data sets and pooled results using
Rubin’s rules.38 Studies measured urinary specific gravity or
creatinine to account for urine dilution (eTable 1 in the Supple-
ment). We used covariate-adjusted standardization to cor-
rect phthalate metabolite concentrations for urine dilution
(eMethods 4 in the Supplement).39,40 Most studies (9 of 16)
quantified phthalate metabolites in multiple (range, 2-10) urine
samples (eTable 1 in the Supplement). After dilution standard-
ization, we calculated the within-participant geometric mean
of phthalate metabolite concentrations across pregnancy.
Subsequently, we natural-log–transformed concentrations
and standardized concentrations by dividing by the interquar-
tile range (IQR) to facilitate interpretability.

We used multivariable logistic regression to examine as-
sociations of mean pregnancy phthalate metabolites with odds
of preterm birth. Odds ratios and 95% CIs were interpreted as
the change in log-odds of preterm birth per 1-IQR increase in
mean phthalate metabolite concentration. Crude models ad-
justed for study (via fixed effects for each study) and ad-
justed models included additional covariates that were mea-

sured across all 16 studies. We selected primary confounders
a priori from the literature, including self-reported mater-
nal race and ethnicity (categorical),18,41,42 education
(categorical),12,17,18, 28,41 maternal age at enrollment
(years),12,18,28,41 and prepregnancy body mass index.17,18,28,41

Race and ethnicity was used as a confounder based on the
consistent disparities in preterm birth43 and environmental
exposures41 experienced by minoritized racial and ethnic popu-
lations in the US, which is driven by social determinants in-
cluding racism and discrimination.44 We defined race and
ethnicity by combining several self-identified categories to
maximize sample size and consistency across pooled stud-
ies, including non-Hispanic Black, Hispanic/Latina, non-
Hispanic White, and other (including American Indian/
Alaskan Native, Native Hawaiian, >1 racial identity, or reported
as other).

We used 2 complementar y methods, quantile
g-computation and standard g-computation, to examine the
association of an overall mixture of phthalate metabolites and
preterm birth. The mixture included all metabolites except
monocarboxy-isooctyl phthalate and monocarboxy-isononyl
phthalate, which were excluded a priori because fewer par-
ticipants (n = 3758) and studies (10 total) quantified these bio-
markers. This provided 5471 participants (14 studies) for the
mixture analyses (eTable 6 in the Supplement). We used quan-
tile g-computation to examine the odds of preterm birth per

Table 1. Study Design Elements Among Cohorts Included in the Pooled Phthalate and Preterm Birth Study Population (N = 6045)

Study
No. of
individuals

Preterm
birth,
No. (%)

Years of
deliverya Location

Primary method
for determining
gestational age

Mean gestational
age at enrollment,
wkb

Puerto Rico Testsite for Exploring
Contamination Threats (PROTECT)12

1101 100 (9.1) 2011-2018 Puerto Rico Last menstrual period
and ultrasonography

11

The Infant Development and the Environment
Study (TIDES)24

779 69 (8.9) 2011-2013 California, Minnesota,
Washington, and New York

Ultrasonography or
physician estimate

12

LIFECODES11 480 130 (27.1) 2007-2009 Massachusetts Last menstrual period
and ultrasonography

10

Healthy Start Study (Healthy Start)17 444 14 (3.2) 2012-2014 Colorado Medical record 18

Center for the Health Assessment of Mothers
and Children of Salinas (CHAMACOS)25

429 27 (6.3) 1999-2001 California Medical record 14

Columbia Center for Children's
Environmental Health (CCCEH)26

389 14 (3.6) 1999-2006 New York Medical record 33

Health Outcomes and Measures
of the Environment Study (HOME)23

389 37 (9.5) 2003-2006 Ohio, Kentucky Last menstrual period 16

Environment and Reproductive Health Study
(EARTH)27

385 27 (7.0) 2005-2017 Massachusetts Medical record and
guidelines for medically
assisted reproduction

Prepregnancyc

Children’s Environmental Health Study at the
Mount Sinai School of Medicine (MSSM)22

362 28 (7.7) 1998-2002 New York Last menstrual period 31

Study for Future Families (SFF)21 353 17 (4.8) 2000-2005 California, Minnesota,
Missouri, and Iowa

