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A B S T R A C T

Artificial General Intelligence (AGI) has been a long-standing goal of humanity, with the aim of creating machines capable of performing any intellectual task that
humans can do. To achieve this, AGI researchers draw inspiration from the human brain and seek to replicate its principles in intelligent machines. Brain-inspired
artificial intelligence is a field that has emerged from this endeavor, combining insights from neuroscience, psychology, and computer science to develop more
efficient and powerful AI systems. In this article, we provide a comprehensive overview of brain-inspired AI from the perspective of AGI. We begin with the current
progress in brain-inspired AI and its extensive connection with AGI. We then cover the important characteristics for both human intelligence and AGI (e.g., scaling,
multimodality, and reasoning). We discuss important technologies toward achieving AGI in current AI systems, such as in-context learning and prompt tuning. We also
investigate the evolution of AGI systems from both algorithmic and infrastructural perspectives. Finally, we explore the limitations and future of AGI.
1. Brain-inspired AI and AGI

The human brain is widely considered one of the most intricate and
advanced information-processing systems in the world. It comprises over
86 billion neurons,1 each capable of forming up to 10,000 synapses with
other neurons,2 resulting in an exceptionally complex network of con-
nections that allows for the proliferation of intelligence. Along with the
physiological complexity, the human brain exhibits a wide range of char-
acteristics that contribute to its remarkable functional capabilities.3 For
example, it can integrate data from multiple sensory modalities, such as
vision, hearing, and touch, allowing it to form a coherent perception of the
world.4 The brain's ability to perform parallel processing5,6 is also essential
for efficiently handling multiple information streams simultaneously. This
is fulfilled via the connections and real-time communications among
different brain regions, though the mechanism is not fully understood.7

Besides, the brain is highly adaptable, capable of reorganizing its structure
and function in response to changing environments and experiences.8 This
property, known as neuroplasticity,8 enables the brain to learn and develop
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new skills throughout life. The human brain is also notable for its
high-level cognitive functions, such as problem-solving, decision-making,
creativity, and abstract reasoning, supported by the prefrontal cortex,9,10 a
brain region that is particularly well-developed in humans.11

Creating artificial general intelligence (AGI) systems that have human-
level or even higher intelligence and are capable of performing a wide
range of intellectual tasks, such as reasoning, problem-solving, and crea-
tivity, is the pursuit of humanity for centuries, which can date back to the
mid-20th century. In the 1940s, pioneers such as Alan Turing developed
early ideas about computing machines and the potential for them to
simulate human thinking.12 From then on, seeking to replicate the prin-
ciples of human intelligence in artificial systems has significantly pro-
moted the development of AGI and the corresponding applications. These
principles include the structure and function of neural networks, the
plasticity of synaptic connections, the dynamics of neural activity, and
more. In 1943, McCulloch and Pitts proposed the very first mathematical
model of an artificial neuron,13 also known as McCulloch-Pitts (MCP)
Neuron. Inspired by the Hebbian theory of synaptic plasticity, Frank
hing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is
s/by/4.0/).
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Rosenblatt came up with the perceptron, a major improvement over the
MCP neuronmodel,14 and showed that by relaxing some of theMCP's rules
artificial neurons could actually learn from data. However, the research of
artificial neural network had stagnated until the backprogation was pro-
posed by Werbos in 1975.15 Backpropagation was inspired by the way the
brain modifies the strengths of connections between neurons to learn and
improve its performance through synaptic plasticity. Backpropagation at-
tempts to mimic this process by adjusting the weights (synaptic strengths)
between neurons in an artificial neural network. Despite this early pro-
posal, backpropagation did not gain widespread attention until the 1980s,
when researchers such as David Rumelhart, Geoffrey Hinton, and Ronald
Williams published papers that demonstrated the effectiveness of back-
propagation for training neural networks.16

Convolutional neural networks (CNNs) are one of the most widely
used and effective types of neural networks for processing visual infor-
mation.17 CNNs are also inspired by the hierarchical organization of the
visual cortex in the brain, which can be traced back to the work of David
Hubel and Torsten Wiesel in 1960s.18 In the visual cortex, neurons are
arranged in layers, with each layer processing visual information in a
hierarchical manner. The input from the retina is first processed by a
layer of simple cells that detect edges and orientations, and then passed
on to more complex cells that recognize more complex features such as
shapes and textures. Their work provided insights into how the visual
system processes information and inspired the development of CNNs that
could mimic this hierarchical processing process. Attention mechanisms
in artificial neural network are also inspired by the way human brain
selectively attend to certain aspects of sensory input or cognitive pro-
cesses, allowing us to focus on important information while filtering out
irrelevant details.19 Attention has been studied in the fields of psychology
and neuroscience for many years, and its application to artificial intelli-
gence significantly advances our steps towards AGI. The “Transformer”
model, based on self-attention mechanism, has become the basis for
many state-of-the-art artificial neural networks such as BERT20 and
GPT.21 By adapting self-attention mechanisms into image processing,
Vision Transformer (ViT)22 model demonstrated state-of-the-art perfor-
mance in various computer vision (CV) tasks by representing the image
as a sequence of patches.

Recently, more and more evidence suggests that artificial neural
networks (ANNs) and biological neural networks (BNNs) may share
common principles in optimizing network architecture. For example, the
property of small-world in brain structural and functional networks has
been extensively studied in the literature.23–25 In a recent study, neural
networks based on Watts-Strogatz (WS) random graphs with small-world
properties have demonstrated competitive performances compared to
hand-designed and NAS (neural architecture search)-optimized
models.26 Additionally, post-hoc analysis has shown that the graph
structure of top-performing ANNs, such as CNNs and Multilayer Per-
ceptron (MLP),27,28 is similar to that of real BNNs, such as the network in
the macaque cortex.29 Chen et al. proposed a unified and
biologically-plausible relational graph representation of ViT models,
finding that model performance was closely related to graph measures
and the ViT has high similarity with real BNNs.30 Zhao et al. synchro-
nized the activation of ANNs and CNNs and found that CNNs with higher
performance are similar to BNNs in terms of visual representation acti-
vation.31 Liu et al. coupled the artificial neurons in BERT model with the
biological neurons in the human brain, and found that artificial neurons
can carry mearningful linguistic/semantic information and anchor to
their biological neurons signatures with interpretablility in a neuro-
linguistic context.32 Zhou et al. treated each hidden dimension in
Wav2Vec2.0 as an artificial neuron and connected them with biological
counterparts in the human brain, suggesting a close relationship between
the two domains in terms of neurolinguistic information.33

Following this trend, there has been growing interest in developing
brain-inspired artificial intelligence by drawing inspiration from some
human brain prior knowledge, such as the organization of brain structure
and function. For example, Huang et al.34 proposed a brain inspired
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adversarial visual attention network (BI-AVAN) which imitates the
biased competition process in human visual system to decode the human
visual attention. Inspired by the core-periphery organization of human
brain, Yu et al.35 proposed a core-periphery principle guided vision
transformer model (CP-ViT) for image recognition with improved per-
formances and interpretability. Similarly, Zhao et al.36 implemented the
core-periphery principle in the design of network wiring patterns and the
sparsification of the convolution operation. The proposed core-periphery
principle guided CNNs (CP-CNNs) demonstrate the effectiveness and
superiority compared to CNNs and ViT-based methods. Another groups
of studies opted for spiking neural networks (SNNs)37 which closely
emulate the behavior of biological neurons in the brain. For example,
SNNs was employed to map and understand the spatio-temploral brain
data,38 decode and understand muscle activity from electroencephalog-
raphy signals,39 and brain-machine interfaces.40,41

Brain-inspired AI has also contributed to the development of hard-
ware architectures that mimic the structure and function of the brain.
Neuromorphic computing, a field of study that aims to design computer
hardware that emulates the biological neurons and synapses, has also
gained increasing attention in recent years.42–47 Neuromorphic chips are
designed to process information in a parallel and distributed way, similar
to the way the brain works, which can lead to significant improvements
in efficiency and speed compared to traditional computing architectures.
Some of the neuromorphic chips, such as IBM's TrueNorth chip48 and
Intel's Loihi chip,45 use spiking neural networks to process information in
a way that is closer to how the brain processes information. These chips
have been used for a wide range of applications, including image and
speech recognition,49 robotics,50 and autonomous vehicles.51 The
advancement of brain-inspired hardware also provides a potential for
significant breakthroughs in the field of AGI by paving the road for
generalized hardware platforms.47

Overall, brain-inspired AI plays a crucial role in the development of
AGI (Fig. 1). By drawing inspiration from the human brain, researchers
can create algorithms and architectures that are better suited to handle
complex, real-world problems that require a high degree of flexibility and
adaptability. This is especially important for AGI, which aims to develop
machines that can perform a wide range of tasks, learn from experience,
and generalize their knowledge to new situations. The human brain is
one of the most complex information-processing systems known to us,
and it has evolved over millions of years to be highly efficient and
effective in handling complex tasks. By studying the brain and devel-
oping AI systems that mimic its architecture and function, researchers
can create AGI that is more sophisticated and adaptable, bringing us
closer to the ultimate goal of creating machines that can match or surpass
human intelligence. In turn, AGI also has the potential to benefit human
intelligence and deepen our understanding of intelligence. As we
continue to studyand understand both human intelligence and AGI, these
two systems will become increasingly intertwined, enhancing and sup-
porting each other in new and exciting ways.

