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Water diversion is a common strategy to enhance water quality in eutrophic lakes by increasing available
water resources and accelerating nutrient circulation. Its effectiveness depends on changes in the source
water and lake conditions. However, the challenge of optimizing water diversion remains because it is
difficult to simultaneously improve lake water quality and minimize the amount of diverted water. Here,
we propose a new approach called dynamic water diversion optimization (DWDO), which combines a
comprehensive water quality model with a deep reinforcement learning algorithm. We applied DWDO to
a region of Lake Dianchi, the largest eutrophic freshwater lake in China and validated it. Our results
demonstrate that DWDO significantly reduced total nitrogen and total phosphorus concentrations in the
lake by 7% and 6%, respectively, compared to previous operations. Additionally, annual water diversion
decreased by an impressive 75%. Through interpretable machine learning, we identified the impact of
meteorological indicators and the water quality of both the source water and the lake on optimal water
diversion. We found that a single input variable could either increase or decrease water diversion,
depending on its specific value, while multiple factors collectively influenced real-time adjustment of
water diversion. Moreover, using well-designed hyperparameters, DWDO proved robust under different
uncertainties in model parameters. The training time of the model is theoretically shorter than tradi-
tional simulation-optimization algorithms, highlighting its potential to support more effective decision-
making in water quality management.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Global lake eutrophication and algal blooms are strongly linked
to excess nitrogen and phosphorus [1]. Reducing external nutrient
inputs and lowering lake nitrogen and phosphorus concentrations
are long-term goals in order to mitigate the risk of algal blooms.
This is accomplished through widely adopted countermeasures,
such as pollution source interception, robust sewage treatment,
dredging, wetland restoration, and water diversion [2]. However,
under the compounding impacts of increasingly intense anthro-
pogenic activities and extremeweather events, the state of the lake
water quality has become increasingly unstable [3]. The
ier B.V. on behalf of Chinese Soci
access article under the CC BY-NC-
environmental and ecological effects of these countermeasures are
declining, and water quality improvement and algal bloom control
are met with significantly greater challenges [4]. Therefore, there is
an urgent need to improve the effectiveness of existing measures to
improve lake water quality.

Among various solutions, inter-basin water diversion projects
have been increasingly implemented in recent years, aiming to
increase the available water resources, accelerate water circulation,
and improve lake water quality. Some notable cases that imple-
mented these solutions are the South-North Water Diversion
Project [5]. The Water Diversion Project from the Yangtze River to
Lake Tai [6] and the Niulan RivereDianchi Water Diversion Project
[7,8]. Statistics have shown that the average annual water diversion
for ecological and environmental goals has exceeded 30 billion m3

in China. Although the external water resource accelerates circu-
lation, there are significant debates surrounding its utility since it
ety for Environmental Sciences, Harbin Institute of Technology, Chinese Research
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substantially increases the nitrogen and phosphorus input loads as
well as the pressure from removing these nutrients within the lake.
As a result, the water quality improvement was much lower than
the expected goals [9,10]. From the perspective of restoring water
quality, robust water diversion decisions need to incorporate three
aspects: (a) the demand for a lake that supplies external water
resources (e.g., the higher the concentration of nitrogen and
phosphorus in the lake, the larger the diversion); (b) the ability of
external water resources to improve the water quality of the lakes
(e.g., the lower the nitrogen and phosphorus concentration of the
external water, the larger the improvement); and (c) the pertur-
bation of other factors (e.g., the discharge of the tributaries and
meteorological factors) [11e14]. Once the external and internal
factors change, according to the optimality theory, water diversion
decisions must be adjusted. Therefore, it becomes a dynamic
optimization problem, where the current water diversion affects
the concentration of the lake during the following period and the
next diversion decision. The water diversion projects, however,
have yet to address adequately the issue of efficient and timely
decision making.

Solving dynamic optimization problems cannot rely solely on
traditional algorithms, as the objective function, constraints, and
Pareto front surface may change over time [15]. Particle swarm
optimization (PSO) and genetic algorithms (GA) are more suitable
algorithms for solving static (non-dynamic) optimization problems
[16], while their variants have difficulty in balancing all-period
optimality as well as dynamic computational effort issues [17].
Reinforcement learning (RL) was created for dynamic optimization
as a machine learning algorithm branch. Through trial and error, RL
optimizes the decision-making strategies in order to achieve the
highest cumulative reward [18] and possesses the advantages of
exploration-exploitation, diverse training methods, and flexible
dependence on the Environment (i.e., the world where agents
interact and are observed). Unlike supervised and unsupervised
learning, RL does not require any labeled data; however, it interacts
with the Environment and obtains data (states and rewards) that
update the decision-making strategies. Early RLs use matrices to
store reward information, which is only suitable for discrete state
and action spaces [19]. Deep learning (DL), skillful in approximating
any function, is coupled with RL and produces modern deep rein-
forcement learning (DRL) to solve issues in continuous spaces. With
powerful performance, DRL is widely used in robotics, autonomous
driving, and games [20e23].

RL has been used in water resource scheduling with better
performance than traditional dynamic programming methods
[24e27]. In water quality management, the RL was coupled with
the Environment of the process-based models. It is aimed at optimal
decisions in various cases, such as: (a) controlling the discharge of
reservoirs to ensure downstream water quality [28]; (b) keeping
dissolved oxygen and nitrate concentrations within the wastewater
treatment process in order to reduce energy consumption and
effluent pollutants [29e31]; and (c) controlling the opening degree
of the valve to reduce rain-induced flooding and suspended matter
within the drainage systems [32,33]. As for restoring lake eutro-
phication, complex nonlinear water quality response shows an
increasing demand for RL that optimizes the project operations.
Within the lakes, nonlinearity arises due to the variability of
external boundary conditions and the heterogeneity of the internal
processes [34]; however, DRL can handle the complexity. Even in an
incompletely observable Environment, DRL can obtain an optimal
strategy based on interactions with the Environment and Bellman's
Principle of Optimality. The Environment mentioned here is a real
system whose state and reward are monitored by sensors or a
virtual system consisting of process-basedmodels that significantly
reduce the DRL training time.
2

However, DRL is still not adequately applied to lake water
quality restoration efforts compared to the potential demands. The
possible reasons are: (a) although DRL training does not require
numerous labeled data, an available Environment only requires data
from monitoring or surrogate models. Additionally, constructing
complex surrogate models is not easy, and the hyperparameters of
a model-based Environment are difficult to design, such as the
reward function [35]; (b) computationally, the response of the
Environment to the actions generated by the DRL is a time-
consuming process, difficult to converge, and is the primary
reason why many current studies use simple models; and (c) it is
well known that interpretability is a typical machine learning al-
gorithm problem (i.e., DRL cannot explain how tomake decisions as
well as identify the specific inputs that determine the prediction of
the decisions). Nevertheless, water diversion decisions are nor-
mally driven not only by the water quality of the transferred water
and the state of the lakes but also by the operating costs and future
meteorological conditions. Therefore, it is essential to identify
important inputs needed for deeper management. However, these
shortcomings in interpreting the “black box” have reduced the
reliability of DRL and hindered its application.

This study aims to solve the aforementioned problems by pro-
posing a dynamic water diversion optimization method (DWDO)
for water diversion projects within eutrophic lakes. To maximize
the water quality improvement of water diversion and reduce
operation costs, DWDO generated the dynamic optimal amount of
water diversion (AWD) under changing external conditions. A
three-dimensional hydrodynamic-water quality-algaemodel based
on the Environmental Fluid Dynamics Code (EFDC) and a novel
Deep Deterministic Policy Gradient (DDPG) coupling DL with RL
were combined in DWDO. The water quality response simulation
and the AWD acted as the bridge connecting the Environment and
DRL. We tested DWDO in the case of Lake Dianchi, which is one of
the three most eutrophic large lakes in China. Furthermore, we
gained insight into the decision-making mechanism within DDPG
using an explainable approach. This approach identified the key
driving factors and their contribution to diversion decisions,
providing end-to-end support for eutrophication control.
2. Methods

The proposed DWDO in this study consisted of (a) the Environ-
ment and (b) DDPG (Fig. 1). A complex process-based water quality
model was adopted as a surrogate for the Environment. To accu-
rately quantify the nitrogen, phosphorus, and algae variations in
the eutrophic lake, we simulated the spatiotemporal changes of the
hydrodynamics, temperature, sediment, and algae, as well as water
quality. This requires a wealth of data for EFDC (e.g., meteorological
data, water quantity, and inlet load data), water level observation,
and the lake's water quality. This data is used as the initial and
boundary conditions or to calibrate the parameters of the model.
Additionally, a certain amount of data is necessary for complex
problems, such as dynamic water diversion. Based on the EFDC
simulation, we were able to calculate the boundary fluxes (e.g.,
inflow flux, outflow flux, benthic flux, atmospheric deposition, and
denitrification) as well as the internal fluxes of the lake (e.g., algal
uptake, mineralization, and hydrolysis) at the present step and the
meteorological condition statistics and water diversion water
quality during the next step. They constituted the state space,
potentially impacting the AWD generated by DDPG. DDPG learned
strategies under these high dimensional continuous state spaces
and generated AWD in real time. Moreover, by interacting with the
Environment, DDPG collected enough data to update the neural
network's weights until the convergence of the objective function.



Fig. 1. The DWDO framework of this study. The dashed arrows represented the data input or the initialization of the Environment and DDPG. The solid arrows represented the
interaction processes between and within the Environment and DDPG.

Fig. 2. Study area of the monitoring site and spatial watershed information.
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2.1. Three-dimensional hydrodynamic-water quality-algae
simulation

To meet the requirements of high spatial and temporal resolu-
tion, we used Intelligent Watershed Integrated Decision-
makingeLake & Reservoir (IWIND-LR), an upgraded version of
EFDC, as the modeling platform. IWIND-LR has inherited the ad-
vantages of EFDC in simulating the hydrodynamics and improved
the water quality and sediment modules [36]. The basic form of the
governing equation is as follows:
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where; C is the concentration of the simulated variable; t is time; u,
v, and w are velocity components in the x, y, and z directions,
respectively; Kx, Ky, and Kz are the turbulent diffusivities in the x, y,
and z directions, respectively; S is the net value of deposition and
release, R is the flux of the internal biochemical processes, and Q is
the net value of the inflow and outflow. Variables in IWIND-LR
include carbon, nitrogen, and phosphorus present in refractory
particulate organic, labile particulate organic, dissolved organic,
and inorganic forms, as well as algal biomass and dissolved oxygen.
All of these variables were modeled in this study. In addition, it was
necessary to simulate fluxes within the sediment and their in-
teractions with the overlying water due to the significant contri-
bution of sediments in eutrophic lakes [37].

In this study, Lake Caohai in the northern region of Lake Dianchi
was used as the study area. Lake Caohai, with an area of 10.8 km2

and a watershed area of 153.4 km2, is surrounded by an urban area
and is subject to large exogenous nitrogen and phosphorus loads
(Fig. 2). Overlaying with the limited water resources in the basin,
the local government had to implement an expensive water
diversion project (i.e., the Niulan RivereDianchi Water Diversion
project (NDWD)) [8]. The high anthropogenic activity intensity and
3

the warm plateau climate made the benefits of water diversion
nonlinear and uncertain.
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We collected data on the bottom elevation, hourly meteoro-
logical conditions, daily water quantity, water level, the monthly
water quality of the inlets and the lake, and the daily and monthly
water quality of water diversion (Text S1). After discretizing the
water surface, there were 319 horizontal grids with a total area of
7.12 km2. In the vertical direction, it was divided into two layers
with an average depth of 1.25 m. Since the NDWD was constructed
in 2016, the modeling time of this study was set as 2017e2020 with
a computational time step of 100 s.
2.2. Architecture of the Environment and hyperparameter
configuration

Following the design of the OpenAI Gym, the architecture of the
Environment contained the necessary functions of reset, initialize,
and step. When a training episode finished, the function reset set all
states of the Environment, including time, hydrodynamics, water
quality, sediment, and algae, as their default values. The Environ-
ment then ran the function initialize to set the start time, episode
duration, state and action spaces, action duration, water quality
targets, and their weights (Table 1).

Within one episode, the function step was responsible for the
interaction with DDPG. This function contained four substeps:

(1) Model initialization:When the previous step ended, a total of
76 hydrodynamic, 27 water quality, and 18 sediment vari-
ables, as well as the temperature values of the entire area
(319 grids), were used as initial values for the next simula-
tion. This approachwas consistent with the fact that the state
of the lake was consecutive at the moment of decision
adjustment.

(2) Model running: Similarly, the time series of the water
quantity, water quality, and water temperature of each inlet
and nine meteorological factors were screened out from the
collected data and used as the models' boundary conditions
during the next step. Under AWD by DDPG, the model ran
continuously.

(3) States statistics: The variables simulated by themodel cannot
be directly fed to the DDPG due to the extremely high
dimension of hundreds of variables in hundreds of grids. To
reduce the dimension, we calculated all fluxes occurring at or
within the lake, as well as the total mass of nitrogen and
phosphorus in the overlying water (Text S1). Due to the
different flux and mass magnitudes, they were normalized
(Table S1) [38]. In addition, we added the maximum, mini-
mum, and average values of the meteorological factors of the
next step as well as the future total nitrogen (TN) and total
phosphorus (TP) of the water diversion (TNwd and TPwd). In
summary, the state space consisted of 67 dimensions.
Table 1
Initialization of the Environment in DRL.

Variable Value Unit Description

Start time 1 day The time when the episode sta
Episode duration 365 day The maximum days when an e
Maximum AWD 15 m3 s�1 The maximum amount of wate
Action space [0,15] - The range of AWD to be transf
Action duration 7 day the number of days the model r

constant.
State space Norm (m, d2) - the normalized space of variab
Water quality targets TN ¼ 2

TP ¼ 0.05
mg L�1 The target concentrations of TN

Weights of water quality
targets

kwq ¼ 99
kd ¼ 1

- The coefficients of water qualit
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(4) Reward calculation: The reward was the core component of
DRL. From the management perspective, we first brought the
compliance rate of TN and TP into the reward function and
named it the water quality reward. This functionwas 0 when
the TN and TP of the lake met the standards; otherwise, a
negative reward was feedback (equation (3)). If water
diversion failed to mitigate lake water quality, we then ex-
pected that DDPG would reduce AWD in time. We next
added a water diversion reward into the total reward;
therefore, the total reward is calculated as follows:

R¼ kwqRwq þ kdRd (2)

Rwq ¼ � 1
S

XS
s¼1

max

0
BBBB@

1
T
PT
t
wqs;t

wqs;target
�1;0

1
CCCCA (3)

Rd ¼ � Qd
Qmax

(4)

where Rwq and Rd denote the water quality and diversion rewards,
respectively; kwq and kd are their weights, respectively; andwqs;t is
the concentration of variable s at time t (mg L�1); wqs;target is the
water quality target (mg L�1); Qd is the AWD (m3 d�1), and Qmax is
the maximum AWD (m3 d�1).

The wqs;target and weights (kwq and kd) are the key configura-
tions of the reward function. A too low wqs;target will lead to Rwq

being less than 0 for an extended period of time, compelling DDPG
to continuously increase the AWD in order to improve Rwq. Too high
a wqs;target will lead to Rwq often being equal to 0, where water
diversion can easily achieve the proposed goals. The reward
weights of kwq and kd were set to balance Rwq and Rd. The ratio of
kwq/ kd determined whether the DDPG paid more attention to
water quality or water diversion. The kwq should be much greater
than kd, since water diversion aims to improve water quality.

2.3. DDPG and its hyperparameters configuration

DDPG was used to solve the dynamic decision problems in
continuous state and action spaces. It conducted a deterministic
selection to pick up the actionwith the highest probability. In terms
of the algorithms, DDPG was similar to the architecture of the
Actor-Critic and had a total of four sub-networks: (a) Actor-
generated action a0 based on the current state s0; (b) Critic
computed the corresponding objective function Qðs0;a0Þ; (c) Target
Actor generated the action a1 according to the next step state s1;
and (d) Target Critic computed the corresponding objective
rted, such as the first day of the year.
pisode ended. In the end, the start time and initial state need to be reset.
r diversion.
erred is similar to the Gym's spaces.
an in one step, where AWD and the water quality of water diversion were deemed

les of the observable Environment
and TP of the lake through water diversion.

y reward and water diversion reward when calculating the total reward.



Table 2
The network architecture of the Actor and the Critic in DDPG.

Component of Architecture Actor Critic

Input layer States States, action
Dimension of the input layer 67 68
Size of first hidden layer 256 256
The activation function of the first layer ReLu ReLu
Number of weights in the first layer 17408 17664
Output processing of the first layer Gaussian noise -
Size of second hidden layer 128 128
The activation function of the second layer ReLu ReLu
Number of weights in the second layer 32896 32896
Output processing of the second layer Gaussian noise -
Output layer Action Q-value
Dimension of the output layer 1 1
The activation function of the output layer Tanh Linear
Number of weights in the output layer 129 129
Total number of weights 50443 50689
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function Q 0ðs1;a1Þ. The Actor, the Critic, and the Target Critic have
the same network architecture as the Target Actor. The objective
function of the Actor is:

Qðsm; qÞ¼ E

 XM
i¼1

gi�mRi

�����sm; q
!

(5)

Max JðqÞ¼ � 1
M

XM
m¼1

Qðsm; qÞ (6)

And Critic's objective function is:

Min JðwÞ¼ 1
M

XM
m¼1

ðRþ gQ 0ðsmþ1; amþ1;w
0Þ � Qðsm; am;wÞÞ2

(7)

where, q, w, q0, and w0 were the weights of the Actor, the Critic, the
Target Actor, and the Target Critic, respectively, Qðsm; qÞ was the
objective function calculated by the expectation value of the cu-
mulative sum of reward R, g is the discount factor, and M is the
batch of samples used to update the network's weights.

The DDPG training process is as follows:

(1) Initializing randomly q, w, q0, and w0 being the same as q and
w, respectively;

(2) Based on the current s0, the Actor generated a0. The Envi-
ronment responded and feeds back the s1 and reward. This
information was stored in the experience replay database
Memory;

(3) Sampling from Memory, the Critic calculated the Q values
based on sm, am, Rm, and smþ1. They updated q and w via an
optimizer;

(4) Updating q0 and w0 using the soft update method;
(5) Assigning s1 as s0, and repeating from (2) to (4) until DDPG

converges.

The Actor, the Critic, and their target networks comprised fully-
connected neural networks (FNNs), whose powerful nonlinear
representation was a huge advantage. However, the architecture of
DDPG and FNNs contained important hyperparameters: (a) dis-
count factor, batch size, warm start steps, training interval, expe-
rience storage frequency, and soft update factor in DDPG, and (b)
network architecture, weights initialization, activation function,
optimizer, and learning rate in FNN. All hyperparameters must be
adjusted to adapt to the needs of the complex water diversion
problems.

In DDPG, the discount factor g had a significant impact. More-
over, g being closer to 1 represented more attention to the rewards
of future lake water quality under this AWD; in this study, it was
0.9. The batch size represented the number of samples used for
weight updating. The larger the batch size, the more robustly the
Actor and Critic weights were updated. However, a larger batch size
required more training data. This study was set at 32. The warm
start step was set at 64, which is used to collect enough training
samples for a stable beginning before an update. In addition, the
DDPG soft update factor represented the update speed of the Target
Actor and the Target Critic. The larger the value, the faster the
weights update; however, it may lead to the convergence difficulty
of the algorithm; therefore, it was set to 0.001.

In FNN, the architecture of the neural network is related to its
ability to fit complex relationships, convergence, and training time
[39]. In this study, both the Actor and the Critic had two hidden
5

layers (Table 2). The Actor used ReLu as the activation function of
the hidden layer and then used Gaussian noise to enhance the noise
capability. Its output layer was a tanh function with a range of (�1,
1). The Critic is similar to the Actor, but its output layer is a linear
function. The number of weights of the Actor and the Critic is
approximately 50,000, which characterizes the high nonlinear
fitting ability. These weights were initialized randomly. The opti-
mizer in the training process was the efficient Adam optimizer [40],
whose learning rate was set to 0.001.
2.4. Explanation of water diversion strategies

Since machine learning algorithms cannot explain the decisions
independently, we applied an independent post-processing tool,
SHAP (SHapley Additive exPlanations). SHAP is a game theory
method for explaining the output-input relationship of any ma-
chine learning algorithm [41], surpassing other additive feature
attribution methods. It approximated the original model f(x) (a
black box) and simplified it into an additive explainable model.
With SHAP, the f(x) was attributed to the addition of the marginal
contribution of each input variable as follows:

gðz0Þ ¼40 þ
XM
i¼1

4iz
0
i (8)

where, g is the explanation model; z0i2f0;1g, z0i ¼ 1 if the corre-
sponding input variable exists; M is the number of input variables,
and the attribution value 4i2R. If the original model was a simple
linear regression method, the SHAP value could be interpreted
vividly as the input value multiplied by its coefficient. If the original
model was complex, the SHAP value of input A is:

SHAPðAÞ¼1
S

XS
A

f ðA;BÞ� f ðBÞ (9)

where, B is the variable set that excluded A, and its predicted value
was f ðBÞ; f ðA;BÞ is the prediction when A is added into the model,
and f ðA;BÞ � f ðBÞ is the contribution of A. However, this contribu-
tion might vary with the value of set B, so it is necessary to calculate
the average contribution of A under different sets of B by sampling.
As a result, the SHAP value quantified not only the global contri-
bution of the variables to the decision but also the local contribu-
tion of the inputs to the prediction in each sample.



Fig. 4. The comparison of TN (a) and TP (b) of the Niulan River, and the Lake Caohai
with and without water diversion.
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3. Results and discussion

3.1. Evaluation of the water quality improvement for NDWD

The calibrated water quality model showed that the Nash-
Sutcliffe Efficiency coefficient (NSE) of the water level, surface
water temperature, and evapotranspiration were 0.27, 0.80, and
0.58, respectively. The model reproduced the hydrodynamical
trends and the biases were acceptable (Fig. 3aec). Thewater quality
model parameters were set within the rational range from the
literature (Table S2). The calibration showed that the simulated TN,
TP, and chlorophyll a (Chla) values fit well with the overall observed
trend with an NSE of 0.08, 0.09, and 0.03, respectively. Therefore,
considering the uncertainty during extreme observation resulting
from the considerable divergence between the observed data at the
specified time and the data collected at the time points prior to and
subsequent to the observation (Fig. 3d and e).

The historical NDWD has an average AWD of 8.1 m3 s�1 and a
maximum AWD of 15 m3 s�1. However, the water from the Niulan
River can neither lead to a continuous decrease of TN and TP in the
lake nor improve the water quality of the whole lake throughout
the year (Fig. 4). On the basis of the operation data and scenario
simulations generated by EFDC the AWD was reduced when the
TNwd or TPwd was high (e.g., in October 2017); conversely, AWD
increased (e.g., in spring 2018). The lake's water quality showed a
high consistency with the Niulan River. Its concentrations did not
exceed the TNwd and TPwd, indicating that the internal circulation of
the lake enabled water quality concentrations to further decrease.
The improvement of TP concentrationwas lower than that of TN, in
the past operation of NDWD. This was due to the AWD not
adjusting in time according to the TNwd and TPwd. For example, in
June 2018, both TNwd and TPwd were high at 6.0 and 0.15 mg L�1,
respectively; however, the NDWD still transferred water to Lake
Caohai at a rate of greater than 10 m3 s�1, increasing TN and TP of
the lake that grew higher than the concentrations in the non-
diversion scenario. Therefore, the NDWD should be decreased
when TNwd and TPwd was significantly greater to improve water
quality and save operational costs.

The NDWD provided an average diversion of 528 million m3 per
year. With the average local water price at CNY 2 m�3, the annual
cost was more than one billion yuan. Unreasonable diversion
Fig. 3. Calibrations of the process-based model and the trends of surface water t

6

decisions led to higher operating costs. We expected that less AWD
could achieve the same or a better effect onwater quality; therefore,
greatly reducing the water diversion cost. A more accurate decision
could be made using the multi-level valve allocation (Text S2).

3.2. Training strategies of DWDO

In this study, DWDOwas trained for 300 episodes (i.e., 300 years
of simulation) until the objective function converged (Fig. 5a and b).
Since each episode contained 52 steps (spending 0.4 h), 15,000
training samples were collected for the DDPG. The training taskwas
performed on a personal computer, with the most time-consuming
process being the response simulation of the Environment. For
complex process-based EFDC, each time step required tens of mi-
nutes to compute numerical solutions for thousands of grids and
variables. The DWDO training process consisted of three stages
(Fig. 5c): (a) Maximum AWD strategy. At this stage, DDPG adopted
emperature (a), water level (b), evaporation (c), TP (d), TN (e), and Chla (f).



Fig. 5. Training of the DWDO and its change of rewards on water quality and water diversion. a, Mean reward of each episode. Its fluctuation was caused by randomness in the
training process. b, Water diversion reward on April 16, 2018. c, The objective function of the Actor in DDPG. d, The decrease of TP at the end of one step. e, The amount of water
diversion (AWD), step by step. f, The decrease of the non-compliance rate of TN and TP of Lake Caohai on April 16, 2018.
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an aggressive strategy of increasing water diversion to improve
water quality and rewards; however, it was found that increasing
AWD at high TNwd and/or TPwd did not improve lake water quality;
(b) Random strategy. DDPG shifted to a stochastic strategy, i.e., it
generated AWD from a uniform distribution. This strategy was still
not efficient enough to improve water quality; (c) Combining the
experience of the first two stages, the strategy of the third stagewas
biased towards decisions with larger water quality and diversion
rewards (Fig. 5d). After convergence, the DDPG found a dynamic
balance between the water diversion and the water quality re-
wards. In summary, the non-compliance rate of the TN and TP of
the lake did not decrease (Fig. 5e and f). Consequently, the rise of
rewards showed that water diversion improved lake water quality.
Additionally, the water diversion reward increased, revealing that
the dual optimization of the TN and TP of the lake and water
diversion was successful.

3.3. Verification and explanation of decisions

To demonstrate the DWDO-induced water quality improve-
ment, we compared the TN and TP changes in Lake Caohai between
AWDs by DWDO and the observed AWD from 2017 to 2020. We set
seven days as the step and obtained a total of 208 dynamical de-
cision steps. The optimal diversion strategy produced a better lake
water quality than that under the past diversion rules (Fig. 6a and
b). The results showed that DWDO decided to reduce water or stop
7

diversion when the TNwd or TPwd was high (e.g., in June 2018,
October 2019, and July and November 2020). Conversely, it decided
to transfer more water or even keep the maximum AWD (e.g., in
January 2019). The DWDO strategy successfully led to a significant
decrease in the TN and TP concentrations. Compared with the past
diversion rules, the TN and TP of Lake Caohai decreased by 7% and
6%, respectively, from 2017 to 2020. Conversely, the total AWD by
DWDO decreased dramatically to an average value of approxi-
mately 60 million m3 per year. It was 75% lower than the observed
AWD, and the total reward rose (Fig. 6c and d). Technically, it suc-
ceeded in achieving the dual goals of water quality improvement
and cost saving.

We gained insight into the attribution of all states of the water
diversion decisions. Under the optimal strategy, the largest
contributor to the decision most often was the TNwd and TPwd
(Fig. 7a and b). Their average SHAP values reached�0.45 and�0.82,
respectively. Negative SHAP values indicated that the high TNwd
and TPwd forced DWDO to turn down the AWD, rather than to in-
crease it at low TNwd and TPwd (red points with SHAP >0). In
contrast, the lake's dissolved organic nitrogen (DON) mass asked
for an increase in AWD with a mean SHAP value of 0.13. Further-
more, meteorological factors had a lower contribution to the de-
cisions than TNwd and TPwd, as well as the masses and the fluxes of
nutrients. However, they still caused a significant increase or
decrease in AWD. Wind speed had higher SHAP values than other
meteorological factors, which might be related to the fact that the



Fig. 6. Verification of DWDO's performance compared to the past diversion rule. a, TN;
b, TP; c, The amount of water diversion (AWD); d, The total reward.
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particulate nitrogen and phosphorus of eutrophic shallow lake
sediments are resuspended by wind-wave action and transported
via lake circulation [42].

The decisions could be driven by the coupling effects of multiple
factors, especially from December to June (Fig. 7b). Among these
significant factors, the sum of the factors with a positive SHAP
revealed a consistent trend with the negative factors (Fig. 7c).
However, the sum of all factors primarily existed in the winter and
spring, which determined the specific AWD. If the positive SHAP
increased or the negative SHAP decreased, the AWD generated by
DWDO would increase, and vice versa.

Furthermore, if a factor value is too large or too small, it might
increase or decrease AWD (Fig. 7deh and Fig. S1). For example, the
higher the PO4 mass of the lake, the higher the AWD calculated by
DWDO due to the increasing demand for reducing high phosphorus
concentrations in the lake (Fig. 7f). When phosphate (PO4) was
higher than the threshold of 0.51 ton, AWD would increase, and
vice versa. Similarly, the thresholds for TPwd, TNwd, benthic PO4
exchange, and wind speed were 0.066 mg L�1, 2.4 mg L�1, 0.028 ton
d�1, and 2.1 m s�1, respectively. However, other factors may influ-
ence these thresholds due to their significant interaction
(Fig. 7iem, and Figs. S2, S3). For example, the higher the algae
concentration in a lake, the greater the phosphorus uptake by the
algae; therefore, the PO4 mass and its SHAP values were lower
(Fig. 7i). Similar interactions are commonly present in lake systems,
which is the primary reason why DWDO took so many influencing
factors into account.
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3.4. Impact of hyperparameters on DWDO performance

The well-performing DWDO benefited from the rational archi-
tecture and hyperparameter settings. However, these hyper-
parameters lacked a uniform standard, and their values were based
on experiences and experimentation, such as deep and reinforce-
ment learning [43]. We selected the important hyperparameters in
DWDO and conducted the scenario analysis in order to identify the
sensitivity of DWDO, and to know how they alter the decision
(Table 3).

The effect of multiple hyperparameters on the mean reward of
the episodes is shown in Fig. 8. In scenario A3, DWDO converged
quickly to a high reward when the weight of the water quality
reward (kwq) was the highest, and the lake had a high target of TP
(Fig. 8a). Scenario A4 was similar to A3 when converging on the 50
episodes. After the kwq decreased, scenario A5 took 100 episodes to
converge, and the converged reward became increasingly lower.
Therefore, increasing the kwq was helpful to increase the reward. If
the kwq were constant and the water quality targets changed, the
reward and convergence speed were higher in scenarios A3eA6
than in A1 and A2 (likewise, B2 is higher than B1 in Fig. 8b). We
found the water quality targets strongly influenced the reward
function. Assuming that the TNwd or TPwd was higher than the lake
at any given time; the more water was transferred, the more pol-
lutants entered the lake, and the TN or TP of the lake would be
worse even though its water circulation is faster. If the TNwd or TPwd
was close to the threshold WQwd0, changing the AWD does not
significantly improve the water quality of the lake (Figs. S4, S5).
Therefore, the water quality target must be lower than WQwd0.
Otherwise, the larger the AWD, the worse the lake water quality.
Furthermore, the WQwd0 might change over time. In this study, we
set wqTN;target as 2 mg L�1 and wqTP;target as 0.05 mg L�1 and were
consistent with Class V and III of the Chinese Environmental Quality
Standards for surface water, respectively, which were below the
dynamic changing thresholds.

The DDPG calculated the cumulative reward over multiple time
steps using the discount factor g. The smaller g is, the faster the
next reward declines [44]. Additionally, the higher the reward, the
faster the training (Fig. 8c). The training interval time and the soft
update factor of the networks had little effect on the DWDO reward
(Fig. 8d and e); however, the network architecture and learning rate
of the optimizer affects the stability of the algorithm (Fig. 8f and
Fig. S6). Remarkably, the DWDO failed to train in scenarios A2 and
F1, meaning that the reward suddenly decreased instead of
increasing during training. It was inferred that the random initial-
ization of DDPG and the stochastic process (TNwd or TPwd from a
uniform distribution) might have caused this problem. It is note-
worthy that, unsuitable hyperparameters may affect the conver-
gence of the DRL or cause non-convergence.

3.5. Visions of integrating DRL with water quality management

As mentioned above, deep reinforcement learning maximally
optimized the dynamic water diversion decision problem through
interactions with the Environment. As a general and expansible
approach, it decouples the dynamic optimization problem into two
systems that interact sequentially over time. One is an entity
(agent) that makes decisions, and the other is an object (Environ-
ment) affected by those decisions. Any factor outside of the entity
can be part of the Environment. This architecture enables DRL to
cope with various optimization problems, even if the states of the
Environment are partially observable in the simulated or real world.
The optimal strategy learned by the agent results from the sys-
tematic evolution of perception, knowledge representation,



Fig. 7. The contribution (SHAP value) of input factors to the diversion decision and their interactions. a, The contribution distribution of factors to increase or decrease the decision.
The bar represents the average contribution, and the y-axis represents the contribution of TP and TN concentration of water diversion (TPwd and TNwd), Dissolved organic nitrogen
mass (DON), PO4 mass (PO4), PO4 input (PO4_PS), PO4 outflow (PO4_EXIT), NH3eN input (RNH4_PS), NO3eN input (RNO3_PS), Benthic PO4 exchange (PO4_BEN1), Benthic NH3eN
exchange (RNH4_BEN1), Phosphorus in algae (ALGAEP), Particle organic phosphorus input (POP_PS), Particle organic phosphorus outflow (POP_EXIT), Nitrogen in algae (ALGAEN),
Mineralization of DOP (PO4_FROM_DOP), NH3eN outflow (RNH4_EXIT), Benthic NO3eN interaction (RNO3_BEN1), Dissolved organic phosphorus mass (DOP), Average hourly wind
speed (windspeed), Average hourly wind direction (winddirec). b, The heatmap of contribution along a timeline. The x-axis represents the timeline, and the y-axis represents 67
input factors (Table S3). The redder the color in the heatmap represents a greater contribution to an increase in AMD. The bluer the color represents a greater contribution to a
decrease in AMD. c, The positive (increasing the AWD) and negative (decreasing the AWD) contribution trends and their net value (corresponding to AWD). deh, The relationships
of SHAP values and TP of water diversion (d), TN of water diversion (e), PO4 mass of Lake Caohai (f), benthic PO4 exchange (g), and wind speed (h). The red dashed line depicts the
threshold of the x-axis whose SHAP value was close to 0. iem, The interaction of SHAP values between PO4 mass (PO4) and phosphorus mass in algae (ALGAEP) (i), benthic PO4

exchange (PO4_BEN1) and algal biomass (ALGAEP) (j), PO4 input (PO4_PS) and hydrolysis flux of POP (DOP_FROM_POP) (k), NH3eN input (RNH4_PS) and algal biomass (ALGAEN)
(l), and solar radiation (rad_max) and maximum air temperature (tem_max) (m).
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memory, planning, imagination, and other abilities. In this study, in
order to increase the water quality and water diversion rewards, an
agent must equip with the ability of perception (to examine the
water quality status of the lake), knowledge (to understand water
quality response relationships), attention (to focus on key driving
factors), memory (to remember the historical experience), and
planning (to make the water diversion decision). Fortunately, the
general goal of maximizing rewards was enough to drive actions
that exhibit most of these abilities [45]. In addition, the agent was
placed in a corresponding complex Environment where multiple
intelligences would be reinforced. As a consequence, DRL becomes
more capable of complex dynamic optimization problems [46].

The accuracy of DWDO was attributed to the process-based
model and DDPG. The EFDC model was based on hydrodynamic
and biochemical processes and could simulate eutrophic lakes.
Assuming an extreme rainfall event and large amounts of water and
9

non-point source pollutants were discharged into the lake, the
model could simulate the adaptive adjustment of internal cycles
through sedimentation, outflow, and denitrification [36]. The pa-
rameters determined themodeling performance and quantified the
process rate of change. To identify the impact of the model pa-
rameters on EFDC and DWDO, we tested the variation of simula-
tions of water quality and the optimal water diversion decisions
under multiple sets of parameters (Fig. 9). Interestingly, the trends
during simulated water quality and optimal decisions remained
consistent with the baseline, even though the variation in param-
eters was large (Table S3). Furthermore, it was found that both the
reward and objective functions converge to the same level during
DWDO training, confirming the strong robustness of the algorithm
under model parameter uncertainty.

As an integrated approach, DWDO was similar to the traditional
“simulation-optimization”methods that coupled machine learning



Table 3
Hyperparameter settings in DWDO under different scenarios.

Scenario group ID Hyperparameters

A A1 kwq ¼ 95; kd ¼ 5; wqTN;target ¼ 2; wqTP;target ¼ 0.05
A2 kwq ¼ 90; kd ¼ 10; wqTN;target ¼ 2; wqTP;target ¼ 0.05
A3 kwq ¼ 99; kd ¼ 1; wqTN;target ¼ 1.5; wqTP;target ¼ 0.1
A4 kwq ¼ 95; kd ¼ 5; wqTN;target ¼ 1.5; wqTP;target ¼ 0.1
A5 kwq ¼ 90; kd ¼ 10; wqTN;target ¼ 1.5; wqTP;target ¼ 0.1

B B1 Action duration ¼ 15; wqTN;target ¼ 2; wqTP;target ¼ 0.05
B2 Action duration ¼ 15; wqTN;target ¼ 1.5; wqTP;target ¼ 0.1

C C1 g ¼ 0.99
C2 g ¼ 0.95
C3 g ¼ 0.90; wqTN;target ¼ 1.5; wqTP;target ¼ 0.1

D D1 Training interval ¼ 5
D2 Training interval ¼ 10

E E1 Target model update rate ¼ 0.005
E2 Target model update rate ¼ 0.01

F F1 Learning rate ¼ 0.005
F2 Learning rate ¼ 0.01

Fig. 8. The impact of different DWDO hyperparameters on the mean reward of each
episode. a, The weights of the reward and water quality targets; b, Action duration; c,
Discount factor; d, Training interval; e, Target networks update rate; f, Learning rate.

Fig. 9. The change of simulated TN (a), simulated TP (b), and optimal amount (c) of
water diversion by DWDO, under the four settings of uncertain EFDC parameters that
were recorded in Table S3.
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algorithms to a mechanistic model [47e49]. In general, the
“simulation-optimization”method consumes a high computational
cost due to the numerical solution of hydrodynamic, water quality,
and algal equations of thousands of grids over millions of time
steps. Deep learning training is another time-consuming task in
DRL; however, it balances underfitting and overfitting [50]. In this
study, DWDO took only three days to complete the training on a
personal computer with an 8-core CPU (Intel i7-10700) and 32 GB
RAM. The fast training was attributed to the following facts: (a) DRL
stored and reused recent historical data, so the usage of the data
was higher than the “simulation-optimization” methods; (b) DRL
simplified the optimization of maximizing cumulative rewards of
multiple time steps into the calculation of reward through the
discount factor, and had it update the neural network weights at
each step. Nevertheless, the “simulation-optimization” methods
typically optimize the decision at the end of the entire period
[49,51]. In addition, DRL handled the trade-off between
10
exploitation and exploration better than common optimization
algorithms and was robust in searching for the global optimum
[52]. For example, in this study, DRL did not directly optimize the
AWD, instead optimized the massive weights of DL, which stood for
the AWD generating strategy. This strategy can be understood as an
approach to decision-making rather than the specific values of the
decision variables used by traditional algorithms.

This provided new ideas for complex optimization problems and
can be used to solve long-lasting optimization problems in a static
system. For instance, the problem of the annual compliance goal of
water quality will be decomposed into multiple subgoals at an in-
terval of one month. We then used DRL to solve and obtain the
optimal operating decisions for each month. In addition, DRL is
better at solving the following two types of problems: (a) sparse
reward (delayed reward feedback) and diverse types of state and
action spaces [53,54]; and (b) decision-making of multiple agents
in game theory [30,55,56]. Here an agent will regard the action of
other agents as the states of the Environment. These advantages
have greatly progressed in robotics, industrial automation, and
driverless cars. Therefore, DRL will make a significant difference in
water quality management.

In summary, the systematic evolution of intelligent abilities,
including perception, knowledge representation, memory, and
planning, dominate DWDO performance within a complex Envi-
ronment. DWDO outweighed the traditional methods with a faster
training speed and has great potential in water quality
management.
4. Conclusions

To maximize water quality improvement of water diversion and
reduce operation costs, we proposed a dynamic DWDO. Using a
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coupled complex process-based model with deep reinforcement
learning, we verified its performance on a eutrophic lake, explained
optimal decision-making strategies, and tested the hyper-
parameters' diverse sets. The main conclusions are:

(a) The Niulan RivereDianchi Water Diversion project aimed to
improve the water quality of the eutrophic lake; however, its
effectiveness was vulnerable to the changing water quality
and the lake, as well as meteorological factors.

(b) The DWDO training was conducted using hundreds of epi-
sodes via a multi-stage strategy trial, leading to decreased TN
and TP of the lake by 7% and 6%, respectively, and a dramatic
reduction of AWD.

(c) The contribution of states to the diversion decision varied
with the specific value of inputs. The adaptive adjustment of
the diversion decisionwas dominated by the water quality of
water diversion and the interactions between the input fac-
tors that co-drove the change of AWD.

(d) Hyperparameters in the Environment and DDPG had a sig-
nificant impact on the reward convergence of DWDO. It was
suitable to meet diverse preferences on the weights of water
quality and diversion, water quality targets, and action
duration. Meanwhile, DWDO was robust under various
model parameter uncertainties.
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