Medical record or last
menstrual period

25

Reproductive Development Study (RDS)28 318 28 (8.8) 2011-2014 South Carolina Ultrasonography 20

Harvard Epigenetic Birth Cohort (HEBC)30 189 12 (6.3) 2007-2009 Massachusetts Medical record 10

Markers of Autism Risk in Babies-Learning Early
Signs (MARBLES)29

179 12 (6.7) 2007-2014 California Medical record 20

The North Carolina Early Pregnancy Study
(EPS)14

126 5 (4.0) 1983-1986 North Carolina Day of implantation Prepregnancyc

Michigan Mother-Infant Pairs Project (MMIP)31 68 2 (2.9) 2010-2013 Michigan Medical record 11

Rutgers University32 54 17 (31.5) 2009-2010 New Jersey Medical record 26
a Data harmonization details for year of delivery data are provided in eMethods

2 in the Supplement.
b Mean gestational age at enrollment is based on participants included in

this study.
c All urine samples analyzed in this study were collected after conception and

during pregnancy (at least 1 week prior to delivery).
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IQR increase in all phthalate metabolites in the mixture.45 We
used standard g-computation to estimate the probability of
preterm birth following several hypothetical interventions to
reduce concentrations of the phthalate metabolite mixture,46

which provides potentially more interpretable results than
model coefficients.47,48 Hypothetical interventions reduced
each metabolite in the mixture by 10% to 90% in 10% incre-
ments. The 95% CIs were estimated using nonparametric boot-
strapping (2.5th and 97.5th percentiles across 2000
iterations).46 We transformed results to be interpreted as the
estimated number of preterm births prevented per 1000 live
births by contrasting each hypothetical intervention with no
intervention.

We conducted several sensitivity analyses. (1) To assess
heterogeneity in effect estimates by study, we qualitatively
compared estimates from fixed-effect models to mixed mod-
els in which we specified study indicator as a random
intercept49; used Wald tests of goodness of fit for an interac-
tion term between study and metabolite in the primary
model49; and examined differences in effect estimates after
we fit models that drop participants from single cohorts. This
leave-1-out analysis provides a way to examine how overall re-
sults may have been influenced by individual cohorts. (2) We
used Wald tests to assess potential differences in confound-
ing across studies by fitting a series of models that addition-
ally included interaction terms between study and each of the
following covariates: maternal age, prepregnancy body mass
index, race and ethnicity, and education. (3) We fit models ad-
ditionally adjusted for precision variables associated with
phthalate exposure or preterm delivery, including delivery year,
smoking, or parity. (4) We assessed potential effect measure
modification by fetal sex using model stratification and a
nonstratified model with an interaction term between phthal-
ate metabolite and sex.24 (5) We examined nonlinearity in as-
sociations by fitting quadratic terms. (6) We examined me-
tabolite associations with gestational age at delivery
(continuous) using multivariable linear regression using the
same covariates but applied inverse probability of sampling
weights to account for the LIFECODES study design.50 We
chose not to conduct sensitivity analyses for other pregnancy
complications (eg, preeclampsia) because evidence suggests
such conditions are potentially on the causal pathway be-
tween phthalate exposure and preterm birth.51-53 We consid-
ered Wald tests or interactions statistically significant if 2-sided
P values were less than .05. We performed analyses using
R version 4.0.3 (R Foundation).

Results
Study Characteristics
The overall study population consisted of 6045 pregnant in-
dividuals (mean [SD] age, 29.1 [6.1] years), of whom 539 (9%)
delivered preterm (eFigure 1 in the Supplement). Overall par-
ticipant characteristics are presented in Table 2 and charac-
teristics by study are shown in eTable 3 in the Supplement.
A total of 802 individuals (13.3%) were Black, 2323 (38.4%) were
Hispanic/Latina, 2576 (42.6%) were White, and 328 (5.4%) had

other race and ethnicity (including American Indian/Alaskan
Native, Native Hawaiian, >1 racial identity, or reported as other).
Participant characteristics were similar between individuals
who delivered term vs preterm (Table 2). Concentrations of
urinary phthalate metabolites included for analysis were
detectable in 96% or more of urine samples, except for
mono(2-ethylhexyl) phthalate (83%) and MCPP (90%) (eTable 5
in the Supplement) and were highest for monoethyl phthal-
ate, MBP, and MECPP (eTable 7 in the Supplement). Correla-
tions were highest between metabolites with shared parent
chemicals (eFigure 2 in the Supplement). Overall, there was
substantial overlap in the distributions of phthalate metabo-
lite concentrations across studies (eFigure 3 in the Supple-
ment). However, concentrations for several metabolites
(eg, monobenzyl phthalate, MCPP) were higher for EPS,14 which
was the only study to collect samples in the 1980s.