2. Characteristics of AGI

2.1. Scale

The scale of brains varies greatly across different animal species,
ranging from a few thousand neurons in the case of simple invertebrates
such as nematode worms,52 to over 86 billion neurons in the case of
humans.1 For example, the brain of a fruit fly contains around 100,000
neurons,53 and the brain of a mouse contains around 70 million neu-
rons.54 For primates, macaque monkey's brain has around 1.3 billion
neurons55 while the chimpanzee's brain have around 6.2 billion neu-
rons.56 Compared to other animals, the human brain is the most complex
and sophisticated biological structure known to science,57 containing
over 86 billion neurons.1 The scale of the brain, i.e., the number of
neurons, is often correlated with the cognitive abilities of the animal and
considered as a factor of intelligence.1,56 The size and complexity of the
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brain regions associated with specific cognitive functions, such as lan-
guage or memory, are often directly related to the number of neurons
they contain.58–60

We intend to use large language models (LLMs) (see Table 1) as one
possible medium to study brain-inspired AGI, since LLMs are among the
first models that demonstrate human-level performance across diverse
tasks.121 The relationship between the number of neurons and cognitive
abilities is also relevant for LLMs such as GPT-2 and GPT-3. While GPT-2
has 1.5 billion parameters and was trained on 40 gigabytes of text data,
GPT-3 has 175 billion parameters and was trained on 570 gigabytes of
text data. This significant increase in the number of parameters has
enabled GPT-3 to outperform GPT-2 on a range of language tasks,
demonstrating an increase in its ability to perform complex language
tasks. In fact, GPT-3 has been shown to achieve human-like performance
on several natural language processing benchmarks, such as
question-answering, language translation, and text completion tasks.122

Its size and capacity for natural language processing has made it a
powerful tool for various applications, including chatbots, content gen-
eration, and language translation.

This trend is similar to the way larger brains are associated with more
complex cognitive functions in animals. As LLMs continue to scale up, it
is expected that they will become even more capable of few-shot learning
of new skills from a small number of training examples, similar to how
animals with larger brains have more sophisticated cognitive abilities.
This correlation suggests that scale may be a crucial factor in achieving
AGI. However, it's worth noting that the number of parameters alone
does not determine the intelligence of an LLM. The quality of the training
data, the training process, and the architecture of the model also play
important roles in its performance.

In addition, there is a need to research means that empower resource-
limited institutions and individuals to access and develop AGI. Some
possible solutions include quantization of existing large models,123

development of efficient architectures,124 or building high-quality data-
sets that facilitate model training.125

As researchers continue to improve LLMs and explore new ways to
advance AGI, it will be interesting to see how the relationship between
the number of parameters and cognitive abilities evolves.

2.2. Multimodality

The human brain's ability to process and integrate information from
multiple sensory modalities simultaneously is a remarkable feat. This
feature allows individuals to understand the world around them through
various sources of information, such as sight, sound, touch, taste, and
smell. Moreover, processing multimodal information enables people to
make more accurate and comprehensive assessments of their environ-
ment and communicate effectively with others. Consequently, successful
learning frommultiple modalities can enhance human cognitive abilities.
Fig. 1. The development of AGI has been greatly inspired by the study of human int
example, current language models such as ChatGPT and GPT-4 use reinforcement lea
As we continue to study and understand both human intelligence and AGI, these tw
other in new and exciting ways.
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As we strive to create advanced AGI systems that surpass human intel-
ligence, it is crucial that they are capable of acquiring and ingesting
knowledge from various sources and modalities to solve tasks that
involve any modality. For instance, an AGI should be able to utilize
knowledge learned from images and the knowledge base to answer
natural language questions, as well as use knowledge learned from text to
perform visual tasks. Ultimately, all modalities intersect through uni-
versal concepts, such as the concept that a dog is a dog, regardless of how
it is represented in different modalities (Fig. 2).

To buildmultimodal AI systems, a promising approach is to incorporate
training signals from multiple modalities into LLMs. This requires aligning
the internal representations across different modalities, enabling the AI
system to integrate knowledge seamlessly. For instance, when an AI system
receives an image and related text, it must associate the same object or
concept between the modalities. Suppose the AI sees a picture of a car with
text referring to its wheels. In that case, the AI needs to attend to the part of
the image with the car wheels when processing the text mentioning them.
The AI must “understand” that the image of the car wheels and the text
referring to them describe the same object across different modalities.

In recent years, multimodal AI systems have been experimenting with
aligning text/NLP, images/vision or audio information126 into an
embedding space to facilitate multimodal decision-making. Cross-modal
alignment is essential for various tasks, including text-to-image and
image-to-text generation, visual question answering, and video-language
modeling. In the following section, we provide a brief overview of these
prevalent workloads and the corresponding state-of-the-art models.

2.2.1. Text-to-image and image-to-text generation
CLIP,127 DALL-E,128 and their successor GLIDE,129 VisualGPT130 and

Diffusion131 are some of the most well-known models that tackle image
descriptions (image-to-text generation) and text-to-image generation
tasks. CLIP is a pre-training method that trains separate image and text
encoders and learns to predict which images in a dataset are associated
with various descriptions. Notably, similar to the “Halle Berry” neuron in
humans,132 CLIP has been found to have multimodal neurons that acti-
vate when exposed to both the classifier label text and the corresponding
image,133 indicating a fused multimodal representation. DALL-E, on the
other hand, is a variant of GPT-3 with 13 billion parameters that takes
text as input and generates a sequence of images to match the input text.
The generated images are then ranked using CLIP. GLIDE, an evolution of
DALL-E, still uses CLIP to rank the generated images, but the image
generation is accomplished using a diffusionmodel.131 Stable Diffusion is
also based on diffusion models while it operates on the latent space of
powerful pretrained autoencoders and thus in limited computational
resources while maintaining their quality and flexibility. The VisualGPT
is the evolution of GPT-2 from a single language model to a multimodal
model with a self-resurrecting activation unit to produce sparse activa-
tions that prevent accidental overwriting of linguistic knowledge.
elligence (HI). In turn, AGI has the potential to benefit human intel-ligence. For
rning with human feedback (RLHF) to align their behav-ior with human values.
o systems will become increasingly intertwined, enhancing and supporting each



Table 1
Large models with AGI potential and their modalities.

Year Model Size (B) Alignment Modality

2019 BERT61 0.34 – Text
GPT-162 0.1 – Text

2020 RoBERTa63 0.35 – Text
Distill BERT64 0.1 – Text
GShard65 600 – Text
ERNIE66 10 – Text
BART67 0.1 – Text
T568 11 – Text
XLNet69 0.34 – Text
GPT-270 1.5 – Text

2021 ELECTRA71 0.3 – Text
DeBERTa72 11 – Text
WebGPT73 175 – Text
FLAN74 137 – Text
CPM-275 198 – Text
mT576 13 – Text
T077 11 – Text
GPT-378 175 RLHF Text

2022 CodeGEN79 16 – Text
CodeX80 12 – Text
MT-NLG81 530 – Text
Pythia82 13 – Text
mT083 13 – Text
GLaM84 1200 – Text
Jurassic-185 178 – Text
Gopher86 280 – Text
ERNIE3.087 260 – Text
GPT-J88 6 – Text
GPT-Neo89 2.7 – Text

2023 ST-MoE90 4.1 – Text
GLM91 130 – Text
UL292 20 – Text
Flan T593 11 – Text
Tk-Instruct94 11 – Text
ChatGPT95 175 RLHF Text
InstructGPT96 175 RLHF Text
OPT97 175 – Text
BLOOM98 176 – Text
Sparrow99 70 RLHF Text
OPT-IML100 175 – Text
BlOOMZ101 176 – Text
Galactica102 120 – Text
YaLM103 100 – Text
LamDA104 137 – Text
PaLM105 540 – Text
U-PaLM106 540 – Text
Flan PaLM107 540 – Text
GPT-NeoX108 20 – Text
LLaMA109 65 – Text
GPT-4110 – RLHF Text, Image
PaLM-E111 560 – Text, Image
PaLM2112 340 – Text, Image
LLaVA113 13 – Text, Image
MiniGPT-4114 13 – Text, Image
mPLUG-Owl115 7.2 – Text, Image
LLaMA-Adapter V2116 7 – Text, Image
InstructBLIP117 11 – Text, Image
Multimodal-GPT118 9 – Text, Image
PandaGPT119 7 – Text, Image
LaVIN120 13 – Text, Image
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2.2.2. Visual question answering
Visual question answering is a critical application of multimodal

learning that requires a model to correctly respond to a text-based
question based on an image. The VQA dataset134 presents this task, and
Fig. 2. The concept “dog” repres
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teams at Microsoft Research have developed some of the leading ap-
proaches for it. One of these approaches is METER,135 a general frame-
work for training performant end-to-end vision-language transformers
using a variety of sub-architectures for the vision encoder, text encoder,
multimodal fusion, and decoder modules. This flexibility allows METER
to achieve state-of-the-art performance across a range of tasks. Another
promising approach is the Unified Vision-Language pretrained Model
(VLMo),136 which uses a modular transformer network to jointly learn a
dual encoder and a fusion encoder. Each block in the network contains a
pool of modality-specific experts and a shared self-attention layer, of-
fering significant flexibility for fine-tuning. This architecture has shown
impressive results on several benchmark datasets.

