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We develop a model for the production of the Pc states observed at LHCb in Λb → J=ψpK− decays.
With fewer parameters than other approaches, we obtain excellent fits to the J=ψp invariant mass spectrum,
capturing both the prominent peaks, and broader features over the full range of invariant mass. A
distinguishing feature of our model is that whereas Pcð4312Þ, Pcð4380Þ, and Pcð4440Þ are resonances with
Σð�Þ
c D̄ð�Þ constituents, the nature of Pcð4457Þ is quite different, and can be understood either as a ΣcD̄�

threshold cusp, a Λcð2595ÞD̄ enhancement due to the triangle singularity, or a Λcð2595ÞD̄ resonance. We
propose experimental measurements that can discriminate among these possibilities. Unlike in other
models, our production mechanism respects isospin symmetry and the empirical dominance of color-
enhanced processes in weak decays, and additionally gives a natural explanation for the overall shape of the
data. Our model is consistent with experimental constraints from photoproduction and Λb → ΛcD̄ð�Þ0K−

decays and it does not imply the existence of partner states whose apparent absence in experiments is
unexplained in other models.

DOI: 10.1103/PhysRevD.106.054029

I. INTRODUCTION

Much of the considerable literature on the LHCb Pc
states relates to their mass spectrum, quantum numbers,
and decays. In this paper we develop a model which
includes all of these features, but also goes further, in
aiming to fit the J=ψpmass spectrum inΛb → J=ψpK−. In
this sense our remit is similar to that of Refs. [1–5], but with
some notable differences which we describe throughout
the paper.
The Pc states have been widely interpreted as molecular

states with Σð�Þ
c D̄ð�Þ constituents. However, we have

recently argued that models that describe all of the Pc

states exclusively in terms of Σð�Þ
c D̄ð�Þ degrees of freedom

suffer from various phenomenological problems when
confronted with experimental data [6]. In this paper we
develop a model which resolves these problems, and gives
an excellent fit to the experimental data on Λb → J=ψpK−

decays.
One of the issues with the commonly held view is that

the direct production of Σð�Þ
c D̄ð�Þ constituents in Λb decays

requires either isospin violation, or a color-suppressed
weak transition. A natural resolution of this problem,
which is the foundation of our model, is to produce the
Pc states via channels withΛcD̄ flavor, such asΛcD̄,ΛcD̄�,
and Λcð2595ÞD̄. In this case the production conserves
isospin, and is color-enhanced. In our previous paper, we
concluded that experimental results imply that the Pc states
decay dominantly to ΛcD̄�, which gives further support to
this production mechanism.
There are, in addition, several other reasons to expect

an important role for channels with Λð�Þ
c D̄ð�Þ flavor. The

presumed importance of Σð�Þ
c D̄ð�Þ constituents is usually

attributed to the proximity of the Pc masses to the
corresponding thresholds. But in the case of Pcð4457Þ,
the proximity to Λcð2595ÞD̄ threshold is even more
striking, with a difference of just 0.2 MeV in the central
values. This is a strong indication for the possible role of
Λcð2595ÞD̄ degrees of freedom, an idea which we and
others have explored in previous work [7–10].
Another distinguishing feature of our approach is that, in

contrast to many other models, we do not assume that
Pcð4457Þ is a ΣcD̄� bound state. Here we are mainly being
guided by experimental data; whereas Pcð4440Þ is unam-
biguously below Σþ

c D̄�0 threshold, the same is not true of
Pcð4457Þ. Moreover, we argued [6] that a model in which
both Pcð4440Þ and Pcð4457Þ are bound ΣcD̄� states is
difficult to reconcile with experimental data, because it
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implies that one of the states would decay prominently to
ΛcD̄ (contradicting experimental data), and implies there
should be partner states near the Σ�

cD̄� threshold (also
absent from data). We showed that these problems can be
avoided by assuming that only Pcð4440Þ is a ΣcD̄� bound
state, in which case an alternative explanation for Pcð4457Þ
is needed. Because its mass is consistent with both
the Σþ

c D̄�0 and Λcð2595ÞD̄ thresholds, there are several
viable alternative scenarios; it could be a threshold
cusp arising from ΣcD̄� → J=ψp or Λcð2595ÞD̄ → J=ψp,
an enhancement due to a triangle singularity in the
Λcð2595ÞD̄ loop diagram or, as in our earlier paper [9],
a resonance with Λcð2595ÞD̄ degrees of freedom. We will
explore all of these alternative scenarios for Pcð4457Þ, and
ultimately find excellent agreement with Λb → J=ψpK−

data.
In Sec. II we introduce our model, starting with a

description of the production mechanism, and then describ-
ing how the generic features of the model can describe the
Λb → J=ψpK− data, while also satisfying other experi-
mental constraints which very likely eliminate broad
categories of previous modeling. We then give details of
the amplitudes and their calculation. Results of model fits
for five different cases are presented in Sec. III. These cases
systematically add complexity so that model accuracy can
be evaluated against model efficiency. Finally in Sec. IV we
conclude and give suggestions for future experimental
study of Pc states.

II. MODEL

A. Production

In our previous paper [9] we noted that there are three
possible quark line topologies for the Λb weak vertex, and
each has an associated loop diagram that could contribute
to the J=ψp spectrum. The possibilities are shown in Fig. 1,
where the labels describe flavor only; hence, “Λc” can
stand for Λc, Λcð2595Þ, or Λcð2625Þ, for example. For
simplicity, in our diagrams and much of the discussion, we
will ignore charge labels on states; so, for example “K”
means K−, and “Ds” means D−

s .
Below each diagram we have classified the Λb vertex

(the weak decay) and the Pc vertex (generating J=ψp) as
“large” or “small”, based on simple arguments that we
outline below. On the basis of these classifications, we will
assume that production proceeds via diagram (a), being the
only diagram for which both vertices are “large”.
Our classifications for the Λb vertex follow the

arguments in our previous paper [9]; diagram (a) is color-
favored, and hence is enhanced with respect to diagrams (b)
and (c), for which the weak vertices are color-suppressed.
There are strong indications (experimental and theoreti-

cal) supporting the dominance of color-favored diagrams.
Indeed the largest measured two-body decay of Λb is
Λþ
c D−

s , corresponding to diagram (a), with branching
fraction 1.1� 1.0%. Branching fractions for decays such
as ΛJ=ψ , corresponding to diagram (b), have not been

(a) (b) (c)

FIG. 1. Production mechanisms. The top panel shows the quark line diagrams at the electroweak vertex, and the bottom panels show
the corresponding production diagram for Pc states. (a) Color-enhanced, (b) color-suppressed, and (c) non-factorizable color-suppressed
mechanisms.

T. J. BURNS and E. S. SWANSON PHYS. REV. D 106, 054029 (2022)

054029-2



measured directly, but Ref. [11] finds BðΛb → ΛJ=ψÞ ¼
ð3.72� 1.07Þ × 10−4, using the measured product branch-
ing fraction BðΛb → ΛJ=ψÞ × Bðb → ΛbÞ and the Heavy
Flavor Averaging Group value [12] for the production rate
Bðb → ΛbÞ. The result, which is comparable to theory
predictions [11,13–16], indicates significant color suppres-
sion of diagram (b) compared to diagram (a). Decays such
as Λb → ΞcD̄�, corresponding to diagram (c), have also not
been measured directly, but naively we may expect these to
be comparable in magnitude to diagram (b), and indeed this
is what we found in a quark model calculation [9].
Du et al. [2] have questioned the scale of color

suppression in Λb decays, on the basis of a comparison
with Λc decays. We notice, however, that direct compar-
isons between Λc and Λb decays are not reliable. For
example, the phenomenological analyses of Refs. [17,18]
suggest that in Λc decays, the analogs of diagrams (a), (b),
and (c) are comparable in magnitude, which is very
different to the situation in Λb decays, where there is
empirical evidence (noted above) for significant suppres-
sion of diagram (b) compared to (a).
Moreover, Λc and Λb decays involve different decay

diagrams, which makes direct comparison of similar modes
impossible. The argument of Du et al. is that color
suppression would imply that Λþ

c → Σ0Kþ is suppressed
compared to Λþ

c → ΛKþ, as the former is produced in the
analog of diagram (c) but not (a), and they notice that this is
not consistent with data. The analogy does not work,
however, because in the Λc decays there are additional
W-exchange diagrams that are absent from the correspond-
ing Λb decays, and their contribution is known to be
significant, as evidenced (for example) by the abundance of
modes such as Ξ0Kþ andΔþþK−, which are produced only
via W-exchange diagrams [13,19–21].
Having argued that analogies with related systems

can be misleading, it is nonetheless interesting to compare
b → csc̄ transitions in baryon andmeson systems, because in
the latter case the significant magnitude of color suppression
is abundantly clear in the experimental data. See, for example,
the experimental data summarized in Fig. 3 in Ref. [22],

illustrating that color-favored modes (B → Dð�Þ
s D̄ð�Þ) are

enhanced by one or two orders of magnitude compared to
color-suppressed modes [B → cc̄Kð�Þ].
Additionally, there is indirect evidence for color sup-

pression in Λb decays from the measured branching
fractions in Λb → ΛcD̄ð�Þ0K− decays [23]. As shown in
Fig. 1, whereas the two-body decay Λ0

b → Λþ
c D−

s is a
color-favored diagram of type (a), the three-body decays
Λb → ΛcD̄ð�Þ0K− can occur via both of diagrams (a) and
(c). [Notice that the ΛcD̄ð�Þ0K− combination appears as an
intermediate state in the loop diagrams (a) or (c).] On the
other hand, for the analogous meson decays, where ud is
replaced with d̄, both the two-body modeB0 → DþD−

s , and
the three-body modes B0 → DþD̄ð�Þ0K−, can only occur

via the diagram (a)—there is no analog of diagram (c).
Accordingly, a comparison of the ratios

Rð�Þ
Λ0
b
¼ BðΛ0

b → Λþ
c D̄ð�Þ0K−Þ

BðΛ0
b → Λþ

c D−
s Þ

; and ð1Þ

Rð�Þ
B̄0 ¼ BðB̄0 → DþD̄ð�Þ0K−Þ

BðB̄0 → DþD−
s Þ

ð2Þ

can give an indication of the importance of diagram (c).
Strikingly, the experimental ratios are found to be con-
sistent [23], which supports the hypothesis that diagram
(c) is subdominant with respect to diagram (a).
We now turn to the second aspect of the classification of

diagrams, namely the coupling of the triangle diagrams to
the Pc states. From the analysis in our previous paper [6],
Pcð4312Þ decays overwhelming to ΛcD̄�, and hardly at all
to J=ψp. Heavy quark symmetry then implies a similar

pattern for all of the Pc states composed of Σð�Þ
c D̄ð�Þ degrees

of freedom, namely they couple much more strongly to
ΛcD̄ and ΛcD̄ð�Þ than to closed-charm channels such as
J=ψp and ηcp. [Note that Pcð4312Þ is a special case, which
couples strongly to ΛcD̄� but not ΛcD̄, due to a selection
rule [6,24].] On this basis we conclude that the Pc vertices
with ΛcD̄ð�Þ states in the triangle [diagrams (a) and (c)] are
“large”, whereas those with closed-charm [diagram (b)]
are “small”.
Of course in diagram (c) there are contributions not only

from ΛcD̄ð�Þ, but also Σð�Þ
c D̄ð�Þ. Assuming the Pc states are

dominated by Σð�Þ
c D̄ð�Þ degrees of freedom, then if

Σð�Þ
c D̄ð�Þ → Σð�Þ

c D̄ð�Þ couplings are much stronger than

ΛcD̄ð�Þ → Σð�Þ
c D̄ð�Þ, then conceivably the production of

Pc states could be dominated by diagram (c), despite the
smaller Λb vertex. However on general grounds we expect

that the Σð�Þ
c D̄ð�Þ → Σð�Þ

c D̄ð�Þ and ΛcD̄ð�Þ → Σð�Þ
c D̄ð�Þ cou-

plings are comparable. For example, the Pcð4312Þ width is
due to ΣcD̄ → ΛcD̄�, whereas the Pcð4440Þ width, which
is around twice as large, is due to both ΣcD̄� → ΛcD̄� and
ΣcD̄� → Σ�

cD̄. Very roughly this suggests that Σð�Þ
c D̄ð�Þ →

ΛcD̄ð�Þ and Σð�Þ
c D̄ð�Þ → Σð�Þ

c D̄ð�Þ have comparable magni-
tude. Indeed in the quark model, there is a direct relation
between the one-pion exchange potentials for the
corresponding potentials where Λc is replaced with Σc,
consistent with the expectation that their magnitudes are
comparable,

hΣð�Þ
c D̄ð�ÞjVjΛcD̄ð�Þi ¼ −

3

4
hΣð�Þ

c D̄ð�ÞjVjΣcD̄ð�Þi: ð3Þ

Further comments on this point will be made in Sec. III G.
For diagrams involving related channels such as

Λcð2595ÞD̄ð�Þ and Λcð2625ÞD̄ð�Þ, we note the enhancement
of the rate where the J=ψp invariant mass coincides with
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the corresponding threshold, due to the small energy
denominators. This is particularly striking in the case of
Pcð4457Þ which, as noted previously, overlaps with the
Λcð2595ÞD̄ threshold.

B. Overview

Our model for the production of Pc states in Λb decay is
depicted in Fig. 2. Following the arguments in the previous
section, we assume production via diagram (a), so that the
triangle diagram features combinations with flavor

Λð�Þ
c D̄ð�Þ, not Σð�Þ

c D̄ð�Þ [Fig. 2 (left)]. These intermediate
states couple to the J=ψp final state either directly, or via
nonperturbative final state interactions, which we imple-
ment via iterated bubble diagrams [Fig. 2 (right)]. The

Σð�Þ
c D̄ð�Þ channels, which are important in explaining the Pc

states, enter via the bubble diagrams, for example via the

Λð�Þ
c D̄ð�Þ → Σð�Þ

c D̄ð�Þ coupling.
Below we discuss in more detail the ingredients in the

calculation, including the choice of hadrons to include in
triangle and bubble diagrams, the nature of the “Ds”meson,
and the model used for the interaction vertices. First, we
make some general observations on how the model
described here offers the possibility of describing not
only the Pc peaks, but also also other features in the
Λb → J=ψpK− data.
The experimental data is shown in Fig. 3, overlaid with

the thresholds for channels with flavor Σð�Þ
c D̄ð�Þ (top panel)

and Λð�Þ
c D̄ð�Þ (bottom panel). The sharp features corre-

sponding to the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ are
evident, as well as the broader feature previously identified
as Pcð4380Þ. Models for Pc states have concentrated

overwhelming on the role of Σð�Þ
c D̄ð�Þ channels, based on

the proximity of Pcð4312Þ, Pcð4380Þ, Pcð4440=4457Þ to
ΣcD̄, Σ�

cD̄, and ΣcD̄� thresholds, respectively. We have
argued on theoretical grounds for the importance of

Λð�Þ
c D̄ð�Þ channels, and we also notice that by including

these channels, the model has leverage over a wider range
of J=ψp invariant mass (comparing the top and bottom
panels of Fig. 3).
Having Λð�Þ

c D̄ð�Þ channels in the triangle diagram also
brings new possibilities for explaining not only the Pc
peaks, but also other features in the data. In our model, the
leading order (triangle) diagram generates a cusp at the

thresholds of the corresponding intermediate states with
ΛcD̄ flavor; this diagram may account for the shoulders in
the data around the thresholds for ΛcD̄, Λcð2595ÞD̄�, or
Λcð2625ÞD̄�, or indeed for the Pcð4457Þ peak near
Λcð2595ÞD̄. Another possibility, of particular relevance
to Pcð4457Þ, is the logarithmic triangle singularity
which, given a suitably chosen “Ds” mass, generates a
strong enhancement at (or above) Λcð2595ÞD̄ threshold.
All of these possibilities depend critically on the assumed

production mechanism, involving Λð�Þ
c D̄ð�Þ degrees of

freedom.
Features associated with Σð�Þ

c D̄ð�Þ degrees of freedom
appear via the bubble diagrams. Such diagrams generate
cusps at the thresholds for the states in the bubbles, and we
may expect in particular an important role here for the
Pcð4457Þ peak near ΣcD̄� threshold. The nonperturbative
sum over bubble diagrams can also generate resonance
poles, and we expect these to be particularly important in
accounting for structures further from threshold, namely
Pcð4312Þ, Pcð4380Þ, and Pcð4440Þ. Similarly we also
consider the possibility of a resonance with Λcð2595ÞD̄
degrees of freedom, which would arise from iteration of
Λcð2595ÞD̄ → Λcð2595ÞD̄ bubble diagrams.
Before elaborating further on our model, it is worth

highlighting how our (well-motivated) assumptions com-
pare to those of other models in the literature. Our
production mechanism conserves isospin and is color
enhanced. By contrast, the model of Du et al. [1,2] assumes

a pointlike vertex, hΛBjHEWjKΣð�Þ
c D̄ð�Þi, which requires

either isospin breaking, or a color-suppressed mechanism.
With reference to Fig. 1, such a vertex could be obtained
from diagram (a), but with an infinitely heavy Ds and with
Λc replaced by Σc (violating isospin), or via diagram (c),
with an infinitely heavy Ξc (and as noted, this diagram is
color suppressed).
The model of Nakamura [4], like ours, assumes the

dominance of color-favored processes. However this is
implemented via a four-point function, analogous to dia-
gram (a) with an infinite mass Ds. This vertex is incorpo-
rated in a two-loop “double triangle” diagram to generate
the J=ψpK− final state. Saturating the four-point vertex
with Ds exchange brings this rather elaborate mechanism
into closer contact with our model. However, the virtual
pion present in the two-loop diagram represents final state

FIG. 2. Production of Pc states in Λb decay through a combination of (left) a triangle diagram with a color-favored weak transition and
(right) nonperturbative final state interactions.
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interactions in the ΣcK − ΛcK system, in contrast with our

final state interactions in the Σð�Þ
c D̄ð�Þ − Λð�Þ

c D̄ð�Þ system,

which is of course more natural for describing Σð�Þ
c D̄ð�Þ

bound states with important couplings to Λð�Þ
c D̄ð�Þ.

C. Phenomenology

Although our primary focus in this paper is the
Λb → J=ψpK− data, there are additional experimental
constraints which need to be considered in constructing
a viable model for Pc states. In particular, we have recently
shown that experimental measurements on photoproduc-
tion, and Λb decays to ΛcD̄ð�Þ0K− and ηcpK−, place severe
constraints on putative models for Pc states [6].
In our discussion we referred to three scenarios involving

binding in Σð�Þ
c D̄ð�Þ systems, as shown in Table I [6]. In

Scenarios A and B, which are common in the literature, all

of the Pc states are associated with attractive Σð�Þ
c D̄ð�Þ

interactions, and in particular both Pcð4440Þ and Pcð4457Þ
are assumed to be (dominantly) ΣcD̄� bound states, differ-
ing in the assignment of 1=2− and 3=2− quantum numbers.
In Scenario C, by contrast, we no longer assume that
Pcð4457Þ is a ΣcD̄� bound state. This is partly inspired by
the experimental reality: whereas Pcð4440Þ is manifestly
bound with respect to ΣcD̄� threshold, Pcð4457Þ is not.

Indeed its mass is consistent with both ΣcD̄� and
Λcð2595ÞD̄ thresholds, and this implies several possible
interpretations, all of which arise naturally with our
proposed production mechanism: it could be a ΣcD̄� or
Λcð2595ÞD̄ cusp, a Λcð2595ÞD̄ resonance, or a Λcð2595ÞD̄
enhancement due to the logarithmic triangle singularity.
As well as being very natural, the alternatives incorpo-

rated in Scenario C avoid serious phenomenological
problems with Scenarios A and B [6]. A key observation
is the striking disparity between the Pc branching fractions
for ΛcD̄ (of order 1% or less) and ΛcD̄� (as much as
59%–87% in the case of Pcð4312Þ). The suppression of
ΛcD̄ has a natural explanation in the case of Pcð4312Þ
(where it is due to a selection rule [24]), and for states with
3=2− quantum numbers (where it is due to D-wave
suppression). But for the 1=2− ΣcD̄� states of Scenarios

FIG. 3. The “cos-weighted” Λb → J=ψpK− spectrum from LHCb [25], overlaid with the thresholds for Σð�Þ
c D̄ð�Þ (upper panel) and

Λð�Þ
c D̄ð�Þ (lower panel) channels.

TABLE I. Quantum numbers and degrees of freedom in various
scenarios.

Pcð4312Þ Pcð4380Þ Pcð4440Þ Pcð4457Þ
Scenario A 1=2−ΣcD̄ 3=2−Σ�

cD̄ 1=2−ΣcD̄� 3=2−ΣcD̄�
Scenario B 1=2−ΣcD̄ 3=2−Σ�

cD̄ 3=2−ΣcD̄� 1=2−ΣcD̄�
Scenario C 1=2−ΣcD̄ 3=2−Σ�

cD̄ 3=2−ΣcD̄� varies
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A and B, the mismatch between ΛcD̄ and ΛcD̄� is
strikingly inconsistent with heavy quark symmetry, accord-
ing to which the modes should be comparable. On this basis
we exclude Scenarios A and B, and are led to Scenario C,
which avoids this problem by not having a 1=2− ΣcD̄�
bound state.
Another issue with Scenarios A and B is that if the

potentials are tuned to generate ΣcD̄� bound states in both
1=2− and 3=2− channels, heavy quark symmetry implies
there should also be Σ�

cD̄� bound states with 1=2−, 3=2−,
and 5=2− quantum numbers, and such states are conspic-
uously absent from the experimental data (Fig. 3). The
problem does not arise in Scenario C, for which the only
Σ�
cD̄� state that binds has 5=2− quantum numbers, and its

absence can be explained by the suppressed D-wave decay
(and production, as we argue later).
In all the scenarios, there is a 3=2− Σ�

cD̄ state, and this
will be associated with the broad structure identified as
Pcð4380Þ in the original LHCb analysis [26]. Note that, as
explained in the appendix of Ref. [25], the measured
properties of Pcð4380Þ are now regarded as obsolete;
hence we concentrate on reproducing the data, rather than
the measured mass and width. From a model perspective, a
3=2− Σ�

cD̄ state is an inevitable consequence of heavy
quark symmetry, since the diagonal potential in this
channel is identical to that of 1=2− ΣcD̄, which is
necessarily bound to account for the Pcð4312Þ.
Among the models which, like ours, aim to fit the

Λb → J=ψpK− spectra, the model of Du et al. [1,2] is one
in which the states are classified according to Scenarios A
and B, and so has the associated difficulties which we
outlined above, and which are explained in more detail in
Ref. [6]. The models of Kuang et al. [5] and Nakamura
et al. [3,4] do not assume a common structure for Pcð4312Þ
and Pcð4440Þ, and in this sense they avoid the problems
associated with Scenarios A and B, but at the cost of
ignoring (or contradicting) heavy quark symmetry, accord-
ing to which molecular states do not appear in isolation, but
as part of multiplets.

D. Diagrams

With the production mechanism in place, we are pre-
pared to elaborate the amplitude model. We will assume
that the Pc states are produced via diagram (a), namely
through hadron combinations of “ΛcD̄” flavor. In particu-
lar, we will consider the ground state combinations ΛcD̄
and ΛcD̄�, which are presumably most prominent on the
production side (the weak and strong vertices), and also
because at the nonperturbative interaction vertex they
couple in S-wave to the assumed 1=2− and 3=2− quantum
numbers of Pcð4312=4380=4440Þ. Since these channels do
not couple to 5=2− in S-wave, we are not including the
5=2− channel in our analysis.

For reasons already discussed, we should also consider
production via Λcð2595ÞD̄. Assuming S-wave dominance,
this is a 1=2þ channel, which naturally suggests a possible
role for the related channelsΛcð2595ÞD̄� andΛcð2625ÞD̄ð�Þ,
which can also be produced via the color-favored mecha-
nism.Of these, wewill consider only the 1=2þ combinations
Λcð2595ÞD̄� and Λcð2625ÞD̄�, since these appear in the
same nonperturbative interaction matrix as the previous
channelΛcð2595ÞD̄, and because, as noted previously, these
degrees of freedom may also help to capture the features in
the data near the corresponding thresholds (see Fig. 3).
To avoid overly complicating our model, we do not consider
the related combinations with 3=2þ and 5=2þ quantum
numbers.
We will explore a number of different cases of increasing

complexity. The simplest cases involve only 1=2− and 3=2−

channels, and we then add the 1=2þ channels.
We will construct the amplitudes in the partial wave

basis, and assume the minimal possible orbital angular
momentum for the final state. For 1=2− and 3=2− the J=ψp
state is 2S1=2 and 4S3=2, respectively, whereas for 1=2þ there
are two possibilities, 2P1=2 and 4P1=2.
With these assumptions, the final amplitudes that define

our model are shown in Fig. 4. In 1=2− there are two
production channels (ΛcD̄ and ΛcD̄�), and two correspond-
ing amplitudes (labeled A1 and A2), while in 3=2− there is a
single production channel (ΛcD̄�) and corresponding
amplitude (A3). For 1=2þ there are three production
channels [Λcð2595ÞD̄;Λcð2595ÞD̄�;Λcð2625ÞD̄�], hence
three amplitudes (A4, A5, A6) for the 2P1=2 final state,
and a further three (A0

4; A
0
5; A

0
6) for

4P1=2.
In each diagram, the filled vertex describes a non-

perturbative sum over iterated bubble diagrams, as depicted
in Fig. 2 (right). The channels included in this sum are
summarized in Table II. For 1=2− and 3=2−, we include all

S-wave combinations of ΛcD̄ð�Þ, Σð�Þ
c D̄ð�Þ, NJ=ψ , and Nηc.

(We include Nηc as another possible final state of interest,
though note that it features only in 1=2−, as we are
assuming S-wave channels.) For 1=2þ the channels
Λcð2595ÞD̄, Λcð2595ÞD̄�, and Λcð2625ÞD̄� are included
in S-wave, but the final state NJ=ψ is in P-wave (both 2P1=2

and 4P1=2), and we also include the related possible final
state Nηcð2P1=2Þ.
We define the amplitudes Að2Sþ1LJÞ corresponding to a

particular J=ψp spectroscopic state as follows:

Að2S1=2Þ ¼ b1 þ g1A1 þ g2A2

Að4S3=2Þ ¼ b2 þ g3A3

Að2P1=2Þ ¼ b3 þ g4A4 þ g5A5 þ g6A6

Að4P1=2Þ ¼ b4 þ g4A0
4 þ g5A0

5 þ g6A0
6: ð4Þ
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The constituent amplitudes Ai are computed from the
triangle diagram with nonperturbative final state inter-
actions, as described in the next sections, whereas the
production couplings gi and background terms bi are
treated as fit parameters. Notice in these expressions that
amplitudes Ai corresponding to the same final state are
added coherently. Notice also that the 2P1=2 and 4P3=2

amplitudes have the same production couplings; they have
the same production channels, but different spectroscopic
final states.
The production couplings gi, which account for the total

strength of a given subamplitude, will be taken to be real
because we assume that the dominant analytic structure for
the amplitude is contained in Ai (through the triangle
diagram and final state interactions). The background
terms bi account for the production of the given final state
through mechanisms other than the triangle and final
state interactions. Accordingly, these are complex valued,
and for simplicity, we model these as constants. (We

experimented with more sophisticated background models,
for example with s-dependence, or additional incoherent
contributions. Neither of these assisted in fit quality greatly.
In our view overly strong s-dependence in background
terms is to be avoided, and as we will see, is not necessary.)
Finally, the rate given by

R ¼
Z

s12ðmaxÞ

s12ðminÞ
ds12

X
SLJ

jAð2Sþ1LJÞj2 ð5Þ

is fit to the cos-weighted LHCb data.
Our setup is somewhat simpler than that of Du et al.

[1,2]. In particular, our constant complex background is to
be compared with the more elaborate background of Du
et al., which contains a Breit-Wigner term. In our simplest
cases (with only 1=2− and 3=2− channels), we fit four
background terms (Re b1, Im b1, Re b2, Im b2), whereas the
background in Refs. [1,2] is parametrized by six constants.

FIG. 4. Amplitudes contributing to the Λb → J=ψpK− spectrum. The 1=2− and 3=2− channels are produced through ΛcD̄ð�Þ with
J=ψp final states in 2S1=2 (amplitudes A1, A2) or 4S3=2 (amplitude A3). The 1=2þ channels have production through Λcð2595ÞD̄ð�Þ or
Λcð2625ÞD̄� with J=ψp in 2P1=2 (amplitudes A4, A5, A6) or 4P1=2 (amplitudes A0

4; A
0
5; A

0
6). The unlabeled line refers to aD

−
s meson, with

interpretation described in Sec. II E.

TABLE II. Channels included in the iterated sum over bubble diagrams.

1=2−: ΛcD̄;ΛcD̄�;ΣcD̄;ΣcD̄�;Σ�
cD̄�; NJ=ψ ; Nηc

3=2−: ΛcD̄�;Σ�
cD̄;ΣcD̄�;Σ�

cD̄�; NJ=ψ
1=2þ: Λcð2595ÞD̄;Λcð2595ÞD̄�;Λcð2625ÞD̄�; NJ=ψð2P1=2Þ; NJ=ψð4P1=2Þ; Nηcð2P1=2Þ
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Another notable difference is that our model is more
constrained on the production side. For example, in our
simplest cases (with only 1=2− and 3=2− channels), we fit
three production couplings (g1, g2, g3), compared to seven
in Refs. [1,2]. The difference has a significant impact on the
phenomenology. We remarked previously that an awkward
consequence of Scenarios A and B is the existence of 1=2−

and 3=2− Σ�
cD̄� states which are apparently not visible in

the data. In the model of Du et al., there are as many

production couplings (seven) as there are Σð�Þ
c D̄ð�Þ chan-

nels, resulting in enough parametric freedom to make the
unwanted Σ�

cD̄� states disappear from the J=ψp spectrum.
In our model, with only three production couplings, there is
much less parametric freedom, and indeed we argue later
that we would not be able to explain away the missing
states in this way. Instead we avoid the problem by
adopting parameter choices suitable for Scenario C, in
which case the unwanted 1=2− and 3=2− Σ�

cD̄� states
simply do not bind, and so are absent for that reason.

E. Amplitudes

Here we describe the calculation of the amplitudes Ai,
with reference to the generic diagram in Fig. 5. We will use
final states 1 ¼ K−, 2 ¼ J=ψ , 3 ¼ p and virtual states
a ¼ “Ds”, b ¼ “D̄”, and c ¼ “Λc”, where the quotation
marks remind us that these refer to flavor only. As
discussed above, we focus on low lying states with strong
overlap with the initial and final states. Thus we consider
b ¼ D̄; D̄� and c ¼ Λc;Λcð2595Þ;Λcð2625Þ.
In principle the sum over a can be done with a spectral

integral. Again, we regard this as impractical; rather we
assume that the sum is dominated by one resonance,
typically the D�

s with a mass set to 2.112 GeV. We have

found that changing the nominalDs mass has little effect on
the rate once fit parameters are adjusted, unless the mass is
tuned to satisfy the Landau conditions that give rise to the
triangle singularity [27]. With plausible Ds masses this is
only relevant for triangle diagrams with excited states in
the triangle, specifically Λcð2595ÞD̄ and related channels.
Hence for the 1=2þ channel (only) we consider the case
where a larger effective Ds mass is used. More detail is
provided in Sec. III E.
The amplitude is

A ¼ △abcðs23Þ · tbc∶23ðs23Þ · Y�
LfMf

ðck23ÞFLf
ðk23Þ; ð6Þ

where △abcðs23Þ is the amplitude for the triangle diagram,
depending on the masses of a, b, c and the invariant masses
of the external legs (specifically s23), and tbc∶23ðs23Þ is a
(reduced) T-matrix which couples the state bc in the
triangle to the final state 23, defined via

hp⃗LM; αjTjp⃗0L0M0; α0i
≡ YLMðp̂ÞFLðpÞ · tαα0 · Y�

L0M0 ðp̂0ÞFL0 ðp0Þ; ð7Þ

where we are using α to label the scattering channels. Note
that the separable form of the T-matrix permits the
factorization shown in in Eq. (6), wherein the initial form
factor, FL, is accounted for in the triangle integral. The
hadronic form factor FL is discussed further below. Finally,
the T-matrix can be obtained by solving the Bethe-Heitler
equation, T ¼ V þ VGT, using standard techniques.
We choose to write the triangle diagram with form

factors that model the hadronic interactions at each of
the vertices,

△abcðs23Þ ¼
Z

d3q
ð2πÞ3 FewðqÞF3P0ðk − x1qÞFLðq − x2kÞPLðq − x2kÞ · ½mΛb

−ma −mb − q2=ð2μabÞ þ iΓa=2þ iΓb=2�−1

·

�
mΛb

− E1 −mb −mc − q2=ð2mcÞ − ðq − kÞ2=ð2mbÞ þ iΓb=2þ iΓc=2�−1: ð8Þ

A nonrelativistic form has been used for the diagram since
all particles move at reasonably low speeds and because the
loop integral is regulated beyond β ∼ β3P0 ∼ ΛQCD. We
have allowed for an angular momentum L (normally 0 or 1)
in the final state interaction vertex. Also x1 ¼ m1=ðm1 þ
mbÞ and x2 ¼ mc=ðmb þmcÞ. The widths Γ of the mesons
a, b, and c can have a strong attenuation effect on the
amplitude. We include these as a constant imaginary part in
the energy denominators, having found that this gives
almost identical results to the use of dynamical widths.
Finally, k is the momentum of the outgoing ð1Þ ¼ K−

meson while its energy is E1.
The electroweak vertex Few is described by the matrix

element hacjHEWjΛbi with ðacÞ ¼ D�
sΛc, DsΛc, etc. We

FIG. 5. Generic diagram whose amplitude is discussed in the
text.
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judge that modeling each of these cases individually is
unjustifiable in view of the approximations being made and
simply consider ðacÞ ¼ D�

sΛc. The leading relevant form
factor has been estimated in the heavy quark limit by Guo
and Kroll and can be approximated very well by the
expression [28].

ξðwÞ ¼
�

2

1þ w

�
8

; ð9Þ

wherew ¼ vΛb
· vΛc

is the Isgur-Wise variable forΛb → Λc.
Including kinematic factors then gives the model vertex

FewðkÞ ¼ ξðwÞ · kfD�
s
; ð10Þ

where the last factor is the D�
s decay constant

and w2 ¼ 1þ k2=mΛ2
c
.

The form factor F3P0 is associated with the ðab1Þ
vertex, which corresponds to a strong decay such as
D�

s → K−Dð�Þ0. We model this using the well-known
“3P0”model, which postulates that the interaction proceeds
via quark-antiquark pair production with ð2Sþ1ÞLJ ¼ 3P0

quantum numbers [29–35]. The vertex is obtained by
integrating the relevant hadronic wave functions over the
production operator. It is common to use simple harmonic
oscillator wave functions with a scale that is fixed to
reproduce the leading moments of the wave function as
determined by a quark model of choice. Generally this
scale, called β3P0 here, is the range 300–700 MeV, depend-
ing on the hadron [36].
The strength of the vertex is absorbed into the production

couplings gi which, as described previously, are fit param-
eters. We ignore possible polynomial dependence due to
wavefunction nodes (there are none for the hadrons we
consider), and we replace exponential dependence with the
equivalent leading power law. Our final form is therefore

F3P0ðkÞ ¼
xl

1þ x2=12
; x ¼ k=β3P0; ð11Þ

where l is the angular momentum of the ð1bÞ system. We
set β3P0 ¼ 500 MeV in the following. This value is typical
of quark model descriptions, as just mentioned, and we
have found that our fits are not sensitive to variations in this
parameter across a reasonable range.
We compute the integral in Eq. (8) numerically. In the

special case that all form factors are set to unity and the
particle widths are set to zero, the integral can be done
analytically, and result is obtained in Ref. [37]. As a check
on our code we have verified that our numerical result
matches the analytical result in this limit.
The remaining vertex describes the final state interaction,

ðbcÞ → ð23Þ, for example ΛcD̄ → J=ψp, manifest as a
nonperturbative sum over bubble diagrams, as depicted in
Fig. 2 (right). Such interactions have been treated with

effective Lagrangian or one-meson-exchange models
[1,2,9,10,38–59]. Here we assume a separable form

hpLM; αjVjp0L0M0; α0i ¼ λαα0YLMðp̂ÞFLðpÞ
· Y�

L0M0 ðp̂0ÞFL0 ðp0Þ; ð12Þ

corresponding to contact interactions with relative strengths
λαα0 that are fixed by heavy quark symmetry (described
below). This choice is made because the detailed form of
the final-state interactions is not known, and because it
captures the relative strengths of the interactions in a simple
way. Indeed, we expect that the important features of the
final state interactions are the existence or absence of bound
states, not the exact properties of these states. Lastly, a
separable final state interaction ansatz permits computing
the full final state interactions in a simple fashion and
permits easily folding them into the triangle diagram. Thus,
in view of the approximations made (and our goals) we
judge it unnecessary to build a more elaborate final state
interaction model.
The hadronic form factor is modeled as

FLðxÞ ¼
xL

1þ x2
; x ¼ p=β; ð13Þ

where β is a universal scale, p is the relevant channel
relative momentum, and the numerator implements the
expected angular momentum barrier. We apply this form
factor at the “bc” vertex in the triangle diagram (Fig 5), and
all vertices in the bubble diagrams (Fig 2), however for
simplicity we do not apply the form factor in the J=ψp final
state, as the momentum p varies across the Dalitz plot.
The parameter was set to β ¼ 800 MeV for the results

reported here. This is a typical hadronic scale that leads to
stable results of the correct magnitude. We have tested
varying β and find that its effects are largely absorbed in the
final state interaction strengths, as expected.
The final state interactions are constrained to satisfy

heavy quark symmetry, and the corresponding channel
coefficients λαα0 , which we have obtained using standard
means, are shown in Tables III, IV, and V for the
JP ¼ 1=2−, 3=2−, and 1=2þ systems, respectively. The

TABLE III. Contact terms in the 1=2− channel.

1=2− ΛcD ΛcD̄� ΣcD̄ ΣcD̄� Σ�
cD̄� NJ=ψ Nηc

ΛcD̄ A 0 0
ffiffiffi
3

p
B

ffiffiffi
6

p
B

ffiffi
3

p
2
D

1
2
D

ΛcD̄� A
ffiffiffi
3

p
B −2B

ffiffiffi
2

p
B − D

2

ffiffi
3

p
2
D

ΣcD̄ Ca
2ffiffi
3

p Cb −
ffiffi
2
3

q
Cb

− 1
2
ffiffi
3

p E 1
2
E

ΣcD̄� Ca − 4
3
Cb −

ffiffi
2

p
3
Cb

5
6
E − 1

2
ffiffi
3

p E

Σ�
cD̄� Ca − 5

3
Cb

ffiffi
2

p
3
E

ffiffi
2
3

q
E

NJ=ψ 0 0
Nηc 0
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parameters A, B, Ca;b, D, E, Fa;b, Ga;b are contact terms
which are fit to data, though not all of these are well
constrained by current experimental data (for example we
will set A ¼ 0), and in some of the simpler scenarios we
only need a subset of these parameters to achieve good fits.
The contact terms relevant to 1=2− and 3=2− channels

have been discussed elsewhere in the literature—see for
example Refs. [1,2,51,57,60,61]. Our results for the 1=2þ
matrix are new, and one should notice the similarity
between the terms involving Fa;b in the 1=2þ matrix and
the corresponding terms involving Ca;b in the 1=2− matrix.
The correspondence follows from replacing Σc with
Λcð2595Þ (both J ¼ 1=2 states), replacing Σ�

c with
Λcð2625Þ (both J ¼ 3=2), and generalizing the conserva-
tion of light quark spin to the conservation of light quark
angular momentum.
Note that we are not explicitly including one-pion

exchange in our final state interactions, and in this respect
the model of Du et al. [1,2] is more rigorous than ours.
However we do not expect that the inclusion of one-pion
exchange potentials will significantly alter our fits, since the
pion-exchange contributions can to a certain extent be
absorbed into an adjustment of the contact terms which,
after all, are fit to data. This is particularly true of the central
contributions to the potential, which follow the same pattern
as the B and Cb terms in the 1=2− and 3=2− potential
matrices. (More precisely, the pion-exchange potentialsmay
be obtained from our Tables III and IV by setting
A ¼ Ca ¼ 0,Cb ¼ −2B, and replacing our separable poten-
tial with the Fourier transform of the scattering amplitude.)
In this sense, our model may be regarded as subsuming pion
exchange (with, of course, a different spatial structure in the

interactions). It is simply because the pion-exchange poten-
tials respect heavy quark symmetry.
Finally, we remark that the formulae above for the

amplitude have been developed in the nonrelativistic for-
malism, hence the units of λαα0 are −2, three-point functions
are −1=2, and −2 for the amplitude for Λb → J=ψp. These
amplitudes can be converted to relativistic conventions by
multiplying by the usual factors of

ffiffiffiffiffiffi
2E

p
. In our case, these

are approximately
ffiffiffiffiffiffiffi
2M

p
and can be absorbed into the

coupling constants. We have confirmed that the appropriate
factors of

ffiffiffiffiffiffiffiffiffiffi
E=M

p
make very little difference in our fits, with

the chief effect being a slight enhancement at high energy
that is easily countered by fit parameters.
Before proceeding to the fits, it is interesting to consider

higher order contributions to our production mechanism—
effectively iterated triangles. These are discussed in the
Appendix, where we conclude that their contributions are
small with respect to the leading order considered here.

III. RESULTS

A. Fit strategy

We will fit our model to the J=ψp spectrum in Λb →
J=ψpK− [25], specifically the dataset which has been
weighted according to the cosine of the Pc decay angle. We
choose this particular dataset because it enhances structure
while retaining the full Kp invariant mass phase space. The
other LHCb datasets (raw data, or with a cutoff on the Kp
momentum) show similar features. Our fits cover the full
range of possible invariant mass, in contrast to Refs. [1,2],
which concentrate on the resonance region only, thereby
essentially forcing a resonance interpretation of the features
and neglecting important dynamics contained in the

Λð�Þ
c D̄ð�Þ channels.
We consider a series of five cases of increasing complex-

ity, starting with minimal final state interactions and ending
with interactions capable of generating poles for all the Pc
states including the Pcð4457Þ. The different cases, and their
corresponding parameters, are summarized in Table VI.
Because fitting the entire dataset is expensive, we chose to
fit a representative subset of the data. The resulting
values for chi-squared are reported in the first row of the

TABLE IV. Contact terms in the 3=2− channel.

3=2− ΛcD̄� Σ�
cD̄ ΣcD̄� Σ�

cD̄� NJ=ψ

ΛcD̄� A −
ffiffiffi
3

p
B B

ffiffiffi
5

p
B D

Σ�
cD̄ Ca

Cbffiffi
3

p
ffiffi
5
3

q
Cb

− Effiffi
3

p

ΣcD̄� Ca þ 2
3
Cb −

ffiffi
5

p
3
Cb

E
3

Σ�
cD̄� Ca − 2

3
Cb

ffiffi
5

p
3
E

NJ=ψ 0

TABLE V. Contact terms in the 1=2þ channel.

1=2þ Λcð2595ÞD̄ Λcð2595ÞD̄� Λcð2625ÞD̄� NJ=ψð2P1=2Þ NJ=ψð4P1=2Þ Nηcð2P1=2Þ
Λcð2595ÞD̄ Fa

2ffiffi
3

p Fb −
ffiffi
2
3

q
Fb

1

6
ffiffi
3

p Ga − 4

3
ffiffi
3

p Gb 1
3

ffiffi
2
3

q
ðGa þ GbÞ

1
2
Ga

Λcð2595ÞD̄� Fa − 4
3
Fb −

ffiffi
2

p
3
Fb

− 5
18
Ga − 4

9
Gb − 10

ffiffi
2

p
18

Ga þ
ffiffi
2

p
9
Gb

− 1

2
ffiffi
3

p Ga

Λcð2625ÞD̄� Fa − 5
3
Fb −

ffiffi
2

p
9
Ga þ 2

ffiffi
2

p
9
Gb

− 4
9
Ga − 1

9
Gb

ffiffi
2
3

q
Ga

NJ=ψð2P1=2Þ 0 0 0
NJ=ψð4P1=2Þ 0 0
Nηcð2P1=2Þ 0
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last section of the table. The next row contains chi-squared
as computed over the full dataset, while the final row
reports chi-squared as computed over the resonance
region, MðJ=ψpÞ ¼ 4.25–4.55 GeV.
Here we briefly introduce the cases and describe the

fitting strategy. In Cases 1 and 2 we only include the 1=2−

and 3=2− channels. Case 1 is our minimal scenario, with no

interactions among Σð�Þ
c D̄ð�Þ channels (Ca ¼ Cb ¼ 0); here

we are considering the extent to which the data can be
captured by kinematic features of themodel, for example the
direct coupling ΛcD̄ð�Þ → J=ψp of the triangle diagram to
the final state (via the parameter D), and cusps due to

ΛcD̄ð�Þ → Σð�Þ
c D̄ð�Þ → J=ψp (via B and E). In Case 2 we

switch on the couplings Ca;b among the Σð�Þ
c D̄ð�Þ channels,

generating resonances to describe Pcð4312Þ, Pcð4440Þ, and
the broad structure which was previously identified as
Pcð4380Þ. As shown in TableVI, we consider two variations
(Cases 2a and 2b) with somewhat different parameters, but a
similar physics interpretation and comparable fit quality.
In the remaining cases we include not only 1=2− and

3=2−, but also 1=2þ, and this has the largest impact on

Pcð4457Þ, because of the proximity to Λcð2595ÞD̄ thresh-
old. As shown in Fig. 4, the inclusion of 1=2þ implies
additional production diagrams due to Λcð2595ÞD̄,
Λcð2595ÞD̄� andΛcð2625ÞD̄�. In Cases 3 and 4we consider
the impact of the associated triangle diagrams, which are
coupled to the J=ψp final state via Ga;b. The difference
between these cases is the “Ds” mass used in the 1=2þ

channel—in Case 3we use 2.112GeV,whereas inCase 4we
adopt a heavier “Ds”mass of 2.920 GeV, chosen to produce
a logarithmic triangle singularity near the Λcð2595ÞD̄
threshold. Finally, in Case 5 we revert to the standard
“Ds” mass of 2.112 GeV, but switch on final state inter-
actions among Λcð2595ÞD̄, Λcð2595ÞD̄� and Λcð2625ÞD̄�

(through Fa), leading to a resonance interpretation
of Pcð4457Þ.
The parameters to fit are the contact terms (B, Ca, Cb,D,

E, Fa, Ga, Gb), production couplings gi, and backgrounds
bi. As shown in Table VI, the number of fit parameters in
the cases we consider varies from 10 to 21. Note that we
adopt A ¼ 0 in all cases, as our fits are not very sensitive to
this parameter. (The contact term A describes interactions

TABLE VI. Model parameters for the various fits shown in Figs. 6–11.

Case 1 Case 2a Case 2b Case 3 Case 4 Case 5

Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

MDs
(GeV) 1=2−; 3=2− 2.112 2.112 2.112 2.112 2.112 2.112

1=2þ 2.112 2.920 2.112

Contact terms B 4.0 4.0 6.0 4.0 4.0 4.0
Ca −14.8 −14.0 −14.8 −15.2 −14.8
Cb −8.0 −9.8 −8.0 −7.4 −8.0
D 1.0 0.6 0.7 0.6 0.6 0.6
E 1.0 1.0 1.0 1.0 1.0 1.0
Fa −12.0
Ga 0.3 0.3 0.3
Gb 0.2 0.0 0.2

Production g1 0.0710 0.0560 −0.0083 0.0198 0.0217 0.0382
g2 −0.1899 −0.2181 −0.3302 0.1718 0.1893 −0.2137
g3 0.1015 0.0309 0.0342 −0.1239 0.0305 0.0320
g4 0.4358 0.0549 −0.0296
g5 −0.1009 0.0039 −0.0066
g6 −0.1640 −0.0259 0.0369

Background Re b1 0.001653 0.000739 0.000707 −0.000283 0.000505 0.000641
Im b1 −0.001378 −0.000892 −0.000839 0.000670 −0.000835 −0.000883
Re b2 0.001515 0.001207 0.000750 −0.000655 0.001040 0.001176
Im b2 −0.000004 −0.000365 0.000827 0.000446 −0.000629 −0.000402
Re b3 −0.000841
Im b3 −0.000184
Re b4 0.000691
Im b4 −0.001093

Number of parameters 10 12 12 21 17 18

χ2=dof As fit 4.76 2.83 3.33 2.30 2.55 2.69
Full dataset 4.63 2.77 4.00 2.78 2.41 2.51
(4.25–4.55) 3.63 2.29 2.88 1.69 1.96 2.12
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amongΛcD̄ð�Þ channels, and the experimental data show no
indication of strong attraction in such channels.)
In performing the fits we have found that standard

minimization algorithms cannot find a minimum, hence we
have adopted amultistep procedurewherein the contact terms
were first adjusted manually, then the remaining parameters
(production couplings andbackground terms)were fit to data.
A difficulty in the more direct approach is that changes in the
parameters which couple the triangle diagrams or bubbles to
the final states (D,E, andGa;b) can be absorbed into changes
in the associated production couplings gi. Hence we prefer to
fix these parameters according to other constraints, for
example the known tiny branching fraction of Pc states to
J=ψp (which puts an upper limit on E).
Also, the position of the Pcð4312Þ and Pcð4440Þ

resonance peaks is strongly influenced by Ca, Cb, and
B, while the widths of the peaks—particularly in the case of
Pcð4312Þ—are constrained more strongly by B. (This is
because the states, as discussed previously, decay domi-
nantly to ΛcD̄�.) With these constraints in mind, it is
convenient to fix these parameters first (by eye), and then
separately fit the production and background terms.
We remark that in choosing our “best” fits, we are

(somewhat subjectively) aiming to get the best description
of the data in the region of the Pc peaks. In some cases, this
is at the expense of the fit quality in regions of J=ψp

invariant mass which are far from the Pc peaks, and this to
be expected, since our model has less leverage in those
regions. We experimented with various fitting procedures,
designed to tailor the fit to the region around the Pc masses,
but ultimately we find good results using a combination of
manual tuning (for the contact terms) and algorithmic
fitting (for everything else).

B. Case 1

The first case examines the degree to which the simple
kinematical features of the model—the production triangle
and threshold cusps—can explain the data. Thus we
consider the JP ¼ 1=2− and 3=2− channels only and set
Ca ¼ Cb ¼ 0, while retaining couplings between the initial
and final state (B, D, E). The Ds mass is set to 2.112 GeV.
With this setup the signal comes from the (off-singu-

larity) triangle in ΛcD̄ð�Þ → J=ψp (via D) and the triangle

and threshold cusps in ΛcD̄ð�Þ → Σð�Þ
c D̄ð�Þ → J=ψp (via B

and E). The result is displayed in Fig. 6.
It is immediately clear that even this simple model

captures the majority of the bulk properties of the dataset.
In more detail, a shoulder appears at ΛcD̄ threshold in
1=2−. This combines with the low-lying 3=2− spectrum that
follows phase space in this region. The next feature occurs
near the Pcð4312Þ peak where we see that the 3=2− dips

FIG. 6. The J=ψp invariant mass spectrum in Case 1, in which Pcð4457Þ is a ΣcD̄� → J=ψp cusp.
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down due to interference above ΛcD̄� and JP ¼ 1=2−

increases above ΣcD̄ due to the threshold opening. At
higher energy, we see a threshold cusp due to ΣcD̄�
coupling to the production triangle via the coupling B.
This does an excellent job of describing the Pcð4457Þ peak,
including the unusually sharp drop on the high-energy side
of the peak. We consider this strong support for the
hypothesis that the Pcð4457Þ can be explained by “kin-
ematical” effects. Ref. [5] reaches a similar conclusion.
That this simple model can reproduce such intricate

features is noteworthy, and draws attention to a funda-
mental difference between our approach and that of Du
et al. [1,2]. In our case, the main features in the data are
captured through a coherent combination of contributions
from the triangle diagrams (involving ΛcD̄ð�Þ states),

resummed bubble diagrams (including Σð�Þ
c D̄ð�Þ channels),

and a simple constant background. By contrast, in

Refs. [1,2], the signal (due to Σð�Þ
c D̄ð�Þ interactions) and

background (which is more intricate than ours, but smooth)
are combined incoherently; by construction this leads to a
resonance interpretation of any features which deviate from
the background, but as is apparent in Fig. 6, even dramatic
peaks need not necessarily be associated with resonances.
Note that the values we adopt for B, D, and E (Table VI)

are not well constrained in this case, so for convenience we

adopt values which are the same or similar to those used in
subsequent (more tightly constrained) cases.

C. Case 2

Although encouraging, Case 1 makes it clear that addi-
tional dynamics is required to explain the sharpness of the
Pcð4312Þ and Pcð4440Þ peaks, as well as the structure
around 4380 MeV. We therefore follow the strategy
developed above and turn on final state interactions in

the Σð�Þ
c D̄ð�Þ sector by adjusting Ca and Cb, adopting

negative values for both in order to implement our preferred
Scenario C. We consider two implementations for this case,
one with Ca ¼ −14.8 GeV−2 and Cb ¼ −8.0 GeV−2 and
the other with Ca ¼ −14.0 GeV−2 and Cb ¼ −9.8 GeV−2.
We have found that both options yield resonance positions
suitable for making fits.
Compared to the previous case, the choice of values for

the other contact terms (B,D, and E) has more significance,
and we discuss this further below. As mentioned, once we
have fit the contact terms—in particular, to generate peaks
associated with Pcð4312Þ and Pcð4440Þ—we then fit the
remaining parameters (production couplings and back-
ground terms) to data. Note that in this model the JP ¼
1=2þ channel is still set to null.

FIG. 7. The J=ψp invariant mass spectrum in Case 2a, where in addition to the kinematical features included in Case 1, there are final

state interactions in the Σð�Þ
c D̄ð�Þ sector, leading to resonances for Pcð4312Þ, Pcð4380Þ, and Pcð4440Þ.
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Results for the two implementations (Cases 2a and 2b)
are shown in Figs. 7 and 8, respectively. Focusing attention
on Fig. 7 for the moment (Case 2a), one observes that the
desired effects have been achieved, namely the Pcð4312Þ
peak is reproduced as a 1=2− resonance, the Pcð4380Þ
appears as a JP ¼ 3=2− resonance, as does the Pcð4440Þ.
The Pcð4457Þ remains a threshold cusp in ΣcD̄� as in the
previous case. Notice that the peak at 4312 MeV in 1=2−

encourages the fit to shift the background from JP ¼ 1=2−

to 3=2−. The last feature to note is the broad rise near Σ�
cD̄�

in JP ¼ 3=2− (which is also present in Case 1). This is due
to the strong diagonal interaction in this channel, although
of course, it is weaker than Σ�

cD̄ and ΣcD̄� because Cb is
chosen to be negative.
As shown in Fig. 8, Case 2b has similar features to Case

2a, as might be expected, with the chief difference being the
shape of the Σ�

cD̄� rise in JP ¼ 3=2−. Differences in the
widths of the peaks are associated with the choice of B, as
discussed below.
Notice that Cases 2a and 2b nicely capture the broad

feature near 4380 MeV, a structure which was previously
identified as the Pcð4380Þ [26,62]. As noted previously, a
resonance around this mass is automatic in molecular
models with heavy quark symmetry, once the potential
is tuned to generate the Pcð4312Þ peak.
Another notable feature is that the model nicely captures

the relative widths of the Pcð4380Þ peak (broad) compared

to those of Pcð4312Þ and Pcð4440Þ (narrow). This follows
naturally from the intrinsic widths of the dominant
constituents of the states, which enter into the imaginary
part of the energy denominators in Eq. (8). Since Σ�

c
(Γ ¼ 15 MeV) is significantly broader than Σc

(Γ ¼ 1.86 MeV), the Pcð4380Þ peak (Σ�
cD̄) is naturally

much broader than Pcð4312Þ and Pcð4440Þ (ΣcD̄ and
ΣcD̄�). Indeed we have verified, by varying the Σ�

c width,
that this is the origin of the effect. The simple explanation
for the relative widths of the Pc states lends support to the
molecular scenario.
As mentioned above, the choice of values for the contact

terms B, D, and E has more significance than in the
previous case. We argued in our previous paper [6]
that Pcð4312Þ decays dominantly to ΛcD̄�, hence we
expect (and have observed) that the width of the
Pcð4312Þ peak is strongly correlated with B, which
controls the ΣcD̄ → ΛcD̄� coupling. [For a similar reason,
the widths of Pcð4380Þ and Pcð4440Þ are also correlated
with B, but less strongly, because of the smaller ΛcD̄ð�Þ

branching fractions.] We have found that taking B ≈ 4 ÷
6 GeV−2 generates a suitable Pcð4312Þ width. The effect
of B on the widths is apparent when comparing Figs. 7
and 8, which have B ¼ 4 GeV−2 and B ¼ 6 GeV−2,
respectively.
In Sec. II E, we remarked that the algebraic structure of

the one-pion exchange potential is reproduced with our

FIG. 8. The J=ψp invariant mass spectrum in Case 2b, which is very similar to Case 2a but with somewhat different values for the
contact terms (see Table VI). Notice in particular the larger width for Pcð4312Þ, resulting from the larger value for B.
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potentials, taking Cb ¼ −2B. It is noteworthy that the
values of B and Cb preferred by our fit are roughly
consistent with this relation (see Table VI).
The parameter B influences not only the shapes, but also

the positions of the peaks, particularly because it controls
the coupling between the nearby thresholds ΣcD̄ and ΛcD̄�,
which is partly responsible for the attraction generating
Pcð4312Þ. This explains why—comparing Cases 2a and 2b
in Table VI—we find that an increase of B must be
compensated by a decrease in the magnitude of Ca.
Additionally, we note that the fit is not sensitive toD and

E separately, but only the ratio D=E, for the following
reason. The J=ψp final state can arise through ΛcD̄ð�Þ →
J=ψp or Σð�Þ

c D̄ð�Þ → J=ψp, which scale with D and E,
respectively. It follows that the amplitude is a coherent sum
of two terms, which scale with D and E respectively,
provided that D and E are perturbatively small, meaning
that multiple rescatterings (such as ΛcD̄ð�Þ → J=ψp →
ΛcD̄ð�Þ → J=ψp) make negligible contribution. In this case
the shape of the fit is sensitive only to the ratioD=E, and we
have verified that this is true over a large range of D and E,
including the range of values which are allowed by
phenomenology (discussed below). In practice it means
that if we rescale the contact terms D and E by a common
factor, we get an essentially identical fit, but with the
production couplings gi having absorbed the rescaling.
Hence, in order to fix D and E (not just their ratio), we

need additional input. It has been established experimen-
tally that the branching fractions Pc → J=ψp are very
small, which implies an upper limit on E. In our previous
paper [6] we argued that BðPcð4312Þ → J=ψpÞ must be
less than a few parts in 10−3, but not significantly less—this
is in order to be consistent with experimental upper limits
on the photoproduction cross sections [63,64], without
implying an unrealistic production branching fraction. We
may estimate the ratio of B and E from the potential matrix
elements

����BE
���� ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðPcð4312Þ → ΛcD̄�Þ
BðPcð4312Þ → J=ψpÞ

s
; ð14Þ

where we have ignored differences due to phase space.
From the above arguments, we estimate BðPcð4312Þ →
J=ψpÞ ≈ 10−3 and, from our previous analysis [6],
BðPcð4312Þ → ΛcD̄�Þ ¼ 59 ÷ 87%. Together these imply
jB=Ej ≈ 4 ÷ 5. Having fixed B as outlined above, we adopt
E ¼ 1.0 GeV−2 as a value in the suitable range. We will
later confirm, through an analysis of the T-matrix poles,
that with this value we obtain the branching fraction
BðPcð4312Þ → J=ψpÞ ≈ 10−3, which is consistent with
the above experimental constraints.
Having fixed E, a suitable value for D is constrained by

the sensitivity of the fit to the ratio D=E, as outlined above.
As shown in Table VI, we settle on values of D ¼ 0.6 or

0.7 GeV−2 as giving good results—values significantly out
of this range give features with the wrong shape. Since D
and E respectively control the coupling of ΛcD̄ð�Þ and

Σð�Þ
c D̄ð�Þ to J=ψp, it is noteworthy that the fit settles on

values of comparable magnitude for these parameters. This
is reassuring, considering the underlying similarity (in a

quark model sense) of Λc and Σð�Þ
c , and it supports out

perspective, emphasized throughout the paper, that ΛcD̄ð�Þ

channels are equally as important as Σð�Þ
c D̄ð�Þ channels in

describing the experimental data.

D. Case 3

In the remaining cases we introduce the JP ¼ 1=2þ

channel, turning on the amplitudes Að2P1=2Þ and Að4P1=2Þ
in Eq. (4). The production in these amplitudes is via
triangle diagrams with Λcð2595ÞD̄, Λcð2595ÞD̄�, and
Λcð2625ÞD̄� (Fig. 4).
In this first implementation of the 1=2þ channel, we keep

the same “Ds” mass as used in the previous cases. The
contact terms associated with the 1=2− and 3=2− channels
(B, Ca, Cb,D, E) are set to the same values used in Case 2a,
reproducing the peak positions for Pcð4312Þ, Pcð4380Þ,
and Pcð4440Þ. As for the contact terms associated with the
1=2þ channel (Ga, Gb), we find that the fit is somewhat
sensitive to the ratio Ga=Gb, but essentially insensitive
under a common rescaling of Ga and Gb, as such rescaling
is absorbed into the production couplings g4;5;6 which are
fit to data. The situation is similar to the 1=2− and 3=2−

channels (described previously), where J=ψp spectrum
does not constrain D and E directly, but only their ratio
D=E. A notable difference is that in that case, additional
experimental input could be used to constrain the magni-
tude of E (hence D). In the case of Ga and Gb there is no
such constraint. We adopt the value Ga ¼ 0.3 GeV−2—
which has no particular significance—and explore different
values for Gb.
Regarding the background, we experimented with using

the same treatment as in the previous cases, namely we fit
b1 and b2, but keep b3 ¼ b4 ¼ 0, so that we are assuming
effectively that the background is dominated by J=ψp S-
wave channels (1=2− and 3=2−). The resulting fit is,
qualitatively, no better than those of previous cases, despite
having more fit parameters.
Hence for illustration we performed another fit with

nonzero background in all channels (1=2−, 3=2−, 1=2þ),
namely we fit all of b1, b2, b3, and b4. This introduces two
additional complex parameters, and unsurprisingly, results
in an improved fit, shown in Fig. 9. In particular, we notice
in comparison to previous cases that the fit is much
improved in the region above the Pc states, because of
the leverage associated with the Λcð2595ÞD̄, Λcð2595ÞD̄�,
and Λcð2625ÞD̄� degrees of freedom (note the position of

thresholds in Fig. 3). The amplitudes Að0Þ
4;5;6 have cusps at

PRODUCTION OF PC STATES IN Λb DECAYS PHYS. REV. D 106, 054029 (2022)

054029-15



the Λcð2595ÞD̄, Λcð2595ÞD̄�, and Λcð2625ÞD̄� thresholds,
and their relative contributions are determined by the fit, as
each has an associated production coupling (g4;5;6). The
Λcð2595ÞD̄� and Λcð2625ÞD̄� cusps are particularly useful
in capturing the rise in data above 4.6 GeV.
For this particular fit we are using Gb ¼ 0.2 GeV−2, but

this is not well constrained by data.
While the fit is very good, it is noteworthy that the 1=2þ

amplitude has absorbed much of the background strength in
the reaction. Although the data is agnostic to this possibil-
ity, we find it somewhat implausible physically, because it
implies a substantial coupling to J=ψp in P-wave.

E. Case 4

We now consider the implications of varying the mass of
the “Ds” meson in the production diagrams, in order to
investigate a possible role for the logarithmic triangle
singularity. With reference to Fig. 2, the idea is that by
tuning the Ds mass, we may generate a logarithmic
singularity in the J=ψp spectrum at (or above) the thresh-
old for ΛcD̄ð�Þ, Λcð2595ÞD̄ð�Þ, or Λcð2625ÞD̄. Of course we
are mainly interested in the Λcð2595ÞD̄ case, as the strong
and sharp Pcð4457Þ peak coincides exactly with the
threshold. This mechanism was suggested after the initial
discovery of Pc states [65], and was confronted with

experimental data in the more recent LHCb paper [25],
with the conclusion that further analysis was warranted in
future amplitude analyses. Other authors have considered
different triangle diagrams for the Pc states, involving other
combinations of hadrons [37,66–69]. Unlike the case we
consider, these diagrams either violate isospin or are color
suppressed.
Solving the nonrelativistic version of the Landau

equations [37], we can determine the “Ds” mass that is
required to induce the logarithmic triangle singularity.

For diagrams with Λcð2595ÞD̄ (amplitude Að0Þ
4 ) we find

2.916 GeV < mDs
< 3.024 GeV. Considering that there

are several known Ds mesons in a similar mass range
[70], it is plausible that the logarithmic triangle singularity
is indeed playing a role. Although we may expect the
production of such a highly excited state to be suppressed
in the weak decay, its contribution to the spectrum could
nonetheless be significant because of the dramatic enhance-
ment of the triangle amplitude because of the logarithmic
singularity. Wewill adopt a “Ds”mass of 2.92 GeV, namely
at the lower end of the allowed range. Taking a much larger
“Ds” mass moves the triangle peak above Λcð2595ÞD̄
threshold, in conflict with data.
Interestingly, if we repeat the calculation for diagrams

with ΛcD̄ or ΛcD̄� (amplitudes A1;2;3) we find that the

FIG. 9. The J=ψp invariant mass spectrum in Case 3, in which the 1=2þ channel features prominently. The fit quality is better than
previous cases, particularly in the higher mass region—but the dominance of J=ψp in P-wave is unnatural.
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requisite Ds mass is well above the masses of any known
Ds mesons. Hence we do not expect the triangle singularity
to play a role in these cases, which is consistent with the
absence of any prominent peaks in the data at the ΛcD̄ and
ΛcD̄� thresholds.
Hence in Case 4 we use a “Ds” mass of 2.920 GeV for

the 1=2þ channel, and “Ds” mass of 2.112 GeV for the
1=2− and 3=2− channels. (We experimented with summing
over contributions from both masses for all channels, but
this introduces many more free parameters, without an
appreciable improvement in the fit.) For the background,
we revert to the previous assumption (as in Cases 1 and 2)
that it is dominated by J=ψp in S-wave (hence we fit b1 and
b2, but keep b3 ¼ b4 ¼ 0). For the contact terms, we fix B,
D, E, and Ga to the same values as the previous case, but
vary the other terms, settling on values which are only
slightly different to the previous case (butGb in particular is
not tightly constrained).
The result is shown in Fig. 10. The fit is of comparable

quality to Case 3, but is physically more plausible, because
the spectrum overall is dominated by J=ψp in S-wave
(1=2− and 3=2−), rather than P-wave (1=2þ). The features
in the 1=2þ channel are sharply localized around the
corresponding thresholds, which is a consequence of their
origin in the logarithmic singularity. The triangle diagram

with Λcð2595ÞD̄ gives a sharp feature which contributes to
Pcð4457Þ, while the Λcð2625ÞD̄� diagram nicely repro-
duces the rise in data above 4.6 GeV.
It is notable that the couplings g4;5;6 are significantly

smaller in Case 4 compared to Case 3 (see Table VI), which
is to compensate the significant enhancement in the

amplitudes Að0Þ
4;5;6 resulting from the triangle singularity.

This underlines our previous point that even if the pro-
duction of a highly excited Ds meson is suppressed at the
weak vertex, its contribution to the spectrum can still be
significant, due to the triangle enhancement.
In comparison to Case 2, the fit in Case 4 is of

comparable quality in the region of the Pc states, but
better at higher mass, although at the cost of five more
parameters.

F. Case 5

The last case examines the effect of constructing a
Pcð4457Þ resonance in the 1=2þ channel, which can
be achieved by setting the coupling Fa (see Table V)
negative and sufficiently large. This scenario most closely
reflects the suggestion of Ref. [9], namely that an S-wave
Λcð2595ÞD̄ attraction provides a viable interpretation
of the Pcð4457Þ. In that paper the attraction is attributed

FIG. 10. The J=ψp invariant mass spectrum in Case 4, in which the triangle singularity in 1=2þ gives a narrow peak at Λcð2595ÞD̄
threshold, making a significant contribution to the Pcð4457Þ signal.
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to one-pion exchange diagrams Λcð2595ÞD̄ → ΣcD̄�,
although we noticed that with the potential strength fixed
from experimental couplings, this diagram alone is insuf-
ficient to cause binding, a point examined in the sub-
sequent, more detailed studies of Yalikun et al. [10]. Our
approach in Ref. [9] was to enhanced the coupling strength
until the desired binding was achieved, arguing that it could
be justified by assuming some additional attraction due to
unknown short-distance physics. In this paper, we ignore
the meson exchange potential entirely, and include only the
short-distance terms, following the same approach as we
used in the 1=2− and 3=2− channels.
Unlike Case 4, we are no longer relying on the triangle

singularity to account for Pcð4457Þ, so we revert to the
“Ds” mass of 2112 MeV as in cases 1, 2, and 3. For the
background, we assume (as usual) that it is dominated by
J=ψp in S-wave (fitting b1 and b2 only). We set most of the
contact terms to the same values which we used in Case 2a,
finding that there is no noticeable improvement in the
results if we vary these.
When introducing resonances into the 1=2− and 3=2−

channels, we found that the contact terms are quite well
constrained; for a given B, we have essentially two
parameters (Ca and Cb), which are constrained to fit the
positions of three peaks. In the 1=2þ case, by contrast, we
have an analogous two parameters (Fa and Fb), but only
one peak, hence much more parametric freedom. Moreover,

the Pcð4312Þ, Pcð4380Þ, and Pcð4440Þ peaks are far
enough from any production thresholds that they can solely
be attributed to resonances, which tightly constrains their
parametrization. By contrast, the Pcð4457Þ peak has a
contribution from the ΣcD̄� and Λcð2595ÞD̄ triangle cusps,
even before introducing attractive Λcð2595ÞD̄ interactions,
so any resonant contribution is not well constrained.
Given these limitations, for simplicity we fix the 1=2þ

attraction by setting Fb ¼ 0 and varying Fa. We achieve
good fits with Fa in the range of approximately −6 to
−16 GeV−2. As we increase the magnitude of Fa, the
structure at Λcð2595ÞD̄ threshold evolves from a cusp (due
to its production in the triangle) into a sharper feature which
is characteristic of the onset of Λcð2595ÞD̄ binding. If we
make Fa too large, this sharp peak moves off below the
Λcð2595ÞD̄ threshold, corresponding to increased binding
energy.
In Fig. 11 we give an example fit, with

Fa ¼ −12 GeV−2. The quality of the fit indicates that
the Pcð4457Þ peak is consistent with the presence of a
resonance at this mass; however, when comparing to our
previous fits, we would not argue that the data require one.
Because the model is an elaboration of previous cases, we
therefore prefer their relative parsimony of description.
Of course with Fb ¼ 0, there is identical attraction in all

three channels Λcð2595ÞD̄, Λcð2595ÞD̄� and Λcð2625ÞD̄�

FIG. 11. The J=ψp invariant mass spectrum in Case 5, where the 1=2þ peak at Pcð4457Þ is due to a Λcð2595ÞD̄ resonance.
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(see Table V), so a resonance in Λcð2595ÞD̄ would imply
partner states inΛcð2595ÞD̄� andΛcð2625ÞD̄�. The heavier
state Λcð2625ÞD̄� contributes something useful to the fit,
helping to account for the rising feature in the data above
4.6 GeV. The other state Λcð2595ÞD̄� is invisible in the fit,
as there is no prominent feature near the corresponding
threshold, so the fit results in a small production coupling
(Table VI).
In any case, the existence of these partner states should

not be interpreted as a robust prediction of the resonance
interpretation of Pcð4457Þ, since it follows from our choice
of contact terms which, as noted, is not well constrained.
For example, we could presumably remove the additional
states from the spectrum by making Fb large and negative,
and retuning Fa to compensate the increased off-diagonal
attraction in the Λcð2595ÞD̄ channel. In this case, the
feature at Λcð2625ÞD̄� threshold would be linked to the
triangle cusp rather than a corresponding resonance.

G. Discussion of fit results

Our studies convincingly demonstrate that the LHCb
states Pcð4312Þ, Pcð4380Þ, and Pcð4440Þ are associated
with strong final state interactions in ΣcD̄, Σ�

cD̄, and ΣcD̄�
respectively. Here we seek to characterize these interactions
more fully by investigating the analytic structure of the final
state T-matrix in more detail. This is done with a simple
search for poles in the complex energy plane on the closest
physical sheet [defined by the negative (positive) square
root of the breakup momentum for all channels with
thresholds below (above) the real part of the pole].
Residues to various decay channels are obtained with
the aid of a Cauchy integral centred on the pole in the

appropriate sheet for the diagonal T-matrix element in the
channel of interest. These residues are then multiplied by
the phase space (at the pole position) to give the partial
widths reported in Table VII.
The T-matrix is computed by solving the Bethe-Heitler

equation, which amounts to performing a sum over bubble
diagrams, some of which contain particle propagators with
finite widths. These widths shift pole locations by approx-
imately Γ=2, where Γ is the relevant resonance total width.
In this system the resonances with substantial widths are
the Σ�

c (15 MeV) and the Σc (1.86 MeV), both of which
decay predominantly to Λcπ. In the case of weakly bound
systems, such as those considered here, constituents
approximately contribute their widths to the full width
of the bound state (a formalism for describing this in more
detail can be found in Appendix A of Ref. [71]), depending
on how much the particular resonance channel contributes
to the bound state. In our case, the Pcð4312Þ is dominated
by ΣcD̄, the Pcð4380Þ is dominated by Σ�

cD̄, and the
Pcð4440Þ is dominated by ΣcD̄�. Thus we expect contri-
butions of approximately 1.9, 15, and 1.9 MeV to the
respective total widths [6]. These are reported in Table VII
in the rows labeled “three body”. The sum of the partial
widths should approximately equal twice the imaginary
part of the pole position, and we find that this is indeed the
case, supporting the assumptions made.
There is a compelling and simple pattern in the numbers

in Table VII. The widths of the Pcð4312Þ, Pcð4380Þ, and
Pcð4440Þ are dominated by ΛcD̄�, Σ�

cD̄, and three-body
decays. By comparison, the decays to ΛcD̄, NJ=ψ and Nηc
are tiny, which is consistent with the upper limits [6]
implied by experimental data. For Pcð4312Þ, the significant
suppression of ΛcD̄ relative to ΛcD̄� is due to a selection

TABLE VII. Pole positions and partial widths (MeV).

Case 2a/3 Case 2b Case 4 Case 5

1=2− pole 4312 − 2.4i 4308 − 5.2i 4312 − 2.6i 4312 − 2.4i
ΛcD̄ 0.0086 0.0194 0.0080 0.0086
ΛcD̄� 3.10 9.8 3.4 3.1
NJ=ψ 0.0015 0.0011 0.0017 0.0015
Nηc 0.0055 0.0041 0.0060 0.0055
Three body 1.86 1.86 1.86 1.86

3=2− pole 4376.5 − 9.0i 4375 − 10.7i 4376.5 − 9.1i 4376.5 − 8.9i
ΛcD̄� 3.11 7.2 3.41 3.12
NJ=ψ 0.0088 0.0085 0.0097 0.0088
Three body 15 15 15 15

3=2− pole 4444 − 2.56i 4440 − 3.3i 4444.5 − 2.56i 4444 − 2.56i
ΛcD̄� 1.16 2.2 1.25 1.16
Σ�
cD̄ 1.7 2.1 1.58 1.70

NJ=ψ 0.0041 0.0036 0.0045 0.0041
Three body 1.86 1.86 1.86 1.86

1=2þ pole 4458 − 0i
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rule which arises from heavy quark symmetry [24], and
which is essential in explaining the upper limits on Pc fit
fractions in Λb → ΛcD̄0K− decays [6].
We have not been able to identify the width of the

resonance corresponding to Pcð4457Þ in Case 5, for
numerical reasons. It is extremely narrow, and is manifest
as a large enhancement near 4458 MeV that is very close to
the real axis. Increasing the magnitude of Fa merely shifts
this location to lower energy. The narrow width is con-
sistent with the coupled channel model used (see Table V)
since the only permitted decay modes in the model are very
weakly coupled.
Experimental total widths are determined to be

Γ½Pcð4312Þ� ¼ 9.8� 2.7þ3.7
−4.5 MeV; ð15Þ

Γ½Pcð4380Þ� ¼ 208� 18� 86 MeV; ð16Þ

Γ½Pcð4440Þ� ¼ 20.6� 4.9þ8.7
−10.1 MeV; ð17Þ

Γ½Pcð4457Þ� ¼ 6.4� 2.0þ5.7
−1.9 MeV; ð18Þ

whereas our estimates for the total widths are

Γ½Pcð4312Þ� ¼ 5 − 8 MeV; ð19Þ

Γ½Pcð4380Þ� ≈ 18 − 22 MeV; ð20Þ

Γ½Pcð4440Þ� ¼ 5 − 6 MeV: ð21Þ

The predicted width of the Pcð4312Þ is reasonably close
to that measured, while that of Pcð4440Þ is somewhat too
small. There is a much larger discrepancy in the case of
Pcð4380Þ, although we remark that the evidence for this
state comes from the amplitude analysis in the first LHCb
results in this system [26], which has been superseded by
the more recent results of Ref. [25], which render the
measured properties of Pcð4380Þ obsolete. In the molecular
scenario, the mass of Pcð4380Þ is necessarily near Σ�

cD̄
threshold, and its width is constrained by heavy
quark symmetry to be comparable to those of the other
Pc states, though somewhat larger because of the intrinsic

width of the Σ�
c constituent. For this reason, molecular

models generically predict a Pcð4380Þ width which
is considerably smaller than the measured value (see for
example, Refs. [1,2]). We therefore suggest that it is
too early to consider the lack of agreement as negative
evidence, and recommend that narrow states near
4380 MeV be considered when constructing future ampli-
tude models.
It is noteworthy that our fits very nicely reproduce the

lineshapes of the Pc states, yet the resonance widths (as
extracted from the T-matrix) are not entirely consistent with
those measured in experiment—not just for the Pcð4380Þ,
which is exceptional for the reasons outlined above, but
also for Pcð4440Þ. This underlines the point that the line
shape in our approach is a function not only of the
resonance properties (mass and width), but also the
interference between the resonance and other contributions
(in our case, from the triangle diagrams and the constant
background). Consequently, the width of the line shape
is not necessarily the same as the intrinsic width of the
resonance. This is quite different to the experimental
analysis, in which the measured width of the line
shape (having subtracted off an incoherent background)
is attributed to a resonance only. Hence, it is unsurprising
that our widths are not identical to those of experiments.
Conversely, the extracted widths of Du et al. [1,2]
are somewhat closer to those of experiment than our
own, and this is likely because their procedure is effectively
very similar to that of experiment [25]: by combining
signal and background incoherently, the width of the
line shape is effectively the intrinsic width of the resonance.
Residue values are also of interest since they indicate the

strength of resonance couplings to various channels. We
report residues for all channels for Case 2a in Table VIII.
These results indicate that couplings to the J=ψN, ηcN, and
ΛcD̄ channels are all very weak, consistent with the small
branching fractions reported above. Couplings to ΛcD̄� and
Σð�Þ
c D̄ð�Þ channels are stronger, with the largest coupling

being in the Σð�Þ
c D̄ð�Þ channel with the nearest threshold—

again, as expected.
Our production model (Sec. II A) attributes the domi-

nance of diagram (a) to the enhanced electroweak vertex,

TABLE VIII. Residues for Case 2a (GeV−1).

Channel 1=2−ð4312.0 − 2.4375iÞ 3=2−ð4376.5 − 8.88iÞ 3=2−ð4444.0 − 2.56iÞ
ΛcD̄ ð11.17 − 1.28iÞ × 10−5

ΛcD̄� ð4.91þ 1.45iÞ × 10−2 ð3.30þ 1.42iÞ × 10−2 ð13.89 − 1.38iÞ × 10−3

ΣcD̄ 0.888þ 0.162i
Σ�
cD̄ 0.865þ 0.151i ð−1.012þ 1.74iÞ × 10−2

ΣcD̄� 0.186 − 0.0377i 0.108 − 0.035i 1.74þ 0.172i
Σ�
cD̄� ð9.71 − 2.25iÞ × 10−2 0.285 − 0.054i 0.248 − 0.151i

J=ψN ð27.1 − 8.87iÞ × 10−6 ð16.8 − 5.44iÞ × 10−5 ð6.27 − 5.89iÞ × 10−5

ηcN ð10.9 − 4.42iÞ × 10−5
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and the claim that the final state interactions (what we call
the “Pc vertex” in Fig. 1) in diagrams (a) and (c) are
comparable. The latter assumption may appear to be in
contradiction with the reported residues, which indicate the

dominance of Σð�Þ
c D̄ð�Þ components in the Pc resonances,

possibly suggesting an enhancement of the final state
interactions in diagram (c). In fact this is not the case.

The final state interactions that generate Σð�Þ
c D̄ð�Þ bound

states are common to diagrams (a) and (c) and therefore
enhance both approximately equally. What distinguishes
the two diagrams is the couplings of the triangle legs to the

dominant Σð�Þ
c D̄ð�Þ components in the resonances, namely

the relative sizes of the couplings ΛcD̄ð�Þ → Σð�Þ
c D̄ð�Þ

[diagram (a)] and Σð�Þ
c D̄ð�Þ → Σð�Þ

c D̄ð�Þ [diagram (c)]. We
previously argued that these couplings are comparable, and
these arguments are confirmed by our fitted values of B,
Ca, and Cb.
We have taken the precaution of computing diagram (c)

and confirm that, before taking account of the suppression
at the electroweak vertex, it is comparable to diagram (a).

IV. DISCUSSION AND CONCLUSIONS

We have argued that a complete understanding of the
reaction Λb → J=ψpK− requires Λð�Þ

c D̄ð�Þ degrees of free-
dom. This claim is supported by the data itself, electroweak
phenomenology, simple theoretical arguments, and recent
measurements of Λb decay modes. It is also clear that the

closely related Σð�Þ
c D̄ð�Þ system plays a significant role.

With these considerations, it is natural to model the reaction
with a triangle diagram that contains an electroweak vertex
at one apex and strong interactions at the other apexes.
Thus the J=ψp subsystem emerges from strong final state
interactions coupled to a production triangle subgraph.
We have constructed a model that incorporates the

known experimental constraints concerning Λb decay
modes, that respects well-established electroweak phenom-
enology and heavy quark symmetry, and is consistent with
one-pion exchange dynamics. The model is capable of
fitting the entire mass spectrum, and does not require
unnatural “explanations” for missing Σ�

cD̄� states.
As well as the production mechanism, another distin-

guishing feature of our model is that, unlike many alter-
native models, we do not assume that Pcð4457Þ is a
ΣcD̄� bound state. Instead we find that it can be described
as a ΣcD̄� threshold cusp, an enhancement due to the
Λcð2595ÞD̄ triangle singularity, or aΛcð2595ÞD̄ resonance.
A simple version of the model (Case 1) reveals that many

of the features of the J=ψp spectrum can be explained in
terms of a constant background and the postulated pro-
duction triangle amplitude. In particular, the Pcð4457Þ
emerges as a ΣcD̄� → J=ψp threshold cusp, similar to
the mechanism advocated in Ref. [5].

Enabling final state interactions that are capable of
forming bound states in the Σð�Þ

c D̄ð�Þ system, we get an
improved fit (Case 2), with sharp resonance peaks for
established states Pcð4312Þ and Pcð4440Þ, and a broader
peak corresponding to the enhancement previously iden-
tified as Pcð4380Þ. The broader width of Pcð4380Þ is a
natural consequence of the intrinsic widths of its dominant
constituents, while the widths of the other states are
primarily controlled by B, which is fit to data and which
takes a value that, in comparison to Cb, is roughly
consistent with expectations from one-pion exchange.
Introducing the 1=2þ channel brings further improve-

ments in the fit in the higher mass range, owing to
production via Λcð2595ÞD̄ð�Þ and Λcð2625ÞD̄� diagrams.
In a minimal extension of the previous cases, we find a
substantial improvement in the fit only if we include 1=2þ
background (Case 3), which is less satisfactory phenom-
enologically, as it implies the spectrum is dominated by
J=ψp in P-wave. We get a better result (Case 4) by tuning
the “Ds” mass to reveal the logarithmic singularity in the
1=2þ production triangle diagrams, resulting in a sharp
Pcð4457Þ peak, and no need for background in the 1=2þ
channel. A fit of comparable quality can also be obtained
by introducing attractive interactions in the 1=2þ channel
(Case 5), resulting in aΛcð2595ÞD̄ resonance at 4457MeV;
however, this step is clearly not required given the quality
of the previous models.
Given the comprehensive agreement with a range of

experimental and theoretical constraints, we believe that
these results constitute firm evidence for novel meson-
baryon resonances and for the importance of “kinematical”
effects such as created by triangle diagrams in certain
reactions.
Our results reinforce our previous arguments that

Pcð4457Þ should not be considered as a ΣcD̄� bound state
partner to Pcð4440Þ. We already pointed out [6] that the
widespread assumption (Scenarios A and B) that both
Pcð4440Þ and Pcð4457Þ are ΣcD̄� bound states is prob-
lematic phenomenologically, as it contradicts heavy quark
symmetry relations between ΛcD̄ and ΛcD̄� decays, and
implies several Σ�

cD̄� partners which are apparently not
seen in experiment. We showed that we can avoid these
problems by assuming that only Pcð4440Þ is a ΣcD̄� bound
state, with 3=2− quantum numbers (Scenario C). To
complete the picture, we need an alternative explanation
for Pcð4457Þ, and we argued in our previous paper that
there are several plausible alternatives, all arising naturally
from the proximity of the state to ΣcD̄� and Λcð2595ÞD̄
thresholds. We have now verified that all of these alter-
native scenarios can reproduce experimental data.
Indeed our current results provide additional arguments

in favor of Scenario C. One of the issues with Scenarios A
and B is that they imply Σ�

cD̄� partners (1=2−, 3=2−, and
5=2−) which are are conspicuously absent from the data.
In other models [1,2], one has to assume (without
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explanation) that the production of these states is small,
exploiting the intrinsic parametric freedom in the produc-
tion model. In our model we do not have such freedom, and
we find on the contrary that the production of the missing
3=2− state, in particular, is not small, but very much
enhanced compared to that of other states. Hence it is
not possible to explain this state away. This follows
straightforwardly from heavy quark symmetry; the relative
rates of the different bound states can be estimated from the
square of the product of the production and decay matrix
elements, namely the entries proportional to B and E,
respectively. In the 3=2− channel, this algebra implies that
the missing Σ�

cD̄� state is enhanced by a factor of 25
compared to the ΣcD̄� state, so if it binds, its resonance
peak would be enormous in comparison to Pcð4440=4457Þ.
This is of course strikingly inconsistent with data. Indeed
we have verified that it is not possible, with our model, to
obtain a good fit in which both Pcð4440Þ and Pcð4457Þ are
ΣcD̄� bound states, for precisely this reason.
In our Scenario C, the experimental absence of promi-

nent Σ�
cD̄� states is not a problem. The 1=2− and 3=2−

states simply do not bind—this is a natural feature of the
parameter space relevant to Scenario C. The 5=2− state
does bind, but its absence in experiment is quite natural. As
noted elsewhere [6,9,57,61,72,73], the J=ψp decay of this
state is D-wave, and so is naturally suppressed compared to
the decays of other Pc states, which are S-wave. In our
model, there is a further suppression due to the production
mechanism; the 5=2− state couples to the assumed pro-
duction channels (ΛcD̄ and ΛcD̄�) in D-wave, whereas the
other Pc states couple in S-wave.
The successful phenomenology associated with the

suppression of D-wave terms gives some justification for
our explicit assumption, from the outset, that the production
and decay of Pc states are dominated by S-wave inter-
actions. (We make an exception in the case of the 1=2þ
channel, for which J=ψp is P-wave.) In this respect our
model differs from that of Du et al. [1,2], where D-wave
terms are included and are found to be significant. We find
no need to include D-wave terms, having obtained excel-
lent fits with S-wave interactions alone. Furthermore, we
would argue that models in which the D-wave contributions
are large are less satisfactory phenomenologically, as they
do not have a simple explanation for the absence of the
5=2− state. Such models also have more parameters
(contact terms).
Our model has a number of generic features that arise

naturally from heavy quark symmetry, all of which com-
pare favorably with experimental data. In order to generate
a (dominantly) ΣcD̄ state describing Pcð4312Þ, we auto-
matically also have a Σ�

cD̄ partner state near 4380 MeV, as
(from heavy quark symmetry) the two channels have the
same diagonal potentials. This feature is clearly present in
the data, and moreover its larger apparent width can be
understood as due to the intrinsic width of its constituents.

The Pcð4440Þ is considerably more bound than
Pcð4312Þ, and to achieve this we have to introduce nonzero
Cb, to make its potential more attractive. From the heavy
quark symmetry (the pattern of binding potentials), this
automatically implies a heirarchy of binding potentials
among the ΣcD̄� and Σ�

cD̄� states. The resulting pattern is
particularly favorable phenomenologically if we choose
Cb < 0, because it implies that, of the Σ�

cD̄� states, only
5=2− binds (not 1=2− or 3=2−), which is good for the
reasons outlined above. The same choice (Cb < 0) also
works nicely because it implies that, of the ΣcD̄� states,
only 3=2− binds (not 1=2−), explaining why the Pcð4440Þ
apparently decays sparingly to ΛcD̄ (as it couples only in
D-wave) [6]. The choice Cb < 0 is also consistent with the
pattern of binding due to one-pion exchange.
Another nice feature of heavy quark symmetry is that it

explains the tight upper limit on Pcð4312Þ → ΛcD̄ decay
[6]. Despite coupling in S-wave, the transition is forbidden
by heavy quark symmetry, assuming the dominance of the
ΣcD̄ component [24].
Searches for the Pc states in photoproduction have given

null results that impose constraints on our model.
Specifically, the heavy quark parameter E controls the

coupling of the Σð�Þ
c D̄ð�Þ to J=ψN. We have shown that the

ratio jB=Ej is fixed by the Pcð4312ÞΛcD̄� and J=ψp
branching ratio fraction. Since B is related to pentaquark
widths we are then able to obtain a reasonably
reliable estimate for E. Finally, we obtain J=ψN partial
widths of

Pcð4312Þ∶ 1 − 2 eV

Pcð4380Þ∶ 9 − 10 eV

Pcð4440Þ∶ 4 − 5 eV: ð22Þ

These comprise branching fractions of approximately 10−3

in all cases, which implies that the current experiments are
at the threshold of being able to observe the Pc states. We
therefore encourage continued effort in photoproduction
searches.
We now offer some predictions, and suggestions for

future experimental analyses which can test aspects of our
model, or discriminate among the different cases we have
investigated.
Clearly, measuring the quantum numbers of the Pc states

will be helpful in supporting the molecular hypothesis, and
in discriminating among competing molecular scenarios.
Models typically agree on the quantum numbers of
Pcð4312Þ and Pcð4380Þ, namely 1=2− and 3=2−, respec-
tively, and these predictions can be tested in experiment.
The quantum numbers of Pcð4440Þ and Pcð4457Þ are more
discriminating: a robust prediction of our preferred
Scenario C is that Pcð4440Þ has 3=2− quantum numbers.
Discerning the quantum numbers of the Pcð4457Þ is likely
to be experimentally more challenging since, as is evident
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in several cases we consider, the signal can be a super-
position of contributions from different quantum number
channels. Measurement of quantum numbers requires an
amplitude analysis, and reliable results require all relevant
states to be included. With this in mind, we advocate that a
resonance near 4380 MeV be built into future amplitude
models, as this is a generic feature of molecular models.
Resonances can in principle be distinguished from other

effects (cusps, triangle singularities) by studies in other
production and decay modes. In our preferred scenario,
Pcð4312Þ, Pcð4380Þ, and Pcð4440Þ are all resonances. An
indication of their resonant nature would be their obser-
vation in other production modes (such a photoproduction),

and other decay channels [such as ηcN, ΛcD̄ð�Þ and Σð�Þ
c D̄],

and in particular, finding that their measured masses and
widths are the same in these various processes. (The caveat
here is that their apparent widths, as obtained for example
by fitting an incoherent background and a Breit-Wigner
peak, may differ, for the reasons alluded to previously.)
The same is not necessarily true of Pcð4457Þ, so its

existence or otherwise in various production and decay
modes could be revealing. For example, as a resonant state
(Case 5) it would, like the other states, presumably bevisible
in other production and decay modes, and with the same
measured properties. However, if the Pcð4457Þwere due to
the logarithmic singularity in the triangle diagram (Case 4),
it would presumably be completely absent in, for example,
photoproduction, because the corresponding triangle
appears only in a convoluted Feynman diagram which we
expect makes negligible contribution to the cross section.
The role of the triangle singularity for Pcð4457Þ can also

be tested in other ways. For example, it would imply a dip
in the Λb → Λcð2595ÞD̄0K− spectrum for Λcð2595ÞD̄0

invariant mass around 4457 MeV, as noted in Ref. [25],
making use of the analysis of Ref. [74]. Of course it also
implies a Ds state around 2.92 GeV, which remains to be
established experimentally. Additional diagnostics of tri-
angle singularities are discussed in Ref. [37].
In our previous paper, we gave a host of predictions for

branching fraction and fit fractions of Pcð4312Þ, Pcð4380Þ,
and Pcð4440Þ, in Λb → J=ψpK−, Λb → ηcpK−,

Λb → ΛcD̄0ð�ÞK−, and Λb → Σð�Þ
c D̄K−, all of which can

be used to test our preferred Scenario C. Within our current
model, we can in principle go further, and make predictions
not only for the branching and fit fractions, but also the
invariant mass spectra. However in practice, detailed
predictions are difficult. For example, in Λb → J=ψpK−,
the tree-level contribution is color suppressed, and is
considered as a background which is fit to data; we are
effectively assuming that the interesting features in the
J=ψpK− spectrum arise through color-favored triangle
diagrams with intermediate ΛcD̄ð�Þ states. The situation
is very different in Λb → ΛcD̄0ð�ÞK−, where the same final
state arises through both tree-level and triangle diagrams,

each of which is color-favored, and where the tree-level
contributions will contribute prominent features due to Ds
resonances, which are well beyond the scope of our model.

The Λb → Σð�Þ
c D̄K− decay is somewhat less complicated,

because of the suppression of the tree-level contribution,
but still the impossibility of predicting the three-body
background makes reliable predictions difficult.
With these complications in mind, the safest prediction

that we can provide is for Λb → ηcpK−, because the
couplings of the Pc states to ηcp are fixed by heavy quark
symmetry, while the reaction dynamics are nearly identical
to those of Λb → J=ψpK−. We start with some general
remarks on what to expect. The ηcp channel is a potentially
interesting filter on Pc quantum numbers, since in S-wave it
couples to 1=2− only, whereas J=ψp couples to both 1=2−

and 3=2−. Comparison of the two spectra can thus give
some indication of the likely quantum numbers of the
states. In our Case 2, for example, we may expect the ηcp
distribution to show a resonance peak at Pcð4312Þ, and a
cusp at Pcð4457Þ, but no structure corresponding to
Pcð4380Þ, Pcð4440Þ, or at the higher threshold Σ�

cD̄�.
We can make these predictions more precise by drawing
on heavy quark symmetry, which gives some indication of
how the 1=2− structures in ηcp compare to the correspond-
ing features in J=ψp. With reference to the matrix elements
in Table III, there is an enhancement by a factor of 3 in
Pcð4312Þ, but a suppression of 3=25 in Pcð4457Þ [6,24,51].
Hence we expect the ηcp spectrum to exhibit a prominent
Pcð4312Þ peak, but less evidence for Pcð4457Þ.
The precise shape of the spectrum is very difficult to

predict, because it depends on ηcp background, which may
be quite different to J=ψp. We therefore provide some
illustrative examples (Fig. 12) of the ηcp distribution (in
Case 2a), taking three different models for the background:
fixed to that of J=ψp, set to zero, and with opposite sign to
J=ψp. As anticipated above, the Pcð4312Þ resonance forms
a prominent peak in all cases, but the Pcð4457Þ cusp is
hardly visible. (Notice that the cusp can manifest as a peak
or dip, depending on the background.)
The suppression of Pcð4457Þ in ηcp is a particular

feature of Case 2, which is not necessarily true of cases 3, 4
or 5. In the latter cases, the Pcð4457Þ peak has a
contribution from the 1=2þ channel Λcð2595ÞD̄, either
as a triangle cusp, an enhancement due to the triangle
singularity, or a resonance. Because this channel couples to
J=ψp and ηcp in the same partial wave, we may expect
Pcð4457Þ signals in both J=ψp and ηcp. This is quite
different to Case 2 in which the Pcð4457Þ is hardly visible
in ηcp. Hence if the ηcp spectrum shows a prominent
Pcð4457Þ peak, it is an indication of the role of the 1=2þ
channel.
Referring to Table V, the relative rate of J=ψp and ηcp

in 1=2þ follows from heavy quark symmetry, and depends
on the parameters Ga and Gb. Ignoring phase space
differences, the ratio of rates is
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: ð23Þ

In principle, the relative rates of J=ψp and ηcp could be
used to fixGb=Ga, which is currently poorly constrained by
data. In practice this is not really possible, since the formula
applies only to the 1=2þ channel, whereas in our model, the
Pcð4457Þ peak is a superposition of this and other con-
tributions (primarily 1=2−).
A solid prediction of our Scenario C is the existence of a

5=2− Σ�
cD̄� partner state. We have argued that this state is

not prominent in Λb → J=ψpK− because of suppressed
production and decay, however it would be interesting to
include such a state in future amplitude analyses with
higher statistics. The state could also be revealed in other
production and decay modes. An intriguing possibility is
the decay J=ψΔ, which may arise for this and other Pc
states because of the anticipated isospin mixing in their
wave functions [7]. Although the branching fraction is
expected to be small, and the experimental analysis will be
difficult, an advantage is that the 5=2− state decays to J=ψΔ
in S-wave, and so should at least be comparable to the same
decays for the other Pc states. This is quite different to the
case of J=ψp, where the 5=2− state is suppressed compared
to the other Pc states.

There are in addition some experimental measurements
which can test our proposed production mechanism. With
reference to Fig. 1, a crucial assumption is that the
electroweak vertex in diagram (c) is suppressed in com-
parison to that of diagram (a). [The suppression of diagram
(b) is already established experimentally, and is anyway
less relevant because of the additional suppression at the
strong vertex.] As a test of the suppression of diagram (c),
we urge the experimental measurement of Λb → Ξð�Þ

c D̄ð�Þ,
anticipating significant suppression in comparison to the

(already measured) Λþ
c D̄

−ð�Þ
s modes. Similarly, we suggest

measurement of Λb → Σð�Þ
c D̄ð�ÞK−, expecting this to be

small in comparison to the measured Λb → ΛcD̄0ð�ÞK−.
We conclude with some observations about the impor-

tance of combining amplitudes coherently where relevant,
something which is of course very well known but which,
for understandable reasons of pragmatism, is often ignored
in experimental or theoretical analyses. It is commonplace
in both experiment and theory analyses (for example
Refs. [1,2,25]) to fit data through an incoherent combina-
tion of a background (modeled in some way) and signal
(simply fit as a Breit-Wigner distribution, for example, or
derived from nonperturbative interactions). In this
approach, separating signal from background is a matter

FIG. 12. Prediction for the ηcp invariant mass spectrum in Λb → ηcpK− decays, with the production couplings and contact terms
corresponding to Case 2a (Table VI). The three curves correspond to different models for the background: fixed to that of J=ψN (“BG”),
set to zero (“0”), and with opposite sign to J=ψN (“−BG”).
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of taste, influenced heavily by the level of complexity one
is willing to tolerate in the background model. The end
result is that any features which cannot be subsumed into a
smooth background are defined as signal, often interpreted
(implicitly or explicitly) as hadronic resonances. But the
outcome can be totally different if the background and
signal are combined coherently, as exemplified by our
simplest model (Case 1). We find that the simplest possible
background (a complex constant), combined coherently
with a signal amplitude which has cusps at several thresh-
olds, can reproduce the overall shape of the spectrum—
including the sharp Pcð4457Þ peak—with no need for any
resonances. It works in this particular case because the
sharp feature is associated with a threshold (ΣcD̄�), where
the amplitude naturally has a cusp; we do not expect a
similar mechanism to account for any sharp feature away
from threshold. Hence we emphasise the need for caution in
the interpretation of features which are close to thresholds.
Interference effects can also confound the extraction of

resonance properties, particularly their widths. Again, this
point is very well known in the literature, but we mention it
here again because its significance is particularly apparent
in our results. As noted previously, we obtain good fits to
the resonant peaks for all Pc states, although the widths we
extract from the T-matrix are smaller than the values
measured in experiment. The difference is because the
line shape in our approach arises from interfering ampli-
tudes with contributions from the resonance, as well as the
triangle and background terms. Unsurprisingly, the width
of the resonant contribution in this approach is not
necessarily consistent with that obtained in experiment
[25], where the lineshape is attributed to a Breit-Wigner
resonance combined incoherently with the background.

(Note that the experimental analysis did consider the effect
of interference among different Pc states with the same
quantum numbers, as a means of estimating systematic
uncertainties; the interference effects in our model are more
pronounced and, being more model dependent, cannot
easily be included in experimental analyses.)
In summary, we have argued for the importance of

Σð�Þ
c D̄ð�Þ and Λð�Þ

c D̄ð�Þ channels combined with “kinemati-
cal” effects in describing the LHCb Pc signals. Our
resulting model is consistent with experimental constraints,
heavy quark symmetry, and electroweak phenomenology
and provides strong evidence for novel meson-baryon
bound states and sharp nonresonant effects in hadronic
systems.
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APPENDIX: ITERATED TRIANGLE DIAGRAMS

We have stressed the role that final state interactions in
the ΛcD̄ − ΣcD̄ system plays in creating the LHCb Pc
signals. It is also possible to generate final state interactions
by iterating the production triangle diagrams of Fig. 1 [75].
Here we show that these diagrams make a small contribu-
tion to the reaction.
The triangle diagrams considered here can be iterated to

form a final state interaction as illustrated in Fig. 13. The
kernel for this process involves the KDD triangle diagram,
as shown in the figure, and may be written as an effective
interaction given by

Veffðq; q0Þ ¼
Z

d3Q
ð2πÞ3 F3P0ðq − Q;QÞF3P0ðq − Q; q0 − qþ QÞ · FðQ;−qÞFðq0 − qþ Q;−q0Þ · λDΛc∶DΛc

· ½E − EKðq − QÞ − EDðQÞ þ iϵ�−1½E − EKðq − QÞ − EDðq0 − qþ QÞ þ iϵ�−1: ðA1Þ

Here we assume that the 3p0 decay model describes the
DsKD vertices and a contact final state interaction, FλF, as
employed in Eq. (7). The strengths of the strong decay
vertices are

F3P0 ∼ γ=
ffiffiffi
β

p
; ðA2Þ

where γ is the 3p0 decay constant. Recall that β ∼ ΛQCD

sets the scales for the hadronic wave functions, the decay
couplings, and the final state interactions.
Performing the integral gives the approximate scaling

result

Veff ∼
γffiffiffi
β

p γffiffiffi
β

p λDΛc∶DΛc
·
μ2KD
β

fððE −mK −mDÞμKD=β2Þ

ðA3Þ

or Veff ∼ γ2Aμ2KDf=β
2 (referring to Tables III or IV). Under

normal conditions the functionf is order one andVeff ∼ γ2A.
Since the 3P0 coupling is γ ≈ 0.4 [36], we conclude that the
effective interaction is quite weak with respect to those
considered above. This conclusion is valid absent kinemati-
cal enhancements that make f large, that of course can occur
in triangle diagrams. In our case, this does not happen
because the system energy is set by the Λb mass, which is
very far removed from mK þmD.
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