Associations With Preterm Birth
Regression analyses showed that higher concentrations of
most phthalate metabolites were associated with slightly higher
odds of preterm birth (Figure 1). After covariate adjustment,
there was a 12% to 16% higher odds of preterm birth associ-
ated with an IQR increase in urinary concentrations of MBP
(OR, 1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR,
1.16 [95% CI, 1.00-1.34]), MECPP (OR, 1.16 [95% CI, 1.00-
1.34]), and MCPP (OR, 1.14 [95% CI, 1.01-1.29]). Other phthal-
ate metabolites also displayed positive but nonsignificant
associations. An IQR increase in the mixture of 9 phthalate
metabolites was associated with 25% higher odds of preterm
birth (OR, 1.25 [95% CI, 0.88-1.77]), although the confidence
inter val included the null. Based on results from
g-computation, hypothetical interventions to reduce the
phthalate metabolite mixture were estimated to prevent a mean
of 2 to 32 preterm births per 1000 live births (Figure 2). For ex-
ample, reducing the mixture of phthalate metabolite concen-
trations by 10%, 30%, or 50% was estimated to prevent 1.8
(95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-
18.3) preterm births per 1000 live births, respectively.

Sensitivity Analyses
Fixed-effects and random-effects models produced nearly
equivalent estimates and metabolite by study interactions
were not statistically significant (eTable 8 in the Supple-
ment), indicating minimal heterogeneity by study. Magni-
tudes of associations were similar after excluding partici-
pants from individual study populations (eFigure 4 in the
Supplement). However, associations were attenuated for MBP,
MECPP, and MCPP after exclusion of LIFECODES participants.11

Heterogeneity in confounding was not detected (eTable 9 in
the Supplement). We did not observe differences in associa-
tions when models were additionally adjusted for precision
variables (delivery year, smoking, or parity) (eTable 10 in the
Supplement) or evidence of effect measure modification by fe-
tal sex (eTable 11 in the Supplement). We did not find evi-
dence of nonlinear associations (eTable 12 in the Supple-
ment). Importantly, direction of associations was consistent
when gestational age at delivery was evaluated continuously
(eTable 13 in the Supplement).
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Discussion

In this pooled analysis of more than 6000 pregnancies from
16 prospective studies in the US, we observed that higher ma-
ternal pregnancy concentrations of several urinary phthalate
metabolites, particularly MBP, mono-isobutyl phthalate,
MECPP, and MCPP, were associated with higher odds of
preterm birth. While ORs were seemingly small in magni-
tude, g-computation estimates suggested that joint reduc-
tions in phthalate metabolites could produce significant popu-
lation-level reductions in preterm births. Our findings suggest
that exposure to multiple phthalates is associated with an
increased risk of preterm birth.

At the population-level, modest effect sizes can be impor-
tant when exposures are widespread and the outcome is
prevalent.54 The imprecision of our estimates, as reflected by
our confidence intervals, may be related to inconsistencies of
methods used across pooled studies. Several studies quanti-
fied phthalates using spot urine samples collected at single time
points in different periods of pregnancy,17,21,22,26,30-32 and
such isolated measures are not ideal estimators of long-term
exposure to be attributable to short half-life.55 Further, we did
not have the data to subdivide preterm births into those that
were spontaneous vs indicated, which may be important for
assessing risk.11,12

Our results are important to consider in the context of the
literature. As in our study, urinary metabolites of di-n-butyl

Table 2. Distributions of Participant Characteristics Overall and by Preterm Birth Outcome
in the Pooled Phthalate and Preterm Birth Study

Characteristica

No. (%)

Overall Term birthb Preterm birthb

Total 6045 (100) 5506 (91) 539 (9)

Gestational age at delivery, mean (SD), wk 39.1 (1.9) 39.5 (1.2) 34.8 (2.5)