2.2.3. Video-language modeling
Traditionally, AI systems have struggled with video-based tasks due

to the high computational resources required. However, this is beginning
to change, thanks to efforts in the domain of video-language modeling
and other video-related mul-timodal tasks, such as Microsoft's Project
Florence-VL. In mid-2021, Project Florence-VL introduced ClipBERT,137

a combination of a CNN and a trans-former model that operates on
sparsely sampled frames. It is optimized in an end-to-end fashion to solve
popular video-language tasks. Subsequent evolu-tions of ClipBERT, such
as VIOLET138 and SwinBERT,139 have introduced Masked Visual-token
Modeling and Sparse Attention to improve the state-of- the-art in video
question answering, video retrieval, and video captioning. While each of
these models has unique features, they all utilize a transformer-based
architecture. Typically, this architecture is coupled with parallel
learning modules to extract data from various modalities and unify them
into a single multimodal representation.

Recently, the emergence of GPT-4 has taken multimodal research to a
new level. According to the latest official research paper,140 GPT-4 not
only exhibits high proficiency in various domains, including literature,
medicine, law, mathematics, physical sciences, and programming but
also fluently combines skills and concepts from multiple domains,
demonstrating impressive compre-hension of complex ideas. Further-
more, GPT-4's performance in all of these tasks is remarkably close to
human-level performance and often surpasses prior models such as
ChatGPT. Given the breadth and depth of GPT-4's capabilities, it could be
viewed as an early version (albeit incomplete) of an AGI system.

2.2.4. Multimodal learning with auditory data
Data2vec,141 a recent development from Meta AI, presents a novel

self-supervised learning framework which bypasses the need for tradi-
tional labeled data. Lever-aging relationships within data, it unifies
learning across three distinct modalities: images, text, and speech.
Employing a dual-mode architecture, it uses a "teacher" model to
generate sample representations, and a "student" model to learn from the
teacher through the minimization of an objective function. This unique
methodology achieves state-of-the-art results in each of the three mo-
dalities, marking a significant stride towards the realization of artificial
general intelligence.

Microsoft's Kosmos-1126 is a multimodal large language model that
processes text, visual, and auditory data. Utilizing multimodal web-based
corpora, it comprehends general modalities and demonstrates contextual
learning and instruction following. Its abilities encompass language un-
derstanding, image-captioning, visual question answering, and image
recognition, highlighting the capacity for cross-modal transfer, which
facilitates the knowledge exchange be-tween language and multimodal
ented in different modalities.
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inputs.
It is important to note that, in contrast to single-modality LLMs,

multimodal LLMs exhibit superior performance not only in cross-modal
tasks but also in single-modality tasks. For instance, the integration of
multimodality in GPT-4 results in better performance in textual tasks
compared to ChatGPT.140 This aligns with the way humans perceive the
world through multiple sensory modalities.

2.3. Alignment

While some LLMs like BERT,20 GPT,21 GPT-2,142 GPT-3,122 and
Text-to-Text Transfer Transformer (T5)143 have achieved remarkable
success in specific tasks, they still fall short of true AGI due to their
tendency to exhibit unintended behaviors. For example, they might
generate biased or toxic text, make up facts, or fail to follow user in-
structions. The main reason behind these issues is the misalignment be-
tween the language modeling objective used for many recent LLMs and
the objective of safely and helpfully following user instructions. There-
fore, while these models have made significant advancements, they are
not yet capable of emulating human-like reasoning, decision-making, and
understanding. To achieve AGI, it's crucial to align language models with
the user's intention. This alignment will enable LLMs to function safely
and helpfully, making them more reliable for complex tasks that require
nuanced decision-making and understanding. To achieve this, there is a
need for better algorithms that steer agents towards human values while
fostering cross-disciplinary collaborations to clarify what “human
values” mean.

Recent developments in large language models (LLMs), such as
Sparrow,144 InstructGPT,145 ChatGPT, and GPT-4, have addressed the
issue of alignment with human instructions using reinforcement learning
from human feedback (RLHF). Reinforcement learning is a type of ma-
chine learning where the model learns to make decisions based on
feedback it receives in the form of rewards. The goal of the model is to
maximize its total reward over time. RLHF uses human preferences as a
reward signal to fine-tune the LLMs and enable LLMs to learn and
improve from human feedback, which tries to predict what answers the
humans will react positively to and helps in reducing unintended be-
haviors and increasing their reliability for complex tasks. Since the model
learns from humans in real-time, it becomes better and better at pre-
dicting. At the end of the training process, AI systems start to imitate
humans. RLHF has shown promising results and is a significant step to-
wards developing LLMs that can function safely and helpfully, aligning
with human values and intentions.

2.4. Reasoning

Reasoning plays a crucial role in human intelligence and is essential
for decision-making, problem-solving, and critical thinking. A previous
study146 has explored factors that influence intelligence levels by
comparing different attributes of brains across various mammalian
species. The findings suggest that cognitive abilities are primarily
centered on the absolute number of neurons. Among mammals, the
human brain has the highest number of neurons, which gives it superior
reasoning and intelligence abilities compared to other species.
Recently, a similar phenomenon has also emerged in the LLMs. It has
been observed that the LLMs exhibit emergent behaviors, such as the
ability to reason, when they reach a certain size.147 To enhance LLM's
reasoning abilities, two major types of approaches have been devel-
oped. The first type, known as Prompt-based methods,148–152 is more
widely researched and involves leverag-ing appropriate prompts to
better stimulate the reasoning abilities that LLMs already possess. The
second type of approaches involves introducing program code into the
pre-training process,151,153,154 where it is trained alongside text to
further enhance the LLM's reasoning ability. The two approaches have
fundamentally different directions: using code to enhance LLM
reasoning abilities represents a strategy of directly enhancing LLM
5

reasoning abilities by increasing the diversity of training data; while the
prompt-based approach does not promote LLM's own reasoning abili-
ties, but rather provides a technical method for LLM to better demon-
strate this ability during problem-solving.

Currently, most existing works in the field of large language models
(LLM) reasoning adopt prompt-based methods, which can roughly be
divided into three technical routes. The first approach is the zero-shot
Chain of Thought (CoT), proposed by.148 This method is simple and
effective, involving two stages. In the first stage, a prompt phrase, “Let's
think step by step”, is added to the ques-tion, and the LLM outputs a
specific reasoning process. In the second stage, the reasoning process
output by the LLM in the first stage is concatenated with the question,
and the prompt phrase, “Therefore, the answer (arabic numerals) is”, is
added to obtain the answer. Such a simple operation can significantly
increase the effectiveness of the LLM in various reasoning tasks. For
example, Zero-shot-CoT achieves score gains from 10.4% to 40.7% on
arithmetic benchmark GSM8K.148 The second approach is the Few-Shot
CoT,149 which is currently the main direction of LLM reasoning
research. The main idea of Few-Shot CoT is straightforward: to teach the
LLM model to learn reasoning, provide some manually written reasoning
examples, and clearly explain the specific reasoning steps one by one
before obtaining the final answer in the examples. These manually
written detailed reasoning processes are referred to as Chain of Thought
Prompting. The concept of CoT was first explicitly proposed by.149

Although the method is simple, the reasoning ability of the LLM model
has been greatly improved after applying CoT. The accuracy of the
GSM8K mathematical reasoning dataset increased to around 60.1%.149

Based on CoT, subsequent works150,151 have expanded from a single
Prompt question to multiple prompt ques-tions, checked the correctness
of intermediate reasoning steps, and improved the accuracy of multiple
outputs using weighted voting. These improvements have continuously
raised the accuracy of the GSM8K test set to around 83%. The third
approach is “Least-to-most prompting”.155 The core idea is to decompose
a complex reasoning problem into several easier-to-solve subproblems
that can be solved sequentially, whereby solving a given subproblem is
facilitated by the answers to previously solved subproblems. After solving
each subproblem, we can derive the answer to the original problem from
the answers to the sub-problems. This idea is highly consistent with the
divide-and-conquer algorithm that humans use to solve complex prob-
lems. As our understanding of the brain and LLMs continues to deepen, it
will be interesting to investigate whether these two network systems
share an optimal structure.

3. Important technology

Language models, such as LLMs, rely on several crucial techniques
include zero-shot prompting, few-shot prompting, in-context learning,
and instruct. The underlying expectation of these techniques is that AI
systems can learn new tasks rapidly by leveraging what they have learned
in the past, much like humans do. Through the use of these techniques,
language models can be trained to perform a wide range of tasks, from
generating coherent text to answering complex questions, with greater
accuracy and efficiency. Ultimately, these advancements bring us closer
to realizing the potential of AI to assist and augment human intelligence
in new and exciting ways. Of these techniques, instruct serves as the
interface utilized by ChatGPT, where users provide task descriptions in
natural language, such as “Translate this sentence from Chinese to En-
glish.” Interestingly, zero-shot prompting was initially the term used for
Instruct. During the early stages of zero-shot prompting, users faced
difficulty expressing tasks clearly, leading them to try various wordings
and sentences repeatedly to achieve optimal phrasing. Presently, Instruct
involves providing a command statement to facilitate LLM understand-
ing. In Context Learning and few-shot prompting share similar purposes,
which involve presenting LLMs with a few examples as templates to solve
new problems. Accordingly, this article places emphasis on introducing
In Context Learning and Instruct.
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3.1. In-context learning

The foremost capability of the human brain resides in its robust
learning capacity, enabling the execution of cognitive, computational,
expressive, and motor functions predicated on linguistic or visual
prompts, often with minimal or no examples. This attribute is central to
the attainment of human-level AGI. Re- cent advancements in large-scale
AGI models, specifically GPT-4, have demonstrated such a promising
capability. They are pretrained on massive multimodal datasets,
capturing a wide range of tasks and knowledge while understanding
diverse prompts from both linguistic and visual domains. This enables in
context learning akin to the human brain's working mode, and driving
AGI into real-world applications,121 including applications in health-
care.156–158 In fact, following the emergence of large-scale models like
GPT-4 and Midjourney V5, many industries, such as text processing and
illustration, have witnessed disruptive scenarios where AGI liberates
human labor. These models leverage prior knowledge acquired from
pretraining across various tasks and context, allowing rapid adaptation to
novel tasks without the need for extensive labeled data for fine-tuning,
which is a critical challenge in fields like medical159 and robotics160

where labeled data is often limited or even unavailable.
In the context of AGI, in-context learning denotes the model's capacity

to comprehend and execute new tasks by providing a limited number of
input-output pair examples161 within prompts or merely a task descrip-
tion. Prompts facilitate the model's apprehension of the task's structure
and patterns, while in context learning exhibit similarities to explicit
fine-tuning at the prediction, representation, and attention behavior
levels. This allows them to generalize to and perform new tasks even
better without further training or fine-tuning162 and reduces the likeli-
hood of overfitting downstream labeled training data.

Despite the absence of fine-tuning requirements in these large-scale
AGI models, the trade-offs include increased computational costs due
to their massive parameter scale and the potential need for expert
knowledge in formulating effective prompts with examples during
inference. Potential solutions entail hardware advancements and the
integration of more refined domain-specific knowledge during the pre-
training phase.

3.2. Prompt and instruction tuning

Like human infants generally acquire various concepts about the
world mostly by observation, with very little direct intervention,163 the
large-scale AGI models also gain wide-ranging knowledge after initial
large-scale unsupervised training and have achieved remarkable gener-
alization performance. The prompt and instruction tuning-based
methods allow the pretrained models to achieve zero-shot learning in
numerous downstream applications.164

The human brain is always an efficient and orderly processor,
providing targeted feedback for the current task rather than speaking
nonsense. In addition to the brain's innate pursuit of efficiency, moral and
legal constraints ingrained in human development also ensure that
human interactions are orderly and beneficial. For AGI models to reach
human-level performance, producing truthful and harmless results based
on instructions is an essential requirement. Although current large-scale
AGI models have powerful generative capabilities, a key question is
whether these capabilities can be aligned with users' intent. This is
important as it relates to whether the model can produce satisfactory
results for users, even in situations where tasks and prompts are unseen
and unclear. Additionally, as these models become more widely used,
untruthful and toxic outputs must be effectively controlled.

InstructGPT145 is at the forefront in this regard. In order to improve
the quality of model outputs, supervised training is conducted using
human-provided prompts and demonstrations. The outputs generated by
different models are then collected and ranked by humans based on their
quality. The models are further fine-tuned using a technique known as
RLHF,165 which utilizes human preferences as rewards to guide the
6

learning process. In addition, To avoid InstructGPT aligning exclusively
with human tasks at the expense of neglecting classical NLP tasks, a small
amount of the original data used to train GPT-3 (InstructGPT's founda-
tion) is mixed in. Recent research166,167 has demonstrated that incor-
porating larger-scale and more diverse task instruction datasets can
further enhance model performance.

3.3. Evolution of AGI

AGI refers to an advanced level of artificial intelligence (AI) that
mirrors human-like abilities in understanding, learning, and applying
knowledge across a broad spectrum of tasks and subject areas. Unlike
narrow AI (e.g., a tailored convolu-tional neural network for face recog-
nition), which is designed to perform specific tasks, AGI is capable of
adapting to new situations, transferring domain knowledge, and exhib-
iting human-like cognitive abilities beyond streamlined and for-matted
task-solving workflows in the current literature.168,169 Overall, AGI
could demonstrate remarkable versatility and adaptability, While the
scientific community has not yet accomplished genuine AGI, the
advancement made in artificial intelligence and its subfields (e.g., deep
learning), has laid the foundation for further exploration and the quest
towards achieving AGI. Here's a brief overview of the history of AGI.

3.4. Early days of AI

The AGI concept can be traced back to the work of Alan Turing, who
proposed the idea that machines could think and learn like humans in a
1950 manuscript “Computing Machinery and Intelligence”.12 Turing's ideas
laid the ground-work for AI development and computer science in
general.

In 1956, The Dartmouth workshop,170 organized by pioneers such as
John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude
Shannon, marked the inception of AI as an academic discipline. Their
objective was to developmachines that could imitate human intelligence.
This collective endeavor played a significant role in shaping the future
course of the AI community.

The initial optimism and enthusiasm in the field led to the develop-
ment of early AI programs such as the General Problem Solver,171 Logic
Theo-rist,172 and ELIZA.173 However, these AI systems were limited in
scope and unpractical for large scale real-world applications. A period
known as the “AI winter” occurred because of a decline in funding and
interest in artificial intelligence research. This was due to the lack of
significant progress made in the field and the unrealistic claims made by
some researchers. Reduced funding support, in turn, led to further
decline in progress and a decrease in the number of published research
papers.

The renewed interest in AI was brought about by artificial neural
networks that were modeled after the structure and function of the
human brain.174,175 The backpropagation algorithm, introduced by
Rumelhart, Hinton, and Williams in 1986,176 allowed neural networks to
learn more efficiently and laid down a solid foundation for modern
neural networks.

In addition, the emergence of machine learning methods such as
support vector machines,177 decision trees,178 and ensemble methods179

proved to be powerful tools for pattern recognition and classification.
These methods propelled AI research and empowered practical applica-
tions, further driving the field forward.

3.5. Deep learning and modern AGI

The development of deep learning, enabled by revolutionary ad-
vancements in computing power and the availability of large datasets,
has led to notable advancements in the field of AI. Breakthroughs in
computer vision, natural langauge processing, and reinforcement
learning are bringing the prospect of AGI closer to becoming a tangible
reality. In particular, the Transformer architec-ture,180 introduced by
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Vaswani et al., in 2017, revolutionized language modeling by leveraging
self-attention mechanisms to capture global dependencies and contextual
relationships between words in a sequence. This breakthrough laid the
foundation for the rise of pre-trained language models, such as BERT20

and its various domain-specific variants,181–183 larger models such as
GPT-3,122 and vision transformer (ViT) based models22 in computer
vision. This shared architectural ancestry has also paved the way for the
development of transformer-based multimodal models.184,185

Since 2019, the introduction of large-scale language models like GPT-
2142 and GPT-3,122 both based on the transformer architecture, have
demonstrated impressive natural language understanding and generation
capabilities. While these models are not yet AGI, they represent a sig-
nificant step of progress towards achieving this goal. Both GPT-2 and
GPT-3 are based on GPT,21 a decoder-only pre-trained language model
that leverages self-attention mecha-nisms to capture long-range de-
pendencies between words in a sequence.

Recent advancements in AI give rise to groundbreaking extensions of
the GPT models, such as ChatGPT and GPT-4. ChatGPT builds upon the
success of GPT-3, incorporating RLHF to generate outputs that properly
align with human values and preferences. The chatbot interface of
ChatGPT has enabled millions of users to engage with AI in a more
natural way, and it has been applied in diverse use cases such as essay
writing, question answering, search, translation,186 data augmenta-
tion,161 computer-aided diagnosis187 and data de-identification.159 On
the other hand, GPT-4 represents a significant leap forward in the GPT
series, with a massive set of 10 trillion parameters. It is capable of
advancedmath, logic reasoning. In addition, the model excels in standard
examinations such as the USMLE, LSAT, and GRE.188 GPT- 4 has broad
applicability and is expected to solve an unprecedented range of prob-
lems. Its development is a testament to the tremendous progress made in
the pursuit of AGI.

3.6. The infrastructure of AGI

One key aspect of AGI is the infrastructure required to support it.
Neural networks have been a major component of this infrastructure, and
their development has evolved significantly since their inception in the
1940s and 1950s. Early ANNs were limited in their capabilities due to
their simple linear models. However, the backpropagation algorithm,15

created byWerbos in 1975, revolutionized the field by making it possible
to efficiently train neural networks with multiple layers, including the
perceptron. This algorithm calculates gradients, which are used to update
the weights of the neural network during training, allowing it to learn
and improve its performance over time. Since the development of
backpropagation, neural network research has advanced rapidly, with
the creation of more sophisticated architectures and optimization algo-
rithms. Today, neural networks are used for a wide range of tasks,
including image classification, natural language processing, and predic-
tion, and continue to be an active area of research in machine learning
and artificial intelligence.

In addition to algorithm, the progress in hardware, particularly the
development of graphics processing units (GPUs) and tensor processing
units (TPUs), has made it possible to train deep neural networks effi-
ciently, leading to the widespread adoption of deep learning. This
progress has enabled the development of more powerful neural net-
works, which can tackle increasingly complex problems and has accel-
erated the research and development of AGI. For example, Microsoft's
investment of $1 billion in OpenAI in 2019 enabled the creation of a
dedicated Azure AI supercomputer, one of the world's most powerful AI
systems. This supercomputer is equipped with over 285,000 CPU cores
and over 10,000 GPUs, and it is designed to support large-scale distrib-
uted training of deep neural networks. Such investments in infrastructure
are critical for the development of AGI.

Recent advancements in AI models, particularly the GPT series,21,142

have provided valuable insights into the infrastructure requirements for
AGI development. To train AI models, three essential components of AGI
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infrastructure are required: massive data requirements, computational
resources, and distributed computing systems. GPT models, including
GPT-2 and GPT-3, were primarily trained on large-scale web datasets,
such as the WebText dataset, which consisted of 45 terabytes of text data
before preprocessing and deduplication, reduced to around 40 gigabytes
of text after preprocessing. Training a GPT model requires powerful
hardware and parallel processing techniques, as exem-plified by GPT-3,
which was trained using large-scale distributed training across multiple
GPUs, consuming a significant amount of computational resources and
energy. Developing an AGI model, such as GPT-4, necessitates distributed
computing techniques. While the specific distributed computing systems
used for training GPT models may not be publicly disclosed, TensorFlow,
PyTorch, and Horovod are distributed computing frameworks that
facilitate the implementa-tion of these techniques. Researchers and de-
velopers can use these frameworks to distribute the training process
across multiple devices, manage device com-munication and synchroni-
zation, and efficiently utilize available computational resources.

4. Discussion

4.1. Limitations

While significant progress has been made in the development of AGI
and brain-inspired AI, there are still several limitations that need to be
overcome before we can achieve true human-level intelligence in ma-
chines. Some of these limitations include:

Limited understanding of the human brain: Despite significant
advancements in neuroscience and brain-inspired AI, we still have a
limited un-derstanding of how the human brain works. This makes it
challenging to create machines that can fully replicate human
intelligence.

Data efficiency: Current AGI and brain-inspired AI systems require
vast amounts of training data121 to achieve comparable performance to
humans. This is in contrast to humans, who can learn from relatively few
examples and generalize to new situations with ease. How to efficiently
learn from few samples is still an opening question. Previous research on
few-shot learning189,190 and efficient learning with limited human
annotation191,192 might provide insights for large AGI models.

Ethics: There are also ethical considerations to consider with AGI. As
these systems become more intelligent, they may be able to make de-
cisions that have far-reaching consequences. Ensuring that these de-
cisions are aligned with human values and ethical principles is critical for
preventing unintended harm. Safety: Safety is also a significant concern
with AGI. Ensuring that these systems do not cause unintended harm,
either through malicious intent193 or unintentional mistakes, is critical
for their widespread adoption. Developing robust safety mechanisms and
ensuring that AGI systems are aligned with human values is essential. In
addition, privacy protection is also of particular importance.159

Computational Cost: Current LLM models require massive computa-
tional resources121 to train and operate, making it challenging to develop
and deploy in a wide range of scenarios. Meanwhile, the computational
cost can limit the number of researchers and organizations working in the
field, which may slow the progress towards AGI. Additionally, the energy
consumption of AGI systems can be prohibitively high, making them
unsustainable from an environmental perspective.

4.2. Future of AGI

The future of AGI is an exciting and rapidly evolving field. While the
development of AGI remains a challenge, it has the potential to revolu-
tionize many aspects of our lives, from healthcare to transportation to
education. One potential avenue for advancing AGI is through the crea-
tion of more powerful and sophisticated AGI foundation models. Recent
breakthroughs in natural langauge processing, computer vision, knowl-
edge graph, and reinforcement learning have led to the development of
increasingly advanced AGI models such as ChatGPT and GPT-4. These
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models have shown impressive capabilities in various applications.
Further advances in AGI foundation model research, as well as im-
provements in hardware and computational algorithms, are very likely to
accelerate the development of AGI.

Another approach to developing AGI is through the integration of
different AI systems and technologies across multiple domains, including
adding human in the loop through reinforcement learning from expert
feedback. For example, combining natural language processing with
computer vision and robotics under the guidance of human experts could
lead to the creation of more versatile and adaptable intelligent systems.
This integration could also help overcome the limitations of current AI
systems, which are often specialized in specific domains and lack the
flexibility to transfer knowledge across domains.

The development of AGI also requires the development of novel ap-
proaches for machine learning, such as more efficient instruct methods,
in-context learning algorithms, and reasoning paradigm, particularly by
learning from the human brain via brain-inspired AI. These approaches
aim to enable machines to learn from unstructured data without the need
of labeling them and rapidly generalize from a few examples, which is
crucial for enabling machines to learn and adapt to new tasks and
environments.

Finally, ethical and societal implications of AGI development must be
considered, including issues related to bias, privacy, and security. As AGI
becomes more powerful and pervasive, it is essential to ensure that it is
developed and used in a responsible and ethical manner that benefits
society as a whole and aligns well with human value. Overall, while the
development of AGI remains a challenge, it has the potential to revolu-
tionize many aspects of our lives and bring significant benefits to society
and humanity. Ongoing research and development in AGI will continue
to drive progress towards the ultimate goal of creating truly intelligent
machines.

5. Conclusion

In this article, we provided a comprehensive overview of brain-
inspired AI from the perspective of AGI, covering its current progress,
important characteristics, and technological advancements towards
achieving AGI. We also discussed the evolution, limitations and the
future of AGI. In conclusion, brain-inspired AI is a promising field that
has the potential to unlock the mysteries of human intelligence and pave
the way for AGI. While significant progress has been made in recent
years, there is still much work to be done to achieve AGI. It will require
advances in technology, algorithms, and hardware, as well as continued
collaboration across multiple disciplines. Nonetheless, the pursuit of AGI
is an important and worthwhile endeavor that has the potential to
transform our world in unprecedented ways. We hope this survey pro-
vides a valuable contribution to this exciting field and inspires further
research and development toward the ultimate goal of AGI.

Credit authorship statement

Lin Zhao: Investigation, Conceptualization, Writing - Original Draft;
Lu Zhang: Investigation, Conceptualization, Writing - Original Draft;
Zihao Wu: Writing - Original Draft; Yuzhong Chen: Writing - Original
Draft; Haixing Dai: Writing - Original Draft; Xiaowei Yu: Writing -
Original Draft; Zhengliang Liu: Writing - Original Draft; Tuo Zhang:
Writing - Review & Editing; Xintao Hu: Writing - Review & Editing; Xi
Jiang: Writing - Review & Editing; Xiang Li: Writing - Review & Editing;
Dajiang Zhu: Writing - Review & Editing; Dinggang Shen: Supervision;
Tianming Liu: Supervision, Writing - Review & Editing.

Conflict of interests

The authors have no conflict of interests.The Author Tianming Liu is
the Editor in Chief of the journal, but was not involved in the peer review
procedure. This paper was handled by another Editor Board member.
8

References

1. Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a
scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA. 2012;
109(supplement 1):10661–10668.

2. Zhang J. Basic neural units of the brain: neurons, synapses and action potential.
arXiv preprint arXiv:190601703. 2019.

3. Ackerman S. Discovering the Brain. 1992.
4. Stein BE, Stanford TR, Rowland BA. The neural basis of multisensory integration in

the midbrain: its organization and maturation. Hear Res. 2009;258(1-2):4–15.
5. Shigihara Y, Zeki S. Parallel processing in the brain's visual form system: an fMRI

study. Front Hum Neurosci. 2014;8:506.
6. Egorova N, Shtyrov Y, Pulvermüller F. Early and parallel processing of pragmatic

and semantic information in speech acts: neurophysiological evidence. Front Hum
Neurosci. 2013;7:86.

7. Lang EW, Tome AM, Keck IR, Gorriz-Saez J, Puntonet CG. Brain con- nectivity
analysis: a short survey. Comput Intell Neurosci. 2012;2012:8, 8.

8. Demarin V,MOROVIC. Periodicum Biologorum. vol. 116. 2014:209–211. S.
Neuroplasticity.

9. Funahashi S. Working memory in the prefrontal cortex. Brain Sci. 2017;7(5):49.
10. De Souza LC, Guimareaes HC, Teixeira AL, et al. Frontal lobe neurology and the

creative mind. Front Psychol. 2014:761.
11. Teffer K, Semendeferi K. Human prefrontal cortex: evolution, develop- ment, and

pathology. Prog Brain Res. 2012;195:191–218.
12. Turing AM. Computing Machinery and Intelligence. Springer; 2009.
13. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous

activity. Bull Math Biophys. 1943;5:115–133.
14. Rosenblatt F. Principles of Neurodynamics. Perceptrons and the Theory of Brain

Mechanisms. Cornell Aeronautical Lab Inc Buffalo NY; 1961.
15. Werbos P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. PhD Thesis, Committee on Applied Mathematics. Cambridge, MA: Harvard
University; 1974.

16. Rumelhart DE, Hinton GE, Williams RJ. Learning Internal Representa- Tions by Error
Propagation. California Univ San Diego La Jolla Inst for Cognitive Science; 1985.

17. LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks. 1995;3361(10):1995.

18. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and func- tional
architecture in the cat's visual cortex. J Physiol. 1962;160(1):106.

19. Posner MI, Petersen SE. The attention system of the human brain. Annu Rev
Neurosci. 1990;13(1):25–42.

20. Devlin J, Chang MW, Lee K, Toutanova K. Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:181004805. 2018.

21. Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language
understanding by generative pre-training. Open. 2018.

22. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words:
transformers for image recognition at scale. arXiv preprint arXiv:201011929. 2020.

23. Bassett DS, Bullmore E. Small-world Brain Networksvol. 12. The neuroscientist;
2006:512–523.

24. Bullmore E, Sporns O. Complex brain networks: graph theoretical anal- ysis of
structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–198.

25. Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist. 2017;
23(5):499–516.

26. Xie S, Kirillov A, Girshick R, He K. Exploring randomly wired neural networks for
image recognition. In: Proceedings of the IEEE/CVF Inter- National Conference on
Computer Vision. 2019:1284–1293.

27. Taud H, Mas J. Multilayer Perceptron (MLP). Geomatic Approaches for Modeling Land
Change Scenarios. 2018:451–455.

28. Tolstikhin IO, Houlsby N, Kolesnikov A, et al. Mlp-mixer: an all-mlp architecture for
vision. Adv Neural Inf Process Syst. 2021;34:24261–24272.

29. You J, Leskovec J, He K, Xie S. Graph structure of neural networks. In: International
Conference on Machine Learning. PMLR; 2020:10881–10891.

30. Chen Y, Du Y, Xiao Z, et al. A unified and biologically-plausible relational graph
representation of vision trans- formers. arXiv preprint arXiv:220611073. 2022.

31. Zhao L, Dai H, Wu Z, et al. Coupling visual semantics of artificial neural networks
and human brain function via synchronized activations. arXiv preprint arXiv:
220610821. 2022.

32. Liu X, Zhou M, Shi G, et al. Coupling artificial neurons in BERT and biological
neurons in the human brain. arXiv preprint arXiv:230314871. 2023.

33. Zhou M, Liu X, Liu D, et al. Fine-Grained Ar- Tificial Neurons in Audio-Transformers for
Disentangling Neural Auditory Encoding. The 61st Annual Meeting of the Association
for Computational Linguistics; 2023.

34. Huang H, Zhao L, Hu X, et al. BI avan: brain inspired adversarial visual attention
network. arXiv preprint arXiv:221015790. 2022.

35. Yu X, Zhang L, Dai H, et al. Core-periphery prin- ciple guided redesign of self-
attention in transformers. arXiv preprint arXiv:230315569. 2023.

36. Zhao L, Dai H, Wu Z, Zhu D, Liu T, Cnn CP-. Core-periphery principle guided
convolutional neural network. arXiv preprint arXiv:230410515. 2023.

37. Ghosh-Dastidar S, Adeli H. Spiking neural networks. Int J Neural Syst. 2009;19(4):
295–308.

38. Kasabov NK. NeuCube: a spiking neural network architecture for map- ping,
learning and understanding of spatio-temporal brain data. Neural Network. 2014;52:
62–76.

39. Kumarasinghe K, Kasabov N, Taylor D. Brain-inspired spiking neural networks for
decoding and understanding muscle activity and kinematics from
electroencephalography signals during hand movements. Sci Rep. 2021;11(1):
2486.

http://refhub.elsevier.com/S2950-1628(23)00005-X/sref1
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref1
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref1
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref1
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref2
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref2
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref3
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref4
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref4
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref4
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref5
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref5
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref6
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref6
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref6
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref7
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref7
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref8
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref8
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref8
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref9
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref10
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref10
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref10
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref11
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref11
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref11
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref12
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref13
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref13
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref13
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref14
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref14
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref15
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref15
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref15
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref16
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref16
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref17
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref17
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref18
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref18
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref19
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref19
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref19
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref20
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref20
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref21
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref21
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref22
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref22
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref23
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref23
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref23
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref24
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref24
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref24
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref25
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref25
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref25
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref26
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref26
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref26
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref26
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref27
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref27
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref27
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref28
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref28
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref28
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref29
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref29
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref29
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref30
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref30
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref31
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref31
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref31
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref32
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref32
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref33
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref33
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref33
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref34
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref34
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref35
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref35
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref36
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref36
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref37
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref37
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref37
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref38
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref38
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref38
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref38
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref39
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref39
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref39
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref39


L. Zhao et al. Meta-Radiology 1 (2023) 100005
40. Dethier J, Nuyujukian P, Ryu SI, Shenoy KV, Boahen K. Design and validation of a
real-time spiking-neural-network decoder for brain–machine interfaces. J Neural
Eng. 2013;10(3):036008.

41. Kumarasinghe K, Kasabov N, Taylor D. Deep learning and deep knowl- edge
representation in Spiking Neural Networks for Brain-Computer In- terfaces. Neural
Network. 2020;121:169–185.

42. Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated
circuit with a scalable com- munication network and interface. Science. 2014;
345(6197):668–673.

43. Benjamin BV, Gao P, McQuinn E, et al. Neurogrid: a mixed-analog-digital multichip
system for large-scale neural simulations. Proc IEEE. 2014;102(5):699–716.

44. Zhang B, Shi L, Song S. Creating more intelligent robots through brain- inspired
computing. Science Robotics. 2016;354(6318):1445.

45. Davies M, Srinivasa N, Lin TH, et al. Loihi: a neuromorphic manycore processor
with on-chip learning. Ieee Micro. 2018;38(1):82–99.

46. Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with
neuromorphic computing. Nature. 2019;575(7784):607–617.

47. Pei J, Deng L, Song S, et al. Towards arti- ficial general intelligence with hybrid
Tianjic chip architecture. Nature. 2019;572(7767):106–111.

48. Akopyan F, Sawada J, Cassidy A, et al. Truenorth: design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip. IEEE Trans Comput Aided Des
Integrated Circ Syst. 2015;34(10):1537–1557.

49. Indiveri G, Douglas R. Neuromorphic vision sensors. Science. 2000;288(5469):
1189–1190.

50. Sandamirskaya Y, Kaboli M, Conradt J, Celikel T. Neuromorphic com- puting
hardware and neural architectures for robotics. Science Robotics. 2022;7(67):
eabl8419.

51. Viale A, Marchisio A, Martina M, Masera G, Shafique M. LaneSNNs: spiking neural
networks for lane detection on the Loihi neuromorphic processor. In: 2022 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2022:
79–86.

52. Schafer W. Nematode nervous systems. Curr Biol. 2016;26(20):R955–R959.
53. Scheffer LK, Xu CS, Januszewski M, et al. A connectome and analysis of the adult

Drosophila central brain. Elife. 2020;9:e57443.
54. Er€o C, Gewaltig MO, Keller D, Markram H. A cell atlas for the mouse brain. Front

Neuroinf. 2018;12:84.
55. Christensen JR, Larsen KB, Lisanby SH, et al. Neocortical and hippocampal neuron

and glial cell numbers in the rhesus monkey. Anat Rec: Advances in Integrative
Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary
Biology. 2007;290(3):330–340.

56. Dicke U, Roth G. Neuronal factors determining high intelligence. Phil Trans Biol Sci.
2016;371(1685):20150180.

57. Stanley KO, D'Ambrosio DB, Gauci J. A hypercube-based encoding for evolving
large-scale neural networks. Artif Life. 2009;15(2):185–212.

58. Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes
and effects of aging. Brain Res. 1979;163(2):195–205.

59. Rakic P. A small step for the cell, a giant leap for mankind: a hypoth- esis of
neocortical expansion during evolution. Trends Neurosci. 1995;18(9):383–388.

60. Sporns O. The human connectome: a complex network. Ann N Y Acad Sci. 2011;
1224(1):109–125.

61. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional
transformers for language understanding. In: NAACL HLT 2019 - 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies - Proceedings of the Conference. vol. 1. 2019:4171–4186. Mlm.

62. Radford A, Narasimhan K, Salimans T, Sutskever I, et al. Improving Language
Understanding by Generative Pre-training. CoRR; 2018.

63. Liu Y, Ott M, Goyal N, et al. Roberta: A Robustly Optimized Bert Pretraining Approach.
2019. arXiv preprint arXiv:1907.11692.

64. Sanh V, Debut L, Chaumond J, Wolf T. DistilBERT, a Distilled Version of BERT:
Smaller, Faster, Cheaper and Lighter. 2019. arXiv preprint arXiv:1910.01108.

65. Lepikhin D, Lee H, Xu Y, et al. Gshard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. 2020. arXiv preprint arXiv:2006.16668.

66. Zhang Z, Han X, Liu Z, Jiang X, Sun M, Liu Q. ERNIE: Enhanced Language
Representation with Informative Entities. 2019. arXiv preprint arXiv:1905.07129.

67. Lewis M, Liu Y, Goyal N, et al. Bart: Denoising Sequence-To-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension. 2019. arXiv preprint
arXiv:1910.13461.

68. Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a
unified text-to-text transformer. J Mach Learn Res. 2020;21(1):5485–5551.

69. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV. Xlnet: generalized
autoregressive pretraining for language understanding. Adv Neural Inf Process Syst.
2019;32.

70. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are
unsupervised multitask learners. OpenAI blog. 2019;1(8):9.

71. Clark K, Luong MT, Le QV, Manning CD. Electra: Pre-training Text Encoders as
Discriminators rather than Generators. 2020. arXiv preprint arXiv:2003.10555.

72. He P, Liu X, Gao J, Chen W. Deberta: Decoding-Enhanced Bert with Disentangled
Attention. 2020. arXiv preprint arXiv:2006.03654.

73. Nakano R, Hilton J, Balaji S, et al. Webgpt: browser-assisted question-answering with
human feedback. 2021. arXiv preprint arXiv:2112.09332.

74. Wei J, Bosma M, Zhao VY, et al. Finetuned Language Models Are Zero-Shot Learners.
2021. arXiv preprint arXiv:2109.01652.

75. Zhang Z, Gu Y, Han X, et al. Cpm-2: large-scale cost-effective pre-trained language
models. AI Open. 2021;2:216–224.

76. Xue L, Constant N, Roberts A, et al. mT5: A Massively Multilingual Pre-trained Text-
To-Text Transformer. 2020. arXiv preprint arXiv:2010.11934.
9

77. Sanh V, Webson A, Raffel C, et al.Multitask Prompted Training Enables Zero-Shot Task
Generalization. 2021. arXiv preprint arXiv:2110.08207.

78. Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. Adv
Neural Inf Process Syst. 2020;33:1877–1901.

79. Nijkamp E, Pang B, Hayashi H, et al. Codegen: An Open Large Language Model for
Code with Multi-Turn Program Synthesis. 2022. arXiv preprint arXiv:2203.13474.

80. Ganguli D, Hernandez D, Lovitt L, et al. Predictability and surprise in large
generative models. In: Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency. 2022:1747–1764.

81. Smith S, Patwary M, Norick B, et al. Using Deepspeed and Megatron to Train Megatron-
Turing Nlg 530b, a Large-Scale Generative Language Model. 2022. arXiv preprint arXiv:
2201.11990.

82. Biderman S, Schoelkopf H, Anthony QG, et al. Pythia: a suite for analyzing large
language models across training and scaling. In: International Conference on Machine
Learning. PMLR; 2023:2397–2430.

83. Muennighoff N, Wang T, Sutawika L, et al. Crosslingual Generalization through
Multitask Finetuning. 2022. arXiv preprint arXiv:2211.01786.

84. Du N, Huang Y, Dai AM, et al. Glam: efficient scaling of language models with
mixture-of-experts. In: International Conference on Machine Learning. PMLR; 2022:
5547–5569.

85. Lieber O, Sharir O, Lenz B, Shoham Y. Jurassic-1: Technical Details and Evaluation.
White Paper. AI21 Labs; 2021:1.

86. Rae JW, Borgeaud S, Cai T, et al. Scaling Language Models: Methods, Analysis &
Insights from Training Gopher. 2021. arXiv preprint arXiv:2112.11446.

87. Sun Y, Wang S, Feng S, et al. Ernie 3.0: Large-Scale Knowledge Enhanced Pre-
training for Language Understanding and Generation. 2021. arXiv preprint arXiv:
2107.02137.

88. Woolf M. Fun and Dystopia with Ai-Based Code Generation Using Gpt-J-6b, June
2021. https://minimaxir.com/2021/06/gpt-j-6b/.

89. Black S, Biderman S, Hallahan E, et al. Gpt-neox-20b: An Open-source Autoregressive
Language Model. 2022. arXiv preprint arXiv:2204.06745.

90. Zoph B, Bello I, Kumar S, et al. St-moe: Designing Stable and Transferable Sparse Expert
Models. 2022. arXiv preprint arXiv:2202.08906.

91. Zeng A, Liu X, Du Z, et al. Glm-130b: An Open Bilingual Pre-trained Model. 2022.
arXiv preprint arXiv:2210.02414.

92. Tay Y, Dehghani M, Tran VQ, et al. Ul2: unifying language learning paradigms. In:
The Eleventh International Conference on Learning Representations. 2022.

93. Chung HW, Hou L, Longpre S, et al. Scaling Instruction-Finetuned Language Models.
2022. arXiv preprint arXiv:2210.11416.

94. Wang Y, Mishra S, Alipoormolabashi P, et al. Super-naturalinstructions:
Generalization via Declarative Instructions on 1600þ Nlp Tasks. 2022. arXiv preprint
arXiv:2204.07705.

95. Kaplan J, McCandlish S, Henighan T, et al. Scaling Laws for Neural Language Models.
2020. arXiv preprint arXiv:2001.08361.

96. Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions
with human feedback. Adv Neural Inf Process Syst. 2022;35:27730–27744.

97. Zhang S, Roller S, Goyal N, et al. Opt: Open Pre-trained Transformer Language Models.
2022. arXiv preprint arXiv:2205.01068.

98. Scao TL, Fan A, Akiki C, et al. Bloom: A 176b-Parameter Open-Access Multilingual
Language Model. 2022. arXiv preprint arXiv:2211.05100.

99. Glaese A, McAleese N, Trebacz M, et al. Improving Alignment of Dialogue Agents via
Targeted Human Judgements. 2022. arXiv preprint arXiv:2209.14375.

100. Iyer S, Lin XV, Pasunuru R, et al. Opt-iml: Scaling Language Model Instruction Meta
Learning through the Lens of Generalization. 2022. arXiv preprint arXiv:2212.12017.

101. Muennighoff N, Wang T, Sutawika L, et al. Crosslingual Generalization through
Multitask Finetuning. 2022. arXiv preprint arXiv:2211.01786.

102. Taylor R, Kardas M, Cucurull G, et al. Galactica: A Large Language Model for Science.
2022. arXiv preprint arXiv:2211.09085.

103. Khrushchev Mikhail. “Yandex publishes YaLM 100B. It’s the largest GPT-like neural
network in open source.” medium, June 23, 2022. https://medium.com/yandex/y
andex-publishes-yalm-100b-itsthe-largest-gpt-like-neural-network-in-open-source-d
1df53d0e9a6.

104. Thoppilan R, De Freitas D, Hall J, et al. Lamda: Language Models for Dialog
Applications. 2022. arXiv preprint arXiv:2201.08239.

105. Chowdhery A, Narang S, Devlin J, et al. Palm: Scaling Language Modeling with
Pathways. 2022. arXiv preprint arXiv:2204.02311.

106. Tay Y, Wei J, Chung HW, et al. Transcending Scaling Laws with 0.1% Extra Compute.
2022. arXiv preprint arXiv:2210.11399.

107. Chung HW, Hou L, Longpre S, et al. Scaling Instruction-Finetuned Language Models.
2022. arXiv preprint arXiv:2210.11416.

108. Black S, Biderman S, Hallahan E, et al. Gpt-neox-20b: an open-source autoregressive
language model. 2022. arXiv preprint arXiv:2204.06745.

109. Touvron H, Lavril T, Izacard G, et al. Llama: Open and Efficient Foundation Language
Models. 2023. arXiv preprint arXiv:2302.13971.

110. OpenAI. Gpt-4 Technical Report. OpenAI; 2023.
111. Driess D, Xia F, Sajjadi MS, et al. Palm-e: An Embodied Multimodal Language Model.

2023. arXiv preprint arXiv:2303.03378.
112. Anil R, Dai AM, Firat O, et al. Palm 2 Technical Report. 2023. arXiv preprint arXiv:

2305.10403.
113. Liu H, Li C, Wu Q, Lee YJ. Visual Instruction Tuning. 2023. arXiv preprint arXiv:

2304.08485.
114. Zhu D, Chen J, Shen X, Li X, Elhoseiny M. Minigpt-4: Enhancing Vision-Language

Understanding with Advanced Large Language Models. 2023. arXiv preprint arXiv:
2304.10592.

115. Ye Q, Xu H, Xu G, et al. Mplug-Owl: Modularization Empowers Large Language Models
with Multimodality. 2023. arXiv preprint arXiv:2304.14178.

http://refhub.elsevier.com/S2950-1628(23)00005-X/sref40
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref40
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref40
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref40
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref41
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref41
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref41
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref41
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref42
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref42
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref42
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref42
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref43
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref43
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref43
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref44
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref44
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref45
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref45
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref45
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref46
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref46
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref46
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref47
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref47
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref47
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref48
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref48
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref48
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref48
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref49
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref49
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref49
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref50
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref50
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref50
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref51
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref51
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref51
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref51
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref51
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref52
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref52
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref53
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref53
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref54
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref54
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref54
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref55
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref55
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref55
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref55
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref55
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref56
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref56
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref57
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref57
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref57
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref58
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref58
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref58
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref59
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref59
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref59
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref60
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref60
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref60
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref152
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref152
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref152
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref152
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref152
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref153
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref153
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref154
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref154
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref155
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref155
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref156
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref156
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref157
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref157
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref158
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref158
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref158
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref159
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref159
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref159
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref160
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref160
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref160
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref161
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref161
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref162
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref162
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref163
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref163
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref164
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref164
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref165
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref165
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref166
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref166
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref166
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref167
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref167
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref168
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref168
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref169
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref169
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref169
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref170
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref170
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref171
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref171
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref171
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref171
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref172
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref172
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref172
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref173
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref173
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref173
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref173
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref174
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref174
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref175
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref175
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref175
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref175
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref176
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref176
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref177
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref177
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref178
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref178
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref178
https://minimaxir.com/2021/06/gpt-j-6b/
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref180
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref180
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref181
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref181
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref182
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref182
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref183
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref183
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref184
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref184
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref185
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref185
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref185
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref185
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref186
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref186
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref187
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref187
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref187
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref188
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref188
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref189
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref189
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref190
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref190
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref191
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref191
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref192
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref192
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref193
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref193
https://medium.com/yandex/yandex-publishes-yalm-100b-itsthe-largest-gpt-like-neural-network-in-open-source-d1df53d0e9a6
https://medium.com/yandex/yandex-publishes-yalm-100b-itsthe-largest-gpt-like-neural-network-in-open-source-d1df53d0e9a6
https://medium.com/yandex/yandex-publishes-yalm-100b-itsthe-largest-gpt-like-neural-network-in-open-source-d1df53d0e9a6
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref195
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref195
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref196
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref196
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref197
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref197
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref198
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref198
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref199
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref199
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref200
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref200
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref201
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref202
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref202
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref203
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref203
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref204
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref204
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref205
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref205
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref205
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref206
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref206


L. Zhao et al. Meta-Radiology 1 (2023) 100005
116. Gao P, Han J, Zhang R, et al. Llama-adapter v2: Parameter-efficient Visual Instruction
Model. 2023. arXiv preprint arXiv:2304.15010.

117. Dai W, Junan L, Dongxu L, et al. InstructBLIP: Towards General-Purpose Vision-
Language Models with Instruction Tuning. 2023. arXiv preprint arXiv: 2305.06500.

118. Gong T, Lyu C, Zhang S, et al. Multimodal-gpt: A Vision and Language Model for
Dialogue with Humans. 2023. arXiv preprint arXiv:2305.04790.

119. Su Y, Lan T, Li H, Xu J, Wang Y, Cai D. Pandagpt: One Model to Instruction-Follow
Them All. 2023. arXiv preprint arXiv:2305.16355.

120. Luo G, Zhou Y, Ren T, Chen S, Sun X, Ji R. Cheap and Quick: Efficient Vision-Language
Instruction Tuning for Large Language Models. 2023. arXiv preprint arXiv:2305.15023.

121. Liu Y, Han T, Ma S, et al. Summary of chatgpt/gpt-4 research and perspective
towards the future of large lan- gauge models. arXiv preprint arXiv:230401852.
2023.

122. Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. Adv
Neural Inf Process Syst. 2020;33:1877–1901.

123. Xiao G, Lin J, Seznec M, Demouth J, Han S. Smoothquant: accurate and efficient
post-training quantization for large language models. arXiv preprint arXiv:
221110438. 2022.

124. Ostendorff M, Rehm G. Efficient language model training through cross- lingual and
progressive transfer learning. arXiv preprint arXiv:230109626. 2023.

125. Longpre S, Hou L, Vu T, et al. The flan collection: designing data and methods for
effective instruction tuning. arXiv preprint arXiv:230113688. 2023.

126. Huang S, Dong L, Wang W, et al. Language is not all you need: aligning perception
with language models. arXiv preprint arXiv:230214045. 2023.

127. Radford A, Kim JW, Hallacy C, et al. Learning transferable visual models from
natural language supervision. In: International Conference on Machine Learning.
PMLR; 2021:8748–8763.

128. Ramesh A, Pavlov M, Goh G, et al. Zero- shot text-to-image generation. In:
International Conference on Machine Learning. PMLR; 2021:8821–8831.

129. Nichol A, Dhariwal P, Ramesh A, et al. Glide: towards photorealistic image
generation and editing with text- guided diffusion models. arXiv preprint arXiv:
211210741. 2021.

130. Chen J, Guo H, Yi K, Li B, Elhoseiny M. VisualGPT: data-efficient adaptation of
pretrained language models for image captioning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pat- Tern Recognition. CVPR); 2022:
18030–18040.

131. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image
synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022:10684–10695.

132. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant vi- sual representation
by single neurons in the human brain. Nature. 2005;435(7045):1102–1107.

133. Goh G, Cammarata N, Voss C, et al. Multimodal neurons in artificial neural
networks. Distill. 2021;6(3):e30.

134. Antol S, Agrawal A, Lu J, et al. Vqa: visual question answering. In: Proceedings of the
IEEE International Conference on Computer Vision. 2015:2425–2433.

135. Dou ZY, Xu Y, Gan Z, et al. An empirical study of training end-to-end vision-and-
language transformers. In: Pro- Ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022:18166–18176.

136. Bao H, Wang W, Dong L, et al. Vlmo: unified vision-language pre-training with
mixture-of- modality-experts. Adv Neural Inf Process Syst. 2022;35:32897–32912.

137. Lei J, Li L, Zhou L, et al. Less is more: clipbert for video-and-language learning via
sparse sampling. In: Pro- Ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021:7331–7341.

138. Fu TJ, Li L, Gan Z, et al. Violet: end-to-end video-language transformers with
masked visual-token modeling. arXiv preprint arXiv:211112681. 2021.

139. Lin K, Li L, Lin CC, et al. Swinbert: end-to-end transformers with sparse attention for
video captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022:17949–17958.

140. Bubeck S, Chandrasekaran V, Eldan R, et al. Sparks of artificial general intelligence:
early experiments with GPT-4. arXiv preprint arXiv:230312712. 2023.

141. Baevski A, Hsu WN, Xu Q, Babu A, Gu J, Auli M. Data2vec: a general framework for
self-supervised learning in speech, vision and language. In: International Conference
on Machine Learning. PMLR; 2022:1298–1312.

142. Radford A, Wu J, Child R, et al. Language models are unsupervised multitask
learners. OpenAI blog. 2019;1(8):9.

143. Raffel C, Shazeer N, Roberts A, et al. Explor- ing the limits of transfer learning with
a unified text-to-text transformer. J Mach Learn Res. 2020;21(1):5485–5551.

144. Glaese A, McAleese N, Trebacz M, et al. Improving alignment of dialogue agents via
targeted human judgements. arXiv preprint arXiv:220914375. 2022.

145. Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions with
human feedback. arXiv preprint arXiv:220302155. 2022.

146. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate
brain. Front Hum Neurosci. 2009;31.

147. Wei J, Tay Y, Bommasani R, et al. Emer- gent abilities of large language models.
arXiv preprint arXiv:220607682. 2022.

148. Kojima T, Gu SS, Reid M, Matsuo Y, Iwasawa Y. Large language models are zero-
shot reasoners. arXiv preprint arXiv:220511916. 2022.

149. Wei J, Wang X, Schuurmans D, et al. Chain of thought prompting elicits reasoning
in large language models. arXiv preprint arXiv:220111903. 2022.

150. Wang X, Wei J, Schuurmans D, Le Q, Chi E, Zhou D. Self-consistency improves
chain of thought reasoning in language models. arXiv preprint arXiv:220311171.
2022.

151. Li Y, Lin Z, Zhang S, et al. On the advance of mak- ing language models better
reasoners. arXiv preprint arXiv:220602336. 2022.
10
152. Zhong T, Wei Y, Yang L, et al. ChatABL: abductive learning via natural language
interaction with ChatGPT. arXiv preprint arXiv:230411107. 2023.

153. Zhang Z, Zhang A, Li M, Smola A. Automatic chain of thought prompting in large
language models. arXiv preprint arXiv:221003493. 2022.

154. Suzgun M, Scales N, Sch€arli N, et al. Challenging BIG-Bench tasks and whether
chain-of-thought can solve them. arXiv preprint arXiv:221009261. 2022.

155. Zhou D, Sch€arli N, Hou L, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:220510625. 2022.

156. Wu Z, Zhang L, Cao C, et al. Exploring the trