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Machine learning prediction of connectivity,
biodiversity and resilience in the Coral Triangle
Lyuba Novi1 & Annalisa Bracco 1✉

Even optimistic climate scenarios predict catastrophic consequences for coral reef ecosys-

tems by 2100. Understanding how reef connectivity, biodiversity and resilience are shaped by

climate variability would improve chances to establish sustainable management practices. In

this regard, ecoregionalization and connectivity are pivotal to designating effective marine

protected areas. Here, machine learning algorithms and physical intuition are applied to sea

surface temperature anomaly data over a twenty-four-year period to extract ecoregions and

assess connectivity and bleaching recovery potential in the Coral Triangle and surrounding

oceans. Furthermore, the impacts of the El Niño Southern Oscillation (ENSO) on biodiversity

and resilience are quantified. We find that resilience is higher for reefs north of the Equator

and that the extraordinary biodiversity of the Coral Triangle is dynamic in time and space, and

benefits from ENSO. The large-scale exchange of genetic material is enhanced between the

Indian Ocean and the Coral Triangle during La Niña years, and between the Coral Triangle

and the central Pacific in neutral conditions. Through machine learning the outstanding

biodiversity of the Coral Triangle, its evolution and the increase of species richness are

contextualized through geological times, while offering new hope for monitoring its future.
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Anthropogenic stressors, from climate change to over-
fishing, threaten ocean biodiversity and ecosystem
functioning1,2. In the Coral Triangle (CT), the most

diverse and biologically complex marine ecosystem, warming
constitutes the greatest threat. The CT homes over 600 reef-
building coral species (75% of known species); 3000 species of
reef fish and 75% of known mollusks3.

In the past 30 years, maximum and minimum ocean tem-
peratures around the CT have risen by 0.09 and 0.12 °C per
decade and will climb an additional 1–4 °C by 2100. An increase
of more than 2 °C will eliminate most coral-dominated reefs.
Without a sustainable pathway forward CT reef ecosystems,
which in Asia make up for 25% of the yearly fish catch4,5, may
collapse by 21006, impacting the livelihoods of 120 million people
and cutting protein supplies to one billion people.

Halting or slowing biodiversity loss in the CT requires
understanding what is causing it in the first place. This problem
has been long debated7. It has been hypothesized that the CT is a
center of origin: speciation occurred within the CT from geolo-
gical times, with biodiversity gradients due to the ocean currents
that limit expansion outwards8. It was then argued that the CT
owns its biodiversity to being a center of species accumulation9,
assuming that different species accumulate into the CT via dis-
persal through ocean currents, after speciation took place in
regions outside the CT. Finally, it was theorized that the CT is a
center of overlap, where the geological separation of the Indian
and Pacific Oceans, allowed the formation of different fauna
through vicariance, followed by Indian and Pacific sister species
overlap through species-ranges expansion, thus augmenting
biodiversity10.

Here we address the biodiversity question by examining the
connectivity and ecoregionalization11 of the western and central
Pacific and of the Indian Oceans (Fig. 1) using machine learning
algorithms.

Connectivity quantifies the degree and directionality of pro-
pagules, larvae and juvenile dispersal12,13, while ecoregionaliza-
tion is useful for monitoring dispersal of pollutant or invasive
species. Together they are pivotal to designating effective marine
protected areas. We are interested in connectivity because large-
scale larval transport and recruitment among distant reefs is key
to corals’ resilience, as recovery after widespread damage depends
on recolonization14–20. We are interested in ecoregionalization
because conservation management and mitigation strategies
require information about the ecoregions that demark unique
assemblages of species21. Together, they contribute to

colonization and resilience of a given reef, and in turn to the
biodiversity of a broader region.

In most of the world’s Oceans, defining ecoregions and con-
nectivity is complicated by data sparseness and by large-scale,
time-dependent ocean currents. Accurate predictions of com-
munity susceptibility to these currents remain elusive. As circu-
lation models and reanalysis datasets have become available and
reliable, attempts have been made by simulating larval dispersal
using particle tracking22–24. In these brute-force approaches,
particles are either released everywhere searching for ecoregion
boundaries, but the large spatial coverage dramatically reduces
the maximum time span22,25, or at specific reefs to quantify
connectivity, but only few sites are considered24,26. We show that
unsupervised machine learning through δ-MAPS, a complex-
network algorithm developed for dimensionality reduction and
network inference and related to clustering, multivariate statistics
and community detection27,28, provides a powerful alternative to
infer simultaneously connectivity and ecoregionalization at the
ocean mesoscale (~30–300 km) and decadal times when applied
to sea surface temperature anomalies (SSTa)29. When further
augmented by community detection and PageRank centrality, δ-
MAPS networks inform about the resilience potential of the
ecoregions, defining a novel framework to identify where and
when mitigation strategies will be most beneficial to the survival
of reefs in the CT (Fig. 2).

Results
The intuition of leveraging SSTa for ecoregionalization and
connectivity purposes using δ-MAPS exploits the dynamical
relationship existing between SSTa and sea surface height
anomalies (SSHa), and therefore currents, at spatiotemporal fre-
quencies pertinent to the transitions of marine communities at
latitudes explored in this work (see Materials and Methods). A
verification of the SSHa-SSTa high correlation, which provides
the desired link of SSTa to the surface ocean advective properties
is presented in Supplementary Fig. 1. In our work, the autono-
mous and unsupervised identification of spatially-contiguous
regions (i.e. “domains”) characterized by a highly correlated
temporal activity in SSTa and their mutual physical connectivity
is carried out through δ-MAPS. The resulting weighted functional
network, connecting any two regions, quantifies the role of a
given domain in the large-scale connectivity (see Materials and
Methods for details on δ-MAPS and network metrics).

We build upon this approach, applied to the Mediterranean
Sea by the authors in29, accounting for the specificity of the CT
climate: ocean temperatures, currents and therefore connectivity
patterns in the Indo-Pacific basin are strongly influenced by the
El Niño Southern Oscillation (ENSO). ENSO, in its warm and
cold phases, El Niño and La Niña, not only drives the most
dramatic year-to-year variation of the Earth’s climate system but
also is responsible for extensive coral bleaching and up to 97%
coral mortality30. In the following, we search for ecoregions using
δ–MAPS applied to SSTa from the GLORYS12V1 1/12° CMEMS
global ocean eddy-resolving reanalysis product31,32 over the
period 1993–2017 (see Materials and Methods). Years are defined
from April 1st to March 31st, to separate among ENSO phases,
with 8 years in each category of neutral, El Niño and La Niña
events (Supplementary Fig. 2 and Supplementary Table 1).

Ecoregions and the El Niño Southern Oscillation. The ecor-
egions inferred with δ-MAPS are reported in Fig. 3 for a max-
imum competency period τmax of two months, but results are
confirmed if one or three months are assumed instead (see
Supplementary Figs. 3 and 4). The ecoregionalization is consistent
with previous boundaries based on coral distributions3,24, while

Fig. 1 The CT and Indian Ocean study area, with superposed coral reef
and spawning locations. In yellow the distribution of coral reefs in the
study area, as obtained from the UNEP-WCMC (UNEP-World
Conservation Monitoring Centre), WorldFish Centre, WRI (World
Resources Institute), TNC (The Nature Conservancy) Global distribution of
Coral Reefs database66–69; in cyan known coral spawning locations within
the study area, from the Coral Spawning Database65. Topographic and
bathymetric background: USGS Imagery Topo, courtesy of the U.S.
Geological Survey.
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extending further both in space and time any previous study for
this area.

ENSO modulates the distribution of δ-MAPS domains and their
strength, leading to three distinct patterns. Briefly, in neutral years
domains along the Equator have similar strengths; during El Niño
years several domains around the distant Pacific islands (FSM, Ki,
Ki2) strengthen, indicating increased connectivity; during La Niña
years most CT ecoregions are stronger, wider, and often over-
lapping. In both ENSO positive and negative phases, the ecoregion
between northern Papua New Guinea and the Caroline Island
weakens compared to neutral conditions, in agreement with
previous outcomes from Treml and colleagues33. El Niño and La
Niña conditions modify in opposite ways the ecoregions surround-
ing the Makassar Strait that regulates water exchanges between the
western Pacific and eastern Indian Ocean34, with La Niña causing
an increase in strength and size of the ecoregions as well as inter-
basin connectivity. In the Indian Ocean, under La Niña
conditions the domain surrounding the southern Maldives Islands
(MaS) gets wider and stronger and extends eastward reaching as far
as the southern border of Andaman Islands ecoregion (domain A).

Having established the ecoregionalization of the CT and Indian
Ocean, we further group domains sharing strong connections into
communities, in which we expect exchange of genetic material to
occur at least for a given ENSO phase by means of a community
detection algorithm that exploits a centrality-base clustering35.
These supercommunities are shown in Supplementary Fig. 5. In
neutral conditions ecoregions are distributed nearly uniformly
among 4 communities, broadly covering the Indian Ocean (C1),
the main Coral Triangle (C2), the eastmost Pacific islands in the
area considered (C3), and the southern and western Pacific (C4). In
El Niño years the communities continue to be 4, but their inter-
connectivity weakens, while in La Niña years only two unrelated
supercommunities are identified, with the largest including most of
the CT, the Indian Ocean and several of the west Pacific islands.
Links among supercommunities are especially important, as their
removal would imply isolation among extended areas. However, in
the CT and Indian Ocean the ENSO variability ensures that no
single link is indispensable for genetic exchanges across the domain
considered, because ecoregions, the communities and their
connectivity all change greatly under different ENSO phases.

Fig. 2 Conceptual framework and workflow. Schematic representation of the proposed ecoregionalization, connectivity and resilience framework.

Fig. 3 Inferred domains. Domains over the period 1993–2017 in the CT and Indian Ocean for τmax= 2 months for aggregated (a) El Niño, (b) La Niña, (c)
neutral years, colored according to their strength value. In each period, domains with strength below the 20th percentile (computed for that period) are not
shown. Strengths are normalized by 6 × 106, and the color scale is logarithmic.
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Given these dynamical conditions, we revisit the concept of
Island Biogeography, first introduced by the work of MacArthur
and colleagues36. This idea relates the number of species present
on an island to a balance between immigration rate of new species
and extinction rate, noting that the number of species at
equilibrium generally increases with the island’s size and
proximity to a source of immigrant species. Our supercommu-
nities can be thought of as dynamical islands whose shape and
position change over time due to ENSO variability. The four
“islands” found in neutral and El Nino years merge into two
larger ones during La Nina years, exchanging colonizers
periodically. Supercommunities at different τmax are shown in
Supplementary Fig. 6.

Biodiversity patterns: ENSO as driver of the CT biodiversity.
What does make an ecoregion biodiverse? From a connectivity
perspective, we hypothesize that the ecoregion should be a point
of arrival for a lot of connections. Larvae can be transported to
this area from many ecoregions, even if each of these connections
is not from a biodiverse area, or from few biodiverse regions. This
hypothesis is directly linked to the potential maintenance of high
biodiversity in the CT.

Identifying areas which are arrival for a lot of connections is a
problem parallel to assessing the popularity level of web sites and
quantifying the likelihood to reach any given web page by
randomly following links on the internet and can be solved using
the PageRank Centrality37 algorithm. The PageRank Centrality
quantifies if a webpage (or a domain in our case) is reached by a
high number of connections with a low centrality value each, or
one/few connections from pages (other domains) with high
centrality, or both. We therefore apply it, using the implementa-
tion provided in the Wolfram Mathematica software38, to the
positive unweighted network links identified by δ-MAPS among
the labeled domains of Fig. 3 whenever the correlation coefficient
is ≥ 0.35.

For each ENSO phase, centralities are computed as solutions to
c = αF aT•d•c+ β (see38), where aT is the transpose of the
adjacency matrix of the selected network, d is a diagonal matrix
with elements 1/max(1, di-out), di-out being the out-degree of the
ith δ-MAPS domain of that network, αF is a damping factor (here

0.85, but robustness has been verified for αF from 0.5 to 0.9 in
Supplementary Fig. 7), and β contains the initial centralities (here
always equal to 1/Nnodes, with Nnodes being the number of
domains -or nodes- in the selected network). We also computed
an averaged biodiversity score by selecting the ENSO phase with
the most domains (El Niño years) and computing, for each
domain, the average of all three centralities in that geographical
area. The resulting vector represents the mean contribution of
connectivity to the maintenance of the overall coral biodiversity,
in each location, computed accounting for ENSO-phase aggrega-
tions over 1993–2017. The higher the biodiversity score, the
higher is the connectivity-modulated potential for biodiversity
maintenance. The biodiversity score in each ENSO phase is
reported in Fig. 4, while the average scores can be found in
Supplementary Fig. 8. The highest values are found over the Coral
Triangle and gradually decrease for increasing distance from it,
consistent with previous works (see for example Fig. 3 in the work
of Veron and colleagues3). Our scores, based on the direction of
the physical transport, highlight that the CT is a point of arrival
of genetic diversity, and La Nina years are more conducive to
biodiversity than all other times. The evolutionary origin of the
CT remains under debate, but today ENSO variability plays a
pivotal role by promoting different connectivity pathways into the
CT depending on its phase, and by promoting ecoregions
expansion and overlap in its negative phase. When focusing on
coral species biodiversity, our analysis supports the center of
accumulation and center of overlap hypotheses under current
conditions with ENSO being a critical contributor. These findings
are robust and verified also for τmax = 1 and 3 (Supplementary
Fig. 9).

Connectivity-modulated bleaching resilience. Previous works
on coral resilience and recovery capacity point to the importance
of external recruit supply for rapid recovery of reefs. Here, we
propose a metric to estimate the recovery potential that accounts
for the combined effect of connectivity and time cumulative
bleaching stress. We do so by merging the newly obtained con-
nectivity information with composites of the Bleaching Alert Area
(7-day maximum) (baa) product from the NOAA Coral Reef
Watch’s (CRW) Version 3.1. (ref. 39, while the works of Liu and

Fig. 4 Estimated Biodiversity Score over 1993–2017. Domains found during El Nino years, colored according to their Biodiversity Score in (a) El Niño
years, (b) La Niña years, (c) neutral years. The color scale is linear (low= 0.03, high= 0.08).
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colleagues40,41 provides an overview of the product). First, we
compute a time-cumulative baa index (t.s.baa) for coral bleaching
stress (see Methods for its calculation in the various ENSO
phases). The t.s.baa is amplified in El Niño and La Niña years
compared to neutral conditions (Supplementary Fig. 10), in
agreement with previous works42,43, with the South China Sea
and the coasts of Sri Lanka being the exception in this amplifi-
cation. Second, within each identified domain, we define a
recovery probability following a bleaching event that depends on
the cumulative effect of bleaching or number of bleaching
occurrences (i.e. t.s.baa) and its connectivity potential. As a result,
a domain hosts a reef capable of rapid recovery if the time
cumulative bleaching pressure is low (at any connectivity level),
or the potential connectivity is high despite a high t.s.baa, or high
potential connectivity and low time cumulative bleaching pres-
sure (low t.s.baa) act in concert.

We express the relative importance of t.s.baa and the
potential connectivity as a connectivity modulated bleaching
vulnerability or CMBV= t.s.baa / σ+, where σ+ is the domain
strength computed with only incoming and undirected positive
links. For domains that overlap we consider only the highest
value of CMBV at the overlapping grid points. Low (high)
values of CMBV correspond to high (low) chances to find a
connectivity resilient reef. For each ENSO phase, a candidate
score of 1 is assigned to the grid points with t.s.baa and/or
CMBV below the 25th percentile of possible values (low
cumulative bleaching, or high connectivity modulated bleaching
resilience), with all thresholds computed in neutral years, and at
the highest resolution for t.s.baa, and a score of 0 is given
elsewhere. Lastly, we sum the three matrices, one per each
ENSO phase, obtaining in each grid point a recovery potential
score (RPS). Values of RPS= 3 identify areas with a high
probability to find a reef that may rapidly recover after a
disruptive event, because the combination of CMBV and t.s.baa
is favorable, regardless of the ENSO phase. Areas where RPS= 2
may also be considered targets for rapid recovery but to a lesser
extent, because of a detrimental combination of cumulative
bleaching stress and potential connectivity in one ENSO phase.
Figure 5 shows the RPS map for areas with high recovery
potential with coral reef locations superposed (see Supplemen-
tary Fig. 11 for τmax = 1, 3). The RPS metric contextualizes the
observations of bleaching-resilient reefs targeted as conserva-
tion priorities by Darling and colleagues44 and by the “50-Reef
Project”45, including the “Super-Reefs” of Racha Noi and Rock
Island (Palau). For about 70% of the sites identified in the cited
works, physical connectivity is crucial in modulating bleaching
resilience. Indeed, an equivalent index based only on tempera-
ture (= low t.s.baa) would not capture most of them
(Supplementary Fig. 12). Nearly identical results are found if
the NOAA Coral Reef Watch (CRW) monthly composites of
maximum Degree Heating Week (DHW) are used instead of the
baa product as estimate of thermal stress of corals. DHW is
based on satellite-derived SSTs and in-situ temperature loggings
and is available daily at 5 km resolution. The DHW monthly
composites are processed as follows: First, we associate
numerical values to three classes of equivalent potential
bleaching risk: for 0 < DHW < 4, with 0 indicating “no stress”
and 4 “warning” for potential bleaching risk, we assign a value
of 2; for ≤ 4 DHW < 8, when consequential bleaching is
expected, we assign a value of 3; for DHW ≥ 8, or widespread
bleaching and likely mortality, we assign a value of 4; we assign
0 elsewhere. Second, in each ENSO phase, we compute a time
cumulative value of these DHW classes (t.s.dhw), and third we
evaluate the CMBV as the ratio between t.s.dhw and σ+. Finally,
the RPS computation is carried out as before, and shown in
Supplementary Fig. 13.

Discussion
Coral reef ecosystems have changed profoundly over time and
have evolved and adapted to environmental and anthropogenic
stressors across millennia. Today, however, they are threatened
with rapid extinction due to fast warming ocean temperatures.
Their survival requires establishing appropriate monitoring and
sustainable management practices, and doing so requires under-
standing how reef connectivity, biodiversity and resilience are
shaped by climate variability.

Efforts to define the ecoregions in the Coral Triangle (CT),
the most biodiverse ocean hotspot, have been traditionally
based on taxonomic and ecological approaches, but direct
observations of species distributions are sparse in space and
time, concealing the relationships between ecoregions, climate
variability and ocean circulation over the basin-wide and dec-
adal spatio-temporal scales needed to understand evolution and
resilience potential. Direct numerical simulations of ocean
currents and larval transport suffer from similar limitations: if
the resolution is enough to resolve the relevant dynamics, their
time span is too short to explore interannual variability. This
work proposes a framework based on machine learning to
overcome these problems and evaluate the concurrent role of
physical connectivity and ENSO—the dominant climate mode
in the region—in shaping the biodiversity of the CT and sur-
rounding areas. It is based on sea surface temperature anoma-
lies and unsupervised network analysis, and allows for assessing
both connectivity and bleaching recovery potential of reef
ecosystems over unprecedented large space and time scales with
a uniform coverage.

Gaining a dynamical view of coral connectivity, and quantifying
how spatial and temporal variability impacts connectivity, open
unprecedented opportunities to improve sustainable management
practices for biodiversity conservation21,29. This knowledge is
especially important when biodiversity must rebuild following a
devastating damage, as is occurring even more often in the CT.

Fig. 5 Recovery potential score (RPS) over 1993–2017. Dark blue (green)
areas identify domains with RPS= 3 (RPS= 2), while known reefs are in
yellow. In the Indian Ocean, the northern Maldives Islands, the Laccadive
archipelago, and the reefs around Sri Lanka, together with smaller areas to
the south-west of Thailand, the southern Nicobare Islands, and western
Sumatra have a high RPS. In the South China Sea, recovery is likely along
the coasts of southern Vietnam, west Cambodia, and southern Thailand,
and around Riau Islands and northern Spratly Islands. A portion of reefs in
the Indonesian Bangka-Belitung province has also a high RPS, along with
reefs in central Java. In the northern CT, only reefs in the Sulu Sea have a
high RPS, while in the central CT the Maluku Islands and Western Papua,
Nusa Tenggara (eastern Indonesia) and south-eastern Sulawesi show good
recovery potential. Finally, high RPS values are found to the south-east of
the Philippines, in a small portion of northern Australia, and in some Pacific
islands such as Palau, the western Federate States of Micronesia, and to a
lesser extent the southern Marshall Islands and Tuvalu.
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Furthermore, our results suggest that the extraordinary biodi-
versity observed today results from the CT being both a center of
accumulation and a center of overlap, with ENSO variability
positively and strongly contributing to the observed biodiversity
patterns. While ENSO has long been associated with coral reefs
mortality, due to the prolonged higher-than-normal temperatures
experienced in some areas, our work reveals that it is highly
beneficial to biodiversity, enhancing the large-scale exchange of
genetic material between the Indian Ocean and the CT during La
Niña years, and between the CT and the area to the east in neutral
conditions.

Investigating the biodiversity origin conundrum, Renema and
colleagues46 introduced the concept of “hopping hotspots” that
accounts for the influence of plate tectonics on the origin, evo-
lution and vanishing of marine biodiversity hotspots. They
showed that the “relocation” of biodiversity hotspots is con-
current with paleo-geography, pointing to the formation of an
Indo-Pacific hotspot after the early Miocene, and the appearance
of the first fossils records for coral genera at the Miocene-Pliocene
transition. The biodiversity evolution was concurrent not only
with the restriction of the Indonesian Throughflow, which
assumed a geological setting closer to present days, but also with
paleorecords of ENSO-like variability along the Equator. Indeed,
ENSO-like events have been documented during the Pliocene and
Pleistocene and as early as at the Miocene-Pliocene transition47,
with coral proxy data disproving the hypothesis of a permanent
El-Nino condition during the Pliocene48. Model simulations also
support ENSO-like variability in the Miocene with much longer
periodicity and greater amplitude than today, and a warming pool
extending well into the Indian Ocean49. Our findings indicates
that geological changes may have imprinted the Indo-Pacific
biodiversity through the associated climate variability signal, with
ENSO-like variability promoting the inflow of genetic diversity by
contributing both larval supply and ecoregions overlap in the CT.
The increase in ocean biodiversity through geological times
pointed in46 would be supported by this interpretation, and so
would be the evolution of species richness in the CT from the last
glacial maximum to pre-industrial times50, given the consistent,
gradual intensification of ENSO amplitude throughout the
Holocene51 in response to changes in insolation. A consequential
result is that future change in ENSO amplitude, frequency, or
pattern may modify these dynamical linkages, and should be
accounted for in light of their connectivity implications, not just
for their climate influence.

This work establishes a framework for evaluating feasibility and
relevance of targeted conservation efforts in the CT and sur-
rounding areas by establishing the causative process(es) respon-
sible for the CT biodiversity, evaluating the recovery potential of
reefs in the CT and surrounding areas, and identifying the reefs
that are central to its overall biodiversity resilience.

The proposed approach brings about an effective and fast tool
to explore a rather complex set of processes acting in concert but,
by its nature, introduces important simplifications to the
biological-physical interactions at play. For example, we neglect
the species-specific nature of larval mortality and settlement
competency characteristic52 and use only information about
pelagic larval duration (PLD) (see Methods). The paucity of
detailed data over the whole study area justifies the usage of the
PDL alone, but for single-species studies will not be sufficient.
Additionally, the proposed analysis of connectivity modulated
recovery potential through CMBV and RPS, while effectively
extending the current methodology for reefs prioritization,
necessarily simplifies coral response and adaptation to thermal
stress over time. In this work, bleaching recovery is elevated (at
any connectivity level) if the time of cumulative exposure to
previous bleaching is low, as low exposure implies higher coral

cover, thus a more stable community composition in a given
ecoregion, justifying a higher supply of larvae. However, we do
not account for the “stress-hardening” effect, according to which
corals acquire and maintain stress tolerance through past envir-
onmental stress53–58, making low-exposed communities poten-
tially more vulnerable to future bleaching. Nonetheless, the
proposed framework helps elucidating the first-order mechanisms
underlying the existing large-scale connectivity-modulated
bleaching resilience, contextualizing many observations of
resilient reefs.

By merging physical intuition and machine learning, we pro-
vide an integrated and more effective approach to managing coral
networks, promoting larval replenishment and monitoring eco-
system stability59. The ecoregion identification and biodiversity
score, taken together with the recovery potential metric, provide
indeed a powerful tool to identify appropriate temporal and
spatial windows where connectivity-based restoration efforts and
monitoring should be prioritized. Recovery potential evaluations
under future bleaching scenarios may benefit from using
numerical models for the computation of SSTa ranges, ENSO
behavior and bleaching warnings values, rather than projecting
the current conditions into the future.

Materials and methods
δ-MAPS: ecoregions and connectivity inference through SSTa. The physical
reasoning that allows to use SSTa to address ecoregionalization and large-scale
connectivity with a complex network tool like δ-MAPS is rooted in the following
consideration: At equatorial, tropical and mid-latitudes SSTa are characterized by
strong coupling with the layers underlying the ocean surface through horizontal
oceanic currents. Indeed, dynamical links relate the temporal variability of SSTa to
that of sea surface height (SSH) anomalies and therefore currents60, with the SST
observations being available at higher resolution than SSH fields, especially in
coastal areas. The use of SSTa in turn facilitates exploring the connectivity question
at time and spatial scales covered in this work, because they directly relate to the
mesoscale (30–300 km) flow advective properties. δ-MAPS is a machine-learning
complex network algorithm for dimensionality reduction, which allows to identify
in an autonomous and unsupervised manner spatially contiguous regions or
domains and their mutual connectivity, while accounting for autocorrelations.
Given a spatio-temporal field X(t), δ-MAPS identifies spatially contiguous domains
that share the same dynamic functions, i.e. share a highly-correlated temporal
activity, and then unravels the connectivity linkages among them. A functional
network is constructed based on these connections, weighting each edge to reflect
the magnitude of interaction between any two domains. The strength of a domain
is finally defined as the sum of all the absolute weights of all the edges pertaining to
that domain. δ-MAPS is well suited to identify ecoregions if applied to a field that
contains information of the flow dynamics. With relevance to this project, δ-MAPS
identifies the structural connection among SSTa domains. Links define the physical
connectivity between any two domains and the sum of the absolute weights of all
edges of a given domain quantifies its role in the large-scale connectivity.

δ-MAPS works through two steps: domain identification and network
inference27,28. Domains are hypothesized to have epicenters or cores, where their
local homogeneity is highest. Cores are identified on a gridded dataset requiring
that the local homogeneity of a grid cell is a local maximum and greater than a
threshold δ. Cores are then expanded and merged to identify domains. For each
domain A, its signal XAðtÞ is then defined as the weighted cumulative anomaly of
all the time series within A:

XA tð Þ ¼ ∑
Aj j

i¼1
xi tð Þ cosϕi ð1Þ

where Xi(t) is a time series of length T associated to grid cell i with latitude ϕi
and | A| is the number of grid cells in A. To infer the network of a given set of
domains, we compute the Pearson correlation rA,B(τ) between each possible pair of
domains A and B for a lag range τ ∈[−τmax,τmax]. Each pairwise correlation is
tested for a given significance level after accounting for autocorrelations using the
Bartlett’s formula61. Two domains A and B are connected if there exists at least one
significant correlation between the two at any lag in the range τ ∈[−τmax,τmax],
denoted as RA,B (τ). The link is assumed undirected if RA,B (τ) includes the lag
τ= 0, whereas the connection is directed from A to B (B to A) if RA,B (τ) is strictly
positive (negative). We assign a weight wA,B to each link based on the covariance
between the two signals XAðtÞ and XBðtÞ at the lag τ∗ at which their significant
correlation rA,B(τ) is maximized. Finally, a non-dimensional strength value is
defined for each domain as the sum of the absolute weights of all the connections
incident to that domain.

In this study, δ-MAPS is applied to detrended monthly sea surface temperature
(SST) anomalies over 1993-2017 from the GLORYS12V1 CMEMS global ocean
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eddy-resolving reanalysis product31,32, available at horizontal resolution 1/12°, here
remapped at 1/3° without losing information given the scale of the mesoscale
currents at this latitude (Supplementary Fig. 14). GLORYS12V1 covers the
altimetry period (from 1993 onward) and assimilates by means of a reduced-order
Kalman filter satellite observations of SST, sea level anomaly, sea-ice concentration,
and in-situ salinity and temperature profiles. SST are detrended over 1993-2017
and aggregated in neutral, El Niño and La Niña ENSO years (defined from April
1st to March 31st), so that each ENSO phase is composed by 8 aggregated years.
The seasonal cycle is removed in each aggregation separately (see62 for a
justification). El Niño, La Niña and neutral years are selected based on the ONI
index calculated over the region (5oN-5oS, 170oW-120oW)63,64 applied to the
GLORYS SST data, requiring that the 3-months running mean SST anomalies
exceed +0.5 oC or −0.5 oC for at least five consecutive months for El Niño or La
Niña occurrences, respectively (Supplementary Fig. 2). In δ-MAPS, the significance
level for the network inference is set to 0.03, tested using a t-test, and a K-
neighborhood of 8 grid cells. The δ threshold is inferred using a significance level
α= 10−327,28. We consider a maximum pelagic larval duration (PLD) of 60 days by
setting set τmax = 2 months, but the connectivity networks and our results are
verified for τmax = 1 or 3 months.

Coral spawning data processing. The timing of corals spawning in the CT and
central Indian Ocean controls larval availability. The geographical extension of the
study area (68.33°E–180°E, 24.67°S–24.67°N) and the variety of coral species in this
region preclude us from assuming a common spawning period for the entire area.
Therefore, we analyzed a collection of multiple spawning data, available through
the “Coral Spawning Database” (CSD)65 from multiple sources over the entire
Indo-Pacific. The CSD collates 6178 observations of coral spawning dates, for more
than 300 scleractinian species from 101 locations. The CSD data (“SpawningOb-
servationBySite” entry) are processed as follows: first, only spawning events
occurred within our study area are selected; second, spawning events are aggre-
gated by month of spawning over 1993–2017; third, the aggregation is repeated
separately for neutral, El Niño, and La Niña years, obtaining three distributions
(Supplementary Fig. 14 and Results). Each ENSO-phase distribution is then
compared with the total one, and in each histogram, months with the number of
spawning events greater than zero but below 10% of the maximum number of
spawning occurrences (of that histogram) are categorized as “minor spawning”,
and months with a number of spawning events above that threshold as “major
spawning”. When considering the entire region of interest, no month can be
excluded in the connectivity computation for all the ENSO phases if the PLD is
30 days or longer (Supplementary Fig. 15).

Coral bleaching stress data processing. Composites of monthly maximum
bleaching alert area (baa) from the NOAA Coral Reef Watch’s (CRW) Version 3.1
heat stress monitoring products39 at daily frequency and 0.05o degree resolution
are used to evaluate spatial patterns of coral bleaching threat over neutral, El Niño
and La Niña years between 1993 and 2017. The baa composites outline the por-
tions of the global ocean where coral bleaching heat stress hits levels of increasing
severity, from “No stress” and “Watch”, both set to zero, to “Warning”, “Alert level
1”, and “Alert level 2”, set to 2, 3 and 4 respectively (see https://coralreefwatch.
noaa.gov/product/5km/methodology.php#baa for details). Maps of time cumula-
tive baa (t.s.baa) are found by summing over time the values at each pixel and are
bilinearly interpolated over the SST grid.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The analyzed data (SST and SSH) are obtained from the Global Ocean Physics Reanalysis
GLORYS12V1 1/12° product30 MERCATOR GLORYS12V1 (global-reanalysis-001-030-
monthly), available with free access through the E.U. Copernicus Marine Service
Information (CMEMS) portal31 (https://doi.org/10.48670/moi-00021). The coral
spawning data are from the “Coral Spawning Database”65 available at https://doi.org/10.
25405/data.ncl.13082333.v1. Composites of monthly maximum bleaching alert area are
from the NOAA Coral Reef Watch’s (CRW) Version 3.1 heat stress monitoring
products39 at daily frequency and 0.05o degree resolution, available at https://
coralreefwatch.noaa.gov/product/5km/. The MATLAB codes for all analysis and to
recreate the graphs in the paper and in the Supplementary Material are publicly available
through figshare (https://doi.org/10.6084/m9.figshare.21587199.v1).

Code availability
The δ-MAPS software (java version) is available at https://zenodo.org/record/7320416#.
Y3LesoLMLdo, https://doi.org/10.5281/zenodo.7320416.
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