Missing, No. (%) 0 0 0

Maternal age, mean (SD), y 29.1 (6.1) 29.0 (6.1) 30.0 (6.4)

Missing, No. (%) 16 (0.3) 16 (0.3) 0

Maternal race and ethnicityc

Non-Hispanic Black 802 (13.3) 710 (88.5) 92 (11.5)

Hispanic/Latina 2323 (38.4) 2145 (92.3) 178 (7.7)

Non-Hispanic White 2576 (42.6) 2342 (90.9) 234 (9.1)

Other 328 (5.4) 297 (90.5) 31 (9.5)

Missing 16 (0.3) 12 (75) 4 (25)

Maternal education

<High school 1045 (17.3) 960 (91.9) 85 (8.1)

High school 706 (11.7) 633 (89.7) 73 (10.3)

Some college 1410 (23.3) 1294 (91.8) 116 (8.2)

College graduate 1263 (20.9) 1141 (90.3) 122 (9.7)

Graduate school 1223 (20.2) 1109 (90.7) 114 (9.3)

Missing 398 (6.6) 369 (92.7) 29 (7.3)

Maternal prepregnancy body mass indexd 25.7 (6.0) 25.6 (5.9) 26.6 (6.5)

Missing 496 (8.2) 448 (8.1) 48 (8.9)

Delivery year

1983-2000 919 (15.2) 858 (93.4) 61 (6.6)

2001-2010 2113 (35.0) 1865 (88.3) 248 (11.7)

2011-2020 3013 (49.8) 2783 (92.4) 230 (7.6)

Maternal smoking during pregnancy

No 5499 (91.0) 5012 (91.1) 487 (8.9)

Yes 463 (7.7) 419 (90.5) 44 (9.5)

Missing 83 (1.4) 75 (90.4) 8 (9.6)

Fetal sex

Female 2870 (47.5) 2631 (91.7) 239 (8.3)

Male 3109 (51.4) 2814 (90.5) 295 (9.5)

Missing 66 (1.1) 61 (92.4) 5 (7.6)

Parity

Nulliparous 3027 (50.1) 2780 (91.8) 247 (8.2)

Parous 2940 (48.6) 2662 (90.5) 278 (9.5)

Missing 78 (1.3) 64 (82.1) 14 (17.9)

a Characteristics represent
distributions prior to imputation.
Data harmonization details for all
characteristics are provided in
eMethods 2 in the Supplement.

b Preterm birth was defined as <37
weeks of completed gestational age
at delivery.

c Each race and ethnicity category
represents a composite measure to
maximize sample size and
consistency between pooled
studies, including non-Hispanic
Black (African American, Black),
Hispanic/Latina (Hispanic, Latino,
Latin American indigenous
heritage), non-Hispanic White, and
other (American Indian/Alaskan
Native, Native Hawaiian, and/or >1
racial identity).

d Body mass index was calculated as
weight in kilograms divided by
height in meters squared.
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phthalate, di-isobutyl phthalate, and di(2-ethylhexyl) phthal-
ate have been associated with reduced gestational age at de-
livery or increased likelihood of preterm birth in several pro-
spective US studies included here11-14,26,31,32 as well as studies
from China16 and Mexico.15 Although null17-20,56 or
contradictory14,21-23 associations have also been observed,
associations between metabolites of these parent chemicals
and preterm birth appear to be more consistent than other
phthalate metabolites. Variation across studies with respect to
magnitudes of association and statistical significance is ex-
pected owing to differences in (1) sample size and preterm birth
prevalence, (2) metabolite distributions, (3) exposure assess-
ment approaches, (4) gestational age at exposure assess-
ment, and (5) geographic location, where some populations
may have different underlying susceptibilities or patterns of
exposure.33,34 While pooling data cannot address all system-
atic biases, our study directly addressed several limitations by
achieving larger sample size and examining associations across
wide distributions of phthalate biomarkers.

The mechanistic pathway between phthalate exposure
and preterm birth is unclear, but several lines of evidence pro-
vide biologic plausibility for a relationship. Associations of

phthalate metabolites with preterm birth may be mediated by
oxidative stress and inflammation at the maternal-fetal
interface.57,58 Additional mechanisms may include dysregu-
lated trophoblast differentiation and endocrine disruption, as
phthalate biomarkers have been associated with downregu-
lated expression of placental genes responsible for these
processes.59

Our findings provide additional evidence of the need to re-
duce phthalate exposures among pregnant individuals, which
could take the form of behavioral interventions or regula-
tions. Although phthalate exposure can occur through many
sources and environments,4,7,60,61 there has been a long-
standing scientific effort to accurately determine whether a
single source drives the majority of human exposure.62 The US
Consumer Product Safety Commission attempted to esti-
mate exposure by source and found food and medications, not
children’s toys, were the primary sources of exposure.63 Un-
fortunately, there is still substantial uncertainty in the pri-
mary source of exposure. In the US, phthalate exposure var-
ies widely by sociodemographic factors,64 including whether
a person is pregnant,65 at a disadvantaged socioeconomic
status,64,66 or is of a particular marginalized race or ethnicity.66

Figure 1. Forest Plot of Associations Between Urinary Phthalate Metabolite Concentrations and Preterm Birth
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Favors increased odds
of preterm birth
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Associations represent the odds ratios (ORs) and 95% CIs of preterm birth per interquartile range increase in mean pregnancy urinary phthalate metabolite
concentration in the Pooled Phthalate and Preterm Birth Study (N = 6045). The interquartile range (ng/mL) of each metabolite is as follows: monoethyl phthalate
(MEP), 168.2; mono-N-butyl phthalate (MBP), 21.4; mono-isobutyl phthalate (MiBP), 8.6; monobenzyl phthalate (MBzP), 11.0; mono(2-ethylhexyl) phthalate
(MEHP), 5.0; mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), 17.3; mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), 26.8; mono(2-ethyl-5-oxohexyl)
phthalate (MEOHP), 12.4; mono(3-carboxypropyl) phthalate (MCPP), 2.5; monocarboxy-isooctyl phthalate (MCOP), 18.5; and monocarboxy-isononyl phthalate
(MCNP), 2.2 (eTable 7 in the Supplement). Single metabolite results were estimated by multivariable logistic regression models and mixture results were produced
by quantile g-computation models. Unadjusted models adjusted for study as a fixed effect. Adjusted models were adjusted for study, maternal age, race and
ethnicity, education, and prepregnancy body mass index. Missing covariate values were multiply imputed for all models. The metabolites MCOP and MCNP were
excluded from the mixtures analysis owing to limited sample size across cohorts.
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Targeted interventions may help modify consumer be-
haviors that lead to phthalate exposures, such as altering the
type of personal care products purchased.67,68 However, be-
havioral approaches are difficult to implement on a popula-
tion scale because of the vast number of available consumer
products containing phthalates and the limited ability of US
consumers to access accurate ingredient lists.69 For example,
the US Food and Drug Administration does not require phthal-
ates to be listed as ingredients when designated as part of the
fragrance. Alternatively, interventions to reduce exposures
through diet have had mixed results.68,70 Compounding these
difficulties, economic disparities may make access to phthalate-
free products and diet more difficult for certain popu-
lations.28,41 Past public health efforts have successfully led to
federally mandated restrictions on the use of certain phthal-
ates in consumer products intended for children,4,71 but few
restrictions exist for products intended for people who are preg-
nant. The US Food and Drug Administration also has the power
to regulate phthalates in food, but 28 phthalates are currently
allowed as food additives or in food contact materials.72 Given
this reality, Project TENDR (Targeting Environmental Neuro-
Development Risks) recommends a multipronged approach to
reducing human exposure to multiple phthalates, including
regulations at the federal and state levels, as well as volun-
tary action on the part of retailers and manufacturers.8

Our analysis of hypothetical interventions to reduce ex-
posure to the phthalate mixture, regardless of whether reduc-
tions occur via behavioral or regulatory mechanisms, helps to
highlight the potential magnitude of effect that population-
level phthalate exposure may have on preterm birth, mean-
while addressing the fact that realistic interventions will change
exposure to multiple phthalates simultaneously, rather than
one at a time. Based on the rate of about 90 preterm births per

1000 live births birth in the pooled study population, hypo-
thetical interventions of 10% to 50% would correspond with
an estimated mean of 2% to 12% reduction in preterm births.
Given that most individuals are exposed to multiple phthal-
ates, regulatory approaches to mitigate population-level health
effects from phthalates would be most effective when consid-
ering phthalates as a class, rather than as individual chemicals.8

We took an approach used by previous studies48,73,74 and evalu-
ated a range of possible decrements in exposure. This ap-
proach allowed us to evaluate whether any reductions, large
or small, in phthalate exposure would be worth pursuing based
on the potential to result in fewer preterm births in commu-
nity settings. Our results are consistent with the hypothesis that
modest, but potentially feasible, reductions in phthalate ex-
posure could reduce rates of preterm birth. However, our re-
sults should be interpreted cautiously in light of the assump-
tions required for causality (eMethods 5 in the Supplement).48

Although g-computation is often used to facilitate causal
inference,75 it is still a statistical model and thus we opt for
associational rather than causal language. Regardless, “pre-
term births prevented” uses causal language because there is
not useful associational language for this statistic.

Strengths and Limitations
Our study represents the largest prospective investigation of
phthalate exposure in pregnancy and preterm birth, to date and
to our knowledge, and includes individual-level data from al-
most all US studies that have quantified phthalate metabo-
lites in pregnancy. Thus, we were not restricted to studies that
only published on associations with preterm birth or gesta-
tional age at birth25,27,30 and avoided publication bias. Pooled
participant characteristics (eg, exposure distributions, geo-
graphic locations, education, and race and ethnicities) were

Figure 2. Estimated Number of Prevented Preterm Births per 1000 Live Births Under Hypothetical Interventions
to Reduce the Overall Mixture of Phthalate Metabolite Concentrations in Maternal Urine
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Estimates represent the difference in mean probability of preterm birth following a series of hypothetical interventions to proportionally reduce
concentrations of 9 phthalate metabolites in the pooled study population (n = 5471), including monoethyl phthalate, mono-N-butyl phthalate,
mono-isobutyl phthalate, monobenzyl phthalate, mono(2-ethylhexyl) phthalate, mono(2-ethyl-5-carboxypentyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate,
mono(2-ethyl-5-hydroxyhexyl) phthalate, and mono(3-carboxypropyl) phthalate. G-computation was implemented to estimate probabilities from a multivariable
logistic regression model, which adjusted for study, maternal age, race and ethnicity, education, and prepregnancy body mass index. Differences were multiplied by
1000 to estimate the rate per 1000 live births. The 95% CIs were estimated using quantiles of the nonparametric bootstrap distribution across 2000 iterations.
Estimations were performed on a single randomly chosen imputed data set.
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more diverse than any single prior study, which provided bet-
ter representation of the US population. Further, our mix-
tures approach helped reflect the reality that pregnant indi-
viduals are exposed to a variety of phthalates in their
environments, which should be a central consideration for any
future policies intended to reduce phthalate exposures.8

Several limitations in our study are important to acknowl-
edge. First, there was variation in exposure assessment meth-
ods across studies. This may have produced measurement er-
ror of metabolites, which could have contributed to observed
exposure differences and could not be disentangled from true
differences in exposure levels across the study populations.
However, there was large overlap in distributions across stud-
ies, and we adjusted for known confounders. Although calcu-
lating mean values across multiple spot urine samples can im-
prove characterization of exposure,76 single spot urine samples
may provide lower accuracy.77 Second, ORs from our statistical
approach will tend to overestimate risk ratios, which are ar-
guably more interpretable. We selected a logistic model to en-
sure that the model predictions remain within logical bounds

without placing constraints on the phthalate distribution, and
we use g-computation to allow easier interpretation of results.
Third, we were also unable to examine potentially important
confounders, such as diet.78 Concentrations of certain phthal-
ate biomarkers are higher in individuals who have diets high
in ultraprocessed food, fast food, or meat and dairy.60,61,79

Because some parameterizations of poor diet that include these
foods are also associated with increased risk of preterm birth,80

residual confounding may exist in our analysis. However,
phthalate exposure can come from many dietary pathways,70

so the role of diet in this relationship is uncertain.

Conclusions
In this pooled analysis of 16 prospective US studies, higher con-
centrations of several urinary phthalate metabolites in preg-
nancy were associated with preterm birth. These findings
highlight the need for public health and policy measures to
reduce phthalate exposures among pregnant individuals.
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