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Abstract: Infertility is a global health concern affecting 48 million couples and 186 million individuals
worldwide. Infertility creates a significant economic and social burden for couples who wish to
conceive and has been associated with suboptimal lifestyle factors, including poor diet and physical
inactivity. Modifying preconception nutrition to better adhere with Food-Based Dietary Guidelines
(FBDGs) is a non-invasive and potentially effective means for improving fertility outcomes. While
several dietary patterns have been associated with fertility outcomes, the mechanistic links between
diet and infertility remain unclear. A key mechanism outlined in the literature relates to the adverse
effects of inflammation on fertility, potentially contributing to irregular menstrual cyclicity, implan-
tation failure, and other negative reproductive sequelae. Therefore, dietary interventions which
act to reduce inflammation may improve fertility outcomes. This review consistently shows that
adherence to anti-inflammatory diets such as the Mediterranean diet (specifically, increased intake
of monounsaturated and n-3 polyunsaturated fatty acids, flavonoids, and reduced intake of red
and processed meat) improves fertility, assisted reproductive technology (ART) success, and sperm
quality in men. Therefore, integration of anti-inflammatory dietary patterns as low-risk adjunctive
fertility treatments may improve fertility partially or fully and reduce the need for prolonged or
intensive pharmacological or surgical interventions.

Keywords: anti-inflammatory diet; fertility; infertility; preconception; nutrition; supplementation;
lifestyle; proinflammatory; review; Mediterranean diet; reproductive health and diseases

1. Introduction

Infertility is defined as a failure to conceive after more than one year of unprotected
intercourse in the absence of other reproductive pathologies [1]. Infertility is a global
health concern, affecting 48 million couples and 186 million individuals worldwide [2].
Among all cases of infertility, 50% are attributed to female factor infertility and 20–30%
to male factor infertility, while 20–30% is due to a combination of both male and female
factors [3]. Infertility poses a substantial psychological, physical, and economic burden
for couples trying to conceive. Current treatment options include ovarian stimulation
with or without intrauterine insemination (IUI) and/or in vitro fertilisation (IVF). The
high costs of IVF and other assisted reproductive technologies (ART) have made these
options prohibitively expensive for many couples who wish to conceive. Whilst there are
less expensive alternatives such IUI, these options are often less effective. This is mostly
due to poor sperm quality leading to premature degeneration before the sperm reaches
the fallopian tubes [4]. Moreover, despite the increased use of ART, the prevalence of
infertility has remained stubbornly high, suggesting that other factors may be impacting
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on fertility and ART success. Indeed, lifestyle-related risk factors, including stress, obesity,
and suboptimal diet, have been shown to exacerbate infertility [5–7]. These risk factors are
largely modifiable, highlighting the need to identify non-intrusive and affordable strategies
which can mitigate these risk factors and potentially improve fertility outcomes.

A key modifiable risk factor is preconception diet, which has been the focus of a
range of studies to date. Substantial evidence suggests that modifying preconception
dietary patterns to conform with Food-based Dietary Guidelines (FBDG) is beneficial
to fertility outcomes [8,9]. These dietary guidelines recommend reducing discretionary
foods (typically advocating limiting intake of free sugars and foods high in saturated fats)
while increasing intake of core foods typically high in unsaturated fats and components
such as whole grains, vegetables, and fish [9]. Whilst the exact mechanism by which
certain food groups impact upon fertility remains unknown, inflammation is thought
to play a key role. Inflammation is a normal bodily process in response to infection or
injury; however, prolonged sub-chronic inflammation can confer adverse effects on fertility,
including disrupting menstrual cyclicity, implantation failure, endometriosis, and recurrent
miscarriage [10]. Moreover, inflammation can interfere with cell trafficking pathways that
are central to normal ovulatory function [10]. In men, inflammation has been shown to
have a negative impact on sperm quality, a key factor underlying fecundity [11].

Dietary interventions which reduce inflammation, such as anti-inflammatory diets,
in men and women during the preconception period may therefore improve fertility
outcomes. However, the role of these dietary patterns in promoting fertility has not yet
been established. The aim of this review is to collate the available evidence regarding
the role of anti-inflammatory dietary patterns in female and male fertility, focusing on
inflammation as the primary mechanism underpinning the efficacy of these interventions.
We also highlight the key gaps in the literature and outline recommendations for future
research in this field.

2. Assessing Dietary Patterns Using Diet Quality Indices

While previous research has focused on individual nutrients or single food groups,
the importance of assessing dietary patterns as a determinant of overall health and disease
risk has been recognised for some time [12,13]. Dietary patterns consider the totality of the
diet habitually consumed by individuals and populations over a sustained period of time
(months and years), rather than focusing on specific dietary constituents assessed on a single
day or over the course of a few days. Dietary pattern assessments further recognise that
individual foods within the diet do not function in silo; diets comprise diverse nutrients that
are consumed in combination, often interacting with each other in complex ways, which
may collectively impact on inflammatory status and subsequent health outcomes [12,14].
Broadly, dietary patterns can be defined as the quantities, proportions, and variety of
different foods and beverages in the diet, and the frequency with which they are habitually
consumed [15,16]. However, in order to attain a greater understanding of the mechanisms
associated with dietary patterns in health and disease, adherence to the dietary pattern
must be quantified.

2.1. Quantifying Dietary Patterns

Two main methods are typically used in the research literature to quantify dietary
patterns. The first method uses a priori defined numerical indices intended to capture
adherence to specific dietary patterns that have been pre-defined on the basis of previous
scientific evidence [16]. A priori diet quality indices are therefore used to assess adherence
to specific dietary guidelines, i.e., Healthy Eating Index [17,18] or to a particular dietary
pattern, such as the Mediterranean Diet (MedDiet) [19,20] or the Dietary Approaches to
Stop Hypertension (DASH) diet [21]. These dietary indices quantify adherence to a dietary
pattern and are thus advantageous for evaluating associations with disease risk and/or
proxy health-related outcomes. Conversely, the a posteriori method is an exploratory
and data-driven approach, using statistical techniques (e.g., cluster analysis, principal
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component analysis, etc.) to empirically derive dietary patterns collected from a specific
cohort or population [16].

2.2. The Dietary Inflammatory Index

The Dietary Inflammatory Index (DII®) is an example of an a priori diet quality
index developed to estimate the inflammatory potential of a diet [22]. On the basis of an
extensive literature search aiming to quantify the overall effect of diet on inflammatory
potential, a scoring algorithm using 45 pro- or anti-inflammatory food parameters was
developed and has been described in detail elsewhere [22,23]. Briefly, these parameters
consist of whole foods, nutrients and other bioactive compounds [22], and eleven food
consumption data sets from around the world, representing a range of dietary intakes. This
serves as a global reference database to provide comparative consumption data for the
45 food parameters in order to derive an individual’s DII score. Application of the DII
as a relevant exposure in nutritional epidemiology provides the opportunity to explore
the relationship between diet, as a determinant of non-communicable disease, and disease
outcomes mediated through inflammation-related pathways [24]. Since its inception, the
index has been validated by cross-sectional and longitudinal evidence showing that higher
DII scores, reflective of a pro-inflammatory dietary pattern, are significantly associated
with elevated plasma concentrations of proinflammatory cytokines [25–29]. Conversely,
Moran et al. [30] developed an a posteriori diet quality index using a data-driven approach
via principal component analysis, which was well-suited for assessing Mediterranean-style
dietary patterns in a cohort of women with polycystic ovary syndrome (PCOS). Thus, both
a priori and posteriori dietary quality indices are suited to assess diet quality in states
of inflammation.

3. Inflammation in Relation to Diet and Fertility

Acute inflammation is characterised by the rapid movement of plasma and leukocytes
from the blood into injured tissues [14]. Conversely, chronic low-grade inflammation is
characterised by levels of circulating inflammatory markers that are elevated above normal
reference ranges but remain lower than in individuals with infection. A key clinical marker
used to detect inflammation is C-reactive protein (CRP), an acute phase reactant, which
detects inflammation and can predict risk of future diseases where inflammation is a central
feature. The main distinction between acute and chronic inflammation is in the resolution
of inflammation; in states of chronic low-grade inflammation there is no termination of
inflammation, and persistently elevated levels of inflammatory mediators eventually have
a deleterious effect on a range of body systems [15–19].

There is now a substantial body of evidence suggesting that various foods, nutrients,
and bioactive non-nutrient plant compounds have regulatory effects on both acute and
chronic inflammation [31–33]. For example, greater consumption of fruits and vegeta-
bles [34–36], whole grains [37,38], legumes [39,40], nuts [41,42] and fish [43,44] are all
inversely associated with inflammation. In contrast, higher consumption of red and pro-
cessed meats [45–47], sugar [48,49], and ultra-processed foods [50], and excessive intakes of
refined carbohydrates [51] and saturated and trans fats [52–56] are all positively associated
with a pro-inflammatory state. However, there is a lack of consistent literature on the
influence of unprocessed red meat and animal protein on inflammation, with an unclear
biochemical rationale to connect them. Interestingly, despite being associated with systemic
inflammation [57,58], much of the available literature suggests that dairy products have
neutral to beneficial effects on biomarkers of inflammation [59]. Nevertheless, individual
dairy foods vary in nutritional composition, and the interplay of diverse nutrients and
bioactive compounds within the dairy matrix (e.g., fat content) as well as processing tech-
niques (e.g., fermentation) may indeed lead to differential effects on cytokine concentrations
and overall inflammation.

In turn, inflammation is an increasingly recognised factor contributing to poor repro-
ductive and fertility outcomes, termed “inflammatory infertility” [10]. Almagor et al. [60]
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examined the relationship between CRP and IVF success and found that the CRP ratio
(embryo transfer: oocyte pick-up) was significantly lower in conception cycles compared
with unsuccessful cycles, suggesting that CRP may indicate endometrial inflammatory
response and optimal receptivity. Further, low-dose aspirin, which is classified as a nons-
teroidal anti-inflammatory agent, increases chances of conception for women with chronic
inflammation [61].

Epigenetics, which explores how the environment can affect the functions of genes
(such as DNA methylation) without affecting the DNA sequence itself [62], has been identi-
fied as a potential mechanism in which diet and inflammation intersect to affect fertility.
Specifically, diet-derived epigenetic modifiers have been associated with inflammation,
cancer, and fertility [63,64]. Moreover, DNA methylation as well as modifications in histone
post-translational modifications and miRNA can be modified by diet and mitigate inflam-
mation in inflammatory conditions such as gout [65–67]. Therefore, anti-inflammatory
dietary components may reduce inflammation and fertility via epigenetic modifications.
Beyond this, changes in the microbiome have been shown to induce ovarian inflammation
through a high-fat dietary intake, inducing imbalances in the microbiome [68]. Moreover,
recent intervention studies report differences in gut microbiota composition in females with
infertility compared to those without infertility [69]. Taken together, these data represent
preliminary evidence for the link between obesogenic or pro-inflammatory diets, gene
function, gut health, and fertility.

3.1. The Anti-Inflammatory Diet

One of the first versions of an anti-inflammatory diet was published in 1995 by
Dr. Barry Sears in The Zone Diet, with a revised version published in 2015 [70]. Today,
there are several types of anti-inflammatory diets including the Healthy Nordic Diet, the
Okinawan diet, and the MedDiet, the latter of which is the most extensively studied [71].
Differences between these diets in terms of their constituents are outlined in Table 1. Whilst
the Okinawan and MedDiet are similar in that they both advocate grain carbohydrates
with a low glycaemic index and limited alcohol consumption, the Okinawan diet has
less fat overall. Moreover, the Nordic diet is a plant-based diet that is very similar to the
MedDiet, except in the method of added fat. The MedDiet is based on olive oil whereas the
Nordic diet uses primarily rapeseed (canola) oil, mostly due to geographic availability [72].
Originating from cultures of ancient civilisations that developed around the Mediterranean
basin, the MedDiet involves regular consumption of olive oil (main source of dietary fat),
plant foods (fruits, vegetables, legumes, nuts, seeds, etc), and moderate consumption of
seafood (fish, etc.) and fermented dairy, as well as limited intake of red and processed meat,
sugar, and processed foods [73]. Conversely, the ketogenic diet, which consists of a low-
carbohydrate, high-fat dietary pattern, has also been reported to have anti-inflammatory
and antioxidant effects [74], with reported improvements in fertility hormones (testosterone,
SHBG, and others) and outcomes (menstrual cyclicity, ovulation, etc) in overweight and
obese women [75]. However, while emerging evidence suggests potential benefits of
ketogenic diets, current data remain inconsistent, highlighting the need for further study to
clarify the impacts of ketogenic diets on inflammation and fertility.

There is now a substantial body of evidence from observational and intervention
studies that has identified an inverse relationship between plant-based dietary patterns
(including the MedDiet) and oxidative stress and proinflammatory biomarkers [14,76–80].
This is perhaps not surprising given that plant-based dietary patterns contain numerous
anti-inflammatory and anti-oxidative constituents which may displace pro-inflammatory
nutrients within the diet.

Specifically, monounsaturated fats, flavonoids, vitamins C and E, and polyphenols,
are key constituents of anti-inflammatory diets, commonly found in plant-based foods,
berries, fish, and grain carbohydrates, all of which are staples of these dietary patterns
and have been linked to reduced inflammation [71]. For instance, monounsaturated fats,
mainly oleic acid, are the pre-dominant fatty acids in the traditional MedDiet due to the
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culinary use of extra virgin olive oil (EVOO). However, the MedDiet is also a good source
of the biologically active n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), from fish and seafood. EPA and DHA can also be metabolically derived from
their parent 18C fatty acid, alpha-linolenic acid (ALA)—found in green leafy vegetables
and some nuts [81].

Table 1. Dietary constituents of the Mediterranean, Nordic, and Okinawan diets.

Diet Eat/Drink Often Eat/Drink
in Moderation Eat/Drink Rarely Do Not Eat/Drink

Mediterranean

Vegetables, fruits,
cereals and grains, nuts,

seeds, low-fat, dairy,
olive oil, and low-fat

dairy

White (fish or chicken)
and red meat, eggs,
potatoes, and wine

High-fat foods or
high-sugar feeds

Nordic

Vegetables, fruits,
whole grains, nuts,
seeds, low-fat dairy,
canola/rapeseed oil,

low-fat dairy, potatoes,
and fish and seafood

Game meats (bison,
antelope, etc.), eggs,
cheese, and yoghurt

Red meat
Processed or refined foods,
added sugars (including

sugar-sweetened beverages)

Okinawan
Vegetables, fruits,

soy-based foods (tofu,
miso, etc.), and grains

Fish, lean meats,
and alcohol

Red meat, dairy, oils,
herbs/spices, nuts, seeds,
and refined carbohydrates

Processed or refined foods,
all added sugars

Evidence from a recent systematic review of observational studies and RCTs indicates
that consumers of the MedDiet have higher tissue levels of n-3 PUFAs [82]. The role of
n-3 PUFAs in ameliorating inflammatory cytokines in patients with acute and chronic dis-
eases has been reviewed in several systematic reviews [83–86]. These reviews consistently
reported that n-3 PUFAs were associated with lower inflammatory and lipid biomark-
ers among diabetic, cardiovascular, and immune-compromised cancer patients [83–86].
Importantly, n-3 PUFAs act as precursors to the anti-inflammatory eicosanoids, a range
of biologically active downstream mediators of inflammation, including prostaglandins,
prostacyclins, thromboxanes, leukotrienes, lipoxins, resolvins, protectins, and maresins,
which regulate immunity, platelet aggregation, and the inflammatory response [87,88].

Flavonoids, such as quercetin, genistein, and apigenin, are biologically active polyphe-
nolic compounds ubiquitously found in plant-based foods with antioxidant and anti-
inflammatory effects (Figure 1) [89,90]. These compounds are thought to down-regulate
inflammatory mediators via reducing levels of reactive oxygen species (ROS) and inhibiting
key signalling pathways (nuclear factor-kappa B [NF-kB], mitogen-activated protein kinase
[MAPK], etc.). There is also cross-sectional evidence to show that vitamins C and E are
potent free radical scavengers and anti-oxidants and are inversely associated with inflam-
mation [91,92]. Further, carotenoids and polyphenols both act as potent scavengers of ROS,
inhibit lipid peroxidation, and modulate redox-sensitive transcription factors involved in
the up-regulation of pro-inflammatory cytokines [93,94]. A recent paper identified that
certain polyphenols (such as naringenin, apigenin, kaempferol, as well as others) have
epigenetic actions via miRNAs [95]. In line with this, polyphenols as supplements have
been identified as a potential nutraceutical to improve general health profiles, including
fertility [95]. However, whilst there are many in vivo and in vitro studies in this area, very
few of these studies have been conducted in humans [95]. Therefore, further research
including clinical trials with human participants is warranted to obtain a more accurate
assessment of this relationship.
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Figure 1. Proposed mechanisms for the impact of anti-inflammatory and Western diets on inflamma-
tion and fertility outcomes.

It has also been suggested that high intakes of soluble fibre can modulate inflammatory
processes in response to the production of short-chain fatty acids, in particular butyrate,
which is involved in the activation of transcription factors that regulate the expression
of genes encoding proinflammatory cytokines [96–98]. Lastly, omega-3 fatty acids found
chiefly in fatty fish, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
are precursors for anti-inflammatory eicosanoids (e.g., E-series resolvins) [99–102]. They
have also been shown to exert non-eicosanoid-mediated anti-inflammatory actions on
cell signalling and gene expression [99–101]. Subgroup analysis of prospective cohort
studies, including the Physicians’ Health Study (n = 405 healthy US men) and the Nurses’
Health Study (n = 1181 healthy US women) showed inverse associations between dietary
intake of EPA and DHA and circulating concentrations of CRP [103,104], intercellular
adhesion molecule-1 [103], vascular cell adhesion protein-1 [103], E-selectin [103], and
tumour necrosis factor receptor-1 and -2 [104].

The specific mechanisms whereby anti-inflammatory components may directly in-
fluence fertility outcomes remain unclear. Findings from observational studies indicate
(although inconsistently) that these anti-inflammatory dietary patterns attenuate pro-
inflammatory markers during pregnancy and the preconception period. Some have high-
lighted that adherence to the MedDiet facilitates weight loss and reductions in central
adiposity, potentially resulting in improved fertility, which is consistent with other studies
on hypocaloric diets reporting improvements in inflammation and fertility in the short-
term [105,106]. Additionally, studies have identified improvements in inflammation even
among healthy populations, independent of BMI [107]. Therefore, the effects of anti-
inflammatory diets and their constituents on inflammation are likely related to the diverse
and synergistic relationships between the array of vitamins and minerals, fatty acids, phy-
tochemicals, and other non-nutritive compounds (e.g., carotenoids and flavonoids) that
may modulate inflammatory processes [14,108,109].
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3.2. The Western Diet

Western dietary patterns (characterised by excessive consumption of saturated fat,
refined carbohydrates, and animal proteins) are typically associated with higher levels of
inflammation (Figure 1) [14,110]. As well as being energy-dense and exhibiting a high gly-
caemic load and hyperinsulinemic response [111], typical Western dietary patterns contain
lower levels of dietary fibre, vitamins, minerals, and other plant-derived constituents [112].
This lack of substantive diet quality and diversity ubiquitous across Western societies
contributes to a state of metabolic inflammation termed “metaflammation” [113,114].

Further, the introduction of Western-style dietary patterns to East Asian regions (such
as Hong Kong and South Korea) is thought to be a key driver of obesity and cardiovascular
disease in the region [115]. In tandem, the total fertility rate throughout East Asia has
been falling precipitously over the last 50 years, and is now below the replacement rate
of 2.1 [116,117]. Poor nutrition, obesity, and chronic disease could have contributed to
infertility throughout the region, alongside the possible other influencing factors (cost of
living, social programs, as well as others). Further large-scale studies with stratified and
subgroup analyses are needed to completely assess whether the propagation of Western-
style dietary patterns in East Asian regions has, at least in part, exacerbated infertility rates.

Although several mechanisms are postulated, adherence to Western dietary patterns
is thought to be involved in the upregulation of several genes (Interleukin (IL)-6, IL-
1β, tumour necrosis factor [TNF]) involved in pro-inflammatory pathways [113,118,119].
A recent systematic review and meta-analysis investigating the relationship between a
posteriori dietary patterns and systemic inflammation in adults showed that adherence
to a Western dietary pattern was positively associated with increased concentrations of
CRP, leptin, and IL-6 [120]. These inflammatory mediators play an important role in
complex physiological actions which regulate whole-body metabolism, including satiety,
glucose disposal, fatty acid oxidation, and adipose tissue lipolysis [121]. Moreover, the
consumption of energy-dense and nutrient-poor foods, such as sugar-sweetened beverages,
is positively associated with body mass index (BMI) and weight gain, and is therefore an
indirect pathway through which this dietary pattern promotes and maintains the chronic
pro-inflammatory state common in obesity [48,122]. It has been proposed that these pro-
inflammatory pathways may be related to poor fertility outcomes in both men and women.

4. Anti-Inflammatory Diets and Female Fertility

Preconception nutrition has been linked to fertility, and in particular to ART suc-
cess [123], with limited but promising evidence suggesting that preconception dietary
behaviours may improve IVF outcomes, including oocyte and embryo quality, implanta-
tion, and successfully maintaining a pregnancy to term [124–127]. Further, while healthy
dietary patterns are known to be associated with better weight management, research has
demonstrated the benefits of preconception diets in improving inflammation and fertility
outcomes, independent of weight changes [128–130]. Currently available studies examining
anti-inflammatory diets in relation to fertility parameters in both females (menstruation,
endometriosis, and embryo quality) and males (sperm parameters) are summarised below.

4.1. Menstruation

Regular menstrual cyclicity is a core component of fertility, and irregular menstrual
cycles (in the absence of other causes such as stress, medication, etc.) may indicate anovu-
lation, substantially decreasing the ability to conceive [131]. Diet has been proposed as a
potentially useful method for improving menstrual cyclicity, with particular interest in the
MedDiet for improving menstrual regularity and pain [132].

A cross-sectional study by Onieva-Zafra [132] compared adherence to the MedDiet
and consumption of local foods in 311 Spanish female university students in reference to
menstrual characteristics. Approximately 55.3% of women had moderate adherence to
the MedDiet and 29.6% had high adherence. Women with lower adherence had generally
longer menstrual cycles than those with lower adherence, and menstrual bleeding was
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reduced in women who consumed olive oil daily. Further, a recent systematic review of
38 observational studies reported that increased consumption of fruits and vegetables, as
a proxy measure for vitamin and mineral intake, was associated with reduced primary
dysmenorrhea and menstrual pain [133].

Putative mechanisms have been described linking diet with menstruation via inflammation-
related pathways. Prostaglandins (such as PGF2-α and PGE2), which are associated with
inflammation, are responsible for mediating blood flow to endometrial tissue, thereby
controlling local hypoxia and smooth muscle contraction and in turn supporting menstrual
bleeding [134]. Anti-inflammatory constituents (omega-3 fatty acids EPA and DHA),
which can be derived from the diet or metabolised from alpha-linolenic acid, can ease
menstrual pain and dysmenorrhea, potentially by decreasing prostaglandin levels in the
blood [134,135]. The incorporation of EPA and DHA into human immune cells is partly at
the expense of arachidonic acid [136], resulting in less substrate available for synthesis of
potent pro-inflammatory eicosanoids, including prostaglandin E2 (PGE2). While plausible,
much of the literature describing this mechanism focuses on PGE2 in relation to colon
cancer, with a paucity of evidence on menstrual disturbances.

Adhering to anti-inflammatory dietary components appears to have some benefits
in relation to menstrual parameters, but it remains unclear whether improved menstrual
cyclicity translates to improved fertility outcomes in this context. Since most of the studies
in this area are observational, firm conclusions are precluded. This highlights the need
for further well-designed, adequately powered, and appropriately controlled studies to
establish the key links between diet and menstruation as a proxy measure of fertility.

4.2. Endometriosis

Endometriosis is one of the most common gynaecological conditions, affecting six to
twelve percent of reproductive-aged women. In this condition, endometrial tissue that
normally lines the uterus is found ectopically. Endometriosis is described as an estrogen-
dependent state of chronic inflammation and has implications for fertility, affecting 35 to
45% of women with infertility [137]. Inflammation in endometriosis impairs decidualisa-
tion, which is the process whereby the endometrium changes in preparation for pregnancy,
reduces progesterone (a sex steroid with anti-inflammatory properties), and causes dis-
ruption in the endometrium [138]. Recently, dietary interventions, particularly those with
anti-inflammatory properties, have been shown to have a beneficial effect on endometriosis
and fertility outcomes through these mechanisms [139,140].

In a recent systematic review [139] of nine human and 12 animal studies examining the
effectiveness of dietary interventions in the treatment of endometriosis, diets high in specific
vitamins, fish oils, and mineral salts were associated with an overall reduction in symptoms,
including dysmenorrhea among women with endometriosis. Specifically, EVOO, a key
dietary constituent of the MedDiet, was shown to exert positive effects on endometriosis,
including inflammation and pain management [141]. It is thought that these effects may
occur through the actions of the component oleocanthal, which is structurally analogous
to the non-steroidal anti-inflammatory agent ibuprofen [142]. Other studies have shown
that supplementation with vitamins E and C also decrease markers of inflammation and
oxidative stress in women with endometriosis, likely by ameliorating lipid peroxidation
and promoting antioxidant and free radical-scavenging effects [143,144].

Based on these preliminary findings, it appears that interventions incorporating anti-
inflammatory diet components may improve inflammation, oxidative stress, and ultimately
alleviate pain and the overall symptoms and severity of endometriosis; however, their
impact on pregnancy rates among women with endometriosis remains unclear [144]. Im-
portantly, many studies in the systematic review [139] had moderate or high risk of bias,
which limits confidence in the results. Further, only a small number of studies explicitly
examined MedDiet adherence and endometriosis (n = one out of nine studies), whilst the
remaining studies focused on other dietary patterns that included some anti-inflammatory
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components. It is also important to note that the literature on dietary interventions and
endometriosis focuses primarily on pain parameters, and not fertility outcomes.

4.3. Polycystic Ovary Syndrome (PCOS)

PCOS is a common endocrine condition presenting with reproductive, metabolic, and
psychological features [145]. Infertility is a prevalent feature of PCOS, with up to 75% of
this population reporting reproductive problems [146]. The incurable nature of PCOS
places a great burden on these women when attempting to conceive, leading to feelings
of helplessness, stress, and anxiety. Thus, there is a need for effective symptomatic and
component-specific relief strategies to improve the reproductive sequelae of the condition.

Low-grade inflammation is common in women with PCOS, with studies reporting
that C-reactive protein (CRP) levels are typically elevated [147]. This heightened state of
inflammation may contribute to infertility in this population, with anti-inflammatory diets
proposed as a potential therapeutic avenue. A cross-sectional study surveying dietary
intake of US women with overweight and obesity and PCOS-related infertility reported that
poor dietary intake, particularly in relation to whole grains and fibre, was highly prevalent
in the sample population [148]. It is thought that anti-inflammatory diets (with or without
physical activity) may improve fertility as well as a range of cardiovascular and endocrine
factors in PCOS through direct effects on modulating inflammation. This is supported by
a prospective study in 18,555 premenopausal women indicating that promoting an anti-
inflammatory diet through reducing intake of carbohydrates and overall dietary glucose
load was protective against ovulatory infertility, including after adjusting for age and
BMI [149]. There may also be beneficial effects of an anti-inflammatory diet on fertility
via indirect relationships with decreased body weight and/or adiposity [150]. As yet, the
direct versus indirect effects of an anti-inflammatory diet on fertility in PCOS have not
been determined definitively.

A recent RCT investigated the effects of an anti-inflammatory dietary intervention on
fertility parameters in 150 adult overweight women with PCOS. In this sample, participants
were either presented with an anti-inflammatory dietary combination with physical activity
alone for 12 weeks or with the addition of metformin. Improvements in menstrual cyclicity
and spontaneous pregnancy were reported in the diet and physical activity group, with
concomitant seven percent weight-loss, and these effects were not inferior to those observed
in the metformin group [151]. This has been supported by another RCT that found a
metformin-diet intervention (low glycemic index diet with ad libitum caloric intake) before
and during pregnancy in 76 women with PCOS reduced miscarriage from 40% to 20% [152].
Therefore, lifestyle modification in-tandem or separate from pharmacological interventions
(such as metformin) may be a similarly effective tool for improving PCOS symptoms. The
exact mechanism is unknown, but it is thought that the hypocaloric and anti-inflammatory
nature of the diets favour pro-conception pathways.

A Cochrane systematic review by Lim et al. [153] in 2019 was unable to include studies
that assessed lifestyle interventions (diet, physical activity, behavioural, or combined
treatments) on live birth, miscarriage, and menstrual regularity. In the review, most
studies did not directly report clinical fertility outcomes in PCOS, but rather, endocrine
and metabolic parameters that infer improved fertility. Thus, while the evidence linking
anti-inflammatory diet interventions with PCOS is promising, available studies that report
clinical fertility outcomes, particularly studies with long-term follow-up, remain scant.

4.4. Embryo Quality and Live Birth

Several studies have examined preconception diet in women undergoing ART, includ-
ing intracytoplasmic sperm injection (ICSI) and IVF. In women undergoing ICSI, studies
have produced inconsistent results. Hoek et al. [154] conducted a prospective cohort study
of 41 couples undergoing ICSI, reporting that inadequate periconceptional maternal veg-
etable intake was negatively associated with embryo quality, with the effect size increasing
two-fold in women with a BMI ≥ 25 kg/m2. An observational study [126] of 2659 embryos
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recovered from 269 patients undergoing ICSI cycles also reported that the consumption
of whole grain cereals, vegetables, and fruits positively influenced embryo quality. Con-
versely, a 2021 systematic review and meta-analysis of eight prospective cohort studies
which included data from 2229 women with 2067 embryo transfer cycles revealed that
adherence to a dietary pattern consistent with a high intake of vegetables, fruits, wholegrain
cereals, legumes, and fish (such as the MedDiet) was not significantly associated with ART
(IVF with and without ICSI) outcomes, namely clinical pregnancy and live birth [155]. The
PREPARE trial [156] is one of the first randomised controlled trials (RCTs) using IVF as a
model to investigate the impact of a preconceptional dietary intervention on markers of
embryo development. Here, six weeks of dietary supplementation consisting of a daily
beverage rich in omega-3 fatty acids and vitamin D, coupled with an increased intake of
olive oil, significantly altered the rate of embryo cleavage, indicating improved embryo
quality among 111 couples undergoing IVF with or without ICSI [157].

Few studies have also investigated the relationship between DII scores as an indicator
of the inflammatory potential of a diet and outcomes related to IVF treatment in subfertile
and infertile women. In a cross-sectional study of 144 infertile women from Iran, Diba-
Bagtash et al. [158] reported that DII scores were not associated with any treatment outcome
parameters. These findings were corroborated by Sanderman et al. [159] in a systematic
review aiming to identify female dietary patterns associated with IVF treatment outcomes.
As such, Sanderman et al. [159] concluded that there was insufficient evidence to support
recommending any single dietary pattern for the purpose of improving pregnancy or live
birth rates in women undergoing IVF. Of note, three key methodological challenges were
highlighted with respect to interpretation of the data, including inaccurate assessment
of exposure (e.g., dietary intake data), possible heterogeneity in the number of previous
pregnancy attempts at baseline, and the lack of adequate control for potential confounders.

Findings in relation to the MedDiet specifically have been mixed. In a prospective
cohort study [128] of 244 non-obese women (aged 22–41 years) undergoing their first
IVF treatment, greater adherence to a MedDiet was associated with ~2.7 times higher
likelihood of clinical pregnancy and live birth. In another prospective cohort of 357 non-
obese women who underwent a total of 608 ART cycles, women in the second and third
quartiles of MedDiet adherence (indicating better adherence) had a higher probability of
clinical pregnancy (Q2: 0.56 [95% CI: 0.47–0.64]; Q3: 0.57 [95% CI: 0.48–0.66]) and live birth
(Q2: 0.47 [95% CI: 0.39–0.55]; Q3: 0.44 [95% CI: 0.36–0.53]) compared with women in the
first quartile [160]. Similarly, an observational study among 700 Chinese women about
to commence IVF treatment showed that greater adherence to a MedDiet was positively
associated with greater embryo yield [161]. In contrast, among 474 Italian women (mean
age: 36.6 years; range 27–45 years), Ricci et al. [162] reported no association between
MedDiet adherence and successful IVF outcomes, including clinical pregnancy, live birth,
oocyte yield, and embryo quality. A longitudinal analysis of the Rotterdam Periconceptional
Cohort (Predict Study) [163] also found no significant associations between adherence to
periconceptional paternal dietary patterns and embryonic growth, independent of maternal
dietary patterns in spontaneous pregnancies or IVF/ICSI pregnancies.

5. Anti-Inflammatory Diets and Male Fertility

Abnormal sperm characteristics contribute to failed reproductive attempts and under-
pin 30–40% of male infertility and ~30% of subfertility cases requiring ART [164]. Oxidative
stress has been shown to impact male fertility via altering the physiology of spermato-
zoa [165] and spermatogenesis [11]. Epidemiological studies demonstrate that men with
infertility often experience chronic inflammation of the male reproductive tract, further
exacerbating fertility issues [11].

Sperm Quality

A Western-style diet is thought to increase oxidative stress through promoting weight
gain and insulin resistance, which are linked with infertility and poor sperm quality [166].
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Further, the increase in whole-body fat due to weight gain results in an increase in the
production of pro-inflammatory cytokines and reactive oxygen species, which drive inflam-
mation and oxidative stress. Thus, paternal nutritional interventions that aim to reduce
inflammation by leveraging anti-inflammatory dietary components may be a source of
improved sperm quality and consequently improved fertility outcomes. Research on the
potential benefits of paternal nutrition on reproduction has mainly focused on parameters
related to sperm quality. As summarised below, there is a consistent and growing body
of evidence suggesting that greater adherence to an anti-inflammatory diet is positively
associated with better sperm quality measures, including sperm concentration, total sperm
count, sperm morphology, and sperm motility [167–170].

In a systematic review and meta-analysis of RCTs, Salas-Huetos et al. [171] reported
that some dietary supplements may help to modulate male fertility. Specifically, supplemen-
tation with zinc, selenium, omega-3 fatty acids, and CoQ10 significantly increased sperm
concentration and motility, with omega-3 fatty acids and CoQ10 additionally increasing
total sperm count. This is unsurprising given CoQ10’s central role in the electron-transport
chain whereby inhibition of the organic peroxide formation in seminal fluid may reduce
sperm-cell oxidative stress [172,173]. Moreover, omega-3 fatty acids (EPA and DHA) pos-
sess anti-inflammatory and antioxidant properties, with potential influences on membrane
composition [174]. Successful fertilisation of spermatozoa depends on the lipid composition
of the spermatozoa membrane, which may be influenced by the concentration of omega-3
fatty acids [174]. With respect to dietary patterns, a comprehensive systematic review of
observational studies by the same group [175] showed that dietary patterns similar to
MedDiet or anti-inflammatory patterns that are high in fruits and vegetables, wholegrain
cereals, fish, seafood, poultry, and low-fat dairy products were positively related to sperm
quality. However, whilst overall sperm quality and count increased in the studies within
the systematic reviews, it is unclear whether there was a return to normal clinical function.

Conversely, Western dietary patterns which include processed meat, potatoes, full-fat
dairy products, coffee, alcohol, and sugar-sweetened beverages have been consistently
associated with poor sperm quality and fecundability. A recent cross-sectional study by
Nassan et al. [176] examined dietary patterns and testicular function in 2935 young Danish
men, reporting that higher adherence to Western dietary patterns displayed overall poorer
sperm quality compared to consumption of a mostly vegetarian diet. Further, a case-control
study of 937 Iranian men (400 newly diagnosed infertile and 537 healthy individuals with no
history of infertility) stratified dietary patterns into healthy, Western, mixed, or traditional
diet categories [177]. After adjustment for confounders, men with higher (above median)
adherence to a healthy dietary pattern displayed reduced risks of infertility compared to
those with poor adherence (OR: 0.52 [95% CI: 0.33, 0.83]). On the other hand, men with
higher adherence to Western and mixed dietary patterns were more likely to be infertile
(OR: 2.66 [95% CI: 1.70, 4.17] and OR: 2.82 [95% CI: 1.74, 4.56], respectively). However, given
the broad categorisation of these dietary patterns and the diversity of included foods within
each category, the exact macronutrients or whole food components which contributed
to these fertility outcomes cannot be determined from the available evidence. It is also
important to note that diet quality should, in general, be viewed holistically, extending
beyond individual components and their singular effects to encompass the broader impact
of the diet as a whole.

Few studies have investigated the explicit relationship between DII scores and semen
quality in males. In a cross-sectional analysis of 209 healthy male university students (aged
18–23 years) in Spain, a pro-inflammatory dietary pattern (as indicated by a positive DII
score) was positively associated with total and progressive sperm motility, but had no
relationship with total sperm count or morphology [178]. In contrast, in a clinic-based case-
control study conducted in China, no association between DII scores and sperm motility
was observed [179].

In light of the existing data, adopting a healthy diet incorporating anti-inflammatory
components may have potentially beneficial effects in both women and men trying to
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conceive (subfertile couples). However, well-designed prospective studies and clinical
trials are warranted to provide more definitive evidence in this context.

6. Limitations and Future Directions

Whilst current evidence for the potential utility of anti-inflammatory diets in fertility
outcomes is promising, there are several limitations that must be acknowledged. First,
nutritional intervention studies exhibit a vast diversity in treatment regimens, comparators,
frequencies, and formulations. This heterogeneity precludes appropriate comparisons from
being made between studies and makes the reported outcomes difficult to interpret.

Second, the MedDiet is a dietary pattern based on the traditional cuisines from the
1960s of Greece (strictly, Crete) and other countries that border the Mediterranean Sea.
As such, a singular MedDiet does not exist. Some individuals following the MedDiet,
or any other anti-inflammatory diet, may be consuming relatively more or less fruits,
vegetables, or dairy, than others. This is further complicated by disparities in the diet
quality indices that were used to quantify adherence to a given diet, given that the scoring
systems used to quantify adherence are not homogeneous and do not always produce
comparable results. As such, many of the aforementioned studies included in this review
have assessed adherence to a MedDiet using the Mediterranean Diet Score (or an adaptation
of this), developed by Trichopoulou et al. [19], which is dependent on the habitual dietary
characteristics of the studied population and may not reflect true adherence to a MedDiet.
To further complicate matters, there is added heterogeneity in other anti-inflammatory
patterns (i.e., Nordic and Okinawan). As such, standardisation of MedDiet adherence tools
will allow for more meaningful comparisons between studies and among diverse outcomes
and sub-groups.

Third, evidence regarding female dietary patterns and female fertility outcomes,
particularly in relation to IVF, relies mostly on observational study designs and early
outcomes related to clinical pregnancy, with largely inconsistent results [159]. Inherently,
this confers an increased risk of biases such as exposure misclassification, study-level
confounding, and cohort selection, which may have influenced many of the reported
results. Moreover, evidence linking diet to fertility is largely based on studies of single
nutrients or individual food groups rather than overall dietary patterns [160]. Hence,
although preconceptional exposure to anti-inflammatory dietary components may influence
measures of fertility and ART success such as embryo quality and rates of clinical pregnancy
and live birth, there is a paucity of evidence from intervention studies to clarify the validity
of these associations. Therefore, further research is needed to examine anti-inflammatory
diets and fertility outcomes using reliable, intervention-based research in order to inform
food-based dietary guidelines.

Lastly, whilst dietary indices are useful for identifying and improving anti-inflammatory
diet adherence for a specific population, at present there is a lack of consensus related
to the application of specific MedDiet tools across different countries and regions [180].
This is largely due to the lack of clarity around the definition of anti-inflammatory diets,
which results in marked heterogeneity in their operationalisation [181–183] and the need
to consider anti-inflammatory-style dietary patterns when quantifying dietary adherence,
particularly in non-Mediterranean or non-Nordic countries with vastly different culinary
practices, cuisines, and food preparation methods [180].

Future research should focus on addressing the above limitations in order to develop
high-quality nutrition intervention studies that are able to properly address these important
research questions. The use of controlled studies (with standardised diets, inclusion
criteria, etc.) with appropriately powered sample sizes is critically important to ensure the
reliability of the results, while epidemiological and population-based studies are important
for ensuring that findings have some degree of external validity.



Nutrients 2022, 14, 3914 13 of 21

7. Communicating Novel Approaches: Evidence to Integration

Novel dietary advice such as introducing anti-inflammatory diets in a clinical context
can engage curiosity, increase motivation, elicit exploratory behaviour, and promote learn-
ing [184,185]. Conversely, emerging evidence suggests that the public are not engaging
with national dietary guidelines because they find traditional health and nutrition messages
to be repetitive and uninteresting [186–190]. This is reflected in GoogleTM trends indicating
that searches for ‘diet and inflammation’ and ‘anti-inflammatory diet’ have steadily in-
creased over the past 10 years, rising by 44% and 67%, respectively (from December 2010 to
November 2020). In comparison, searches for ‘national dietary guidelines’ or country-
specific resources such as the ‘Dietary Guidelines for Americans’ or the ‘Australian Guide
to Healthy Eating’ peaked in 2004–2006 and then steadily declined over the subsequent
five-year period. As the effectiveness of nutrition education depends upon relevance to the
individual [191], and generic nutrition messages are often disregarded because they fail to
resonate with the public, it is possible that the use of novel nutrition messaging around
diet and inflammation may help to improve uptake and adherence to lifestyle change in
fertility treatment. Such approaches may, for instance, include describing the links between
diet, inflammation, and fertility, with more complex concepts communicated to those with
higher health literacy to provide an improved understanding without underestimating
the patients’ ability to understand and synthesize nutrition information [192,193]. Dietary
advice provided to patients should not always be short, simple, and without nutrition
jargon [194], but rather should be tailored and match their current levels of understanding.
In doing so, health professionals can responsibly disseminate important nutrition mes-
sages and improve public knowledge around new topics in nutrition science, such as the
emerging potential benefits of the anti-inflammatory diet for fertility, as described herein.

8. Conclusions

In this review of the literature, we have highlighted that, despite some inconsistencies
in the literature, adherence to an anti-inflammatory dietary pattern is generally associated
with improved female (menstrual cyclicity, endometriosis-related measures, embryo quality,
and live birth) and male (sperm quality) fertility-related outcomes, which are thought to
occur through mediation of anti-inflammatory pathways. Whilst the current evidence is not
sufficiently designed to allow for controlled analysis, following a healthy dietary pattern
has no risk involved with a possible plethora of perceived benefits. Further, integration
of these dietary patterns as low-risk adjunctive therapies for fertility could improve the
efficacy of concomitant interventions or reduce the need for more invasive or unwarranted
surgical or pharmacological interventions. Whilst diet is unlikely to remove the need for
ART, it offers an easily implementable and low-risk option to assist men and women toward
achieving their desired fertility outcomes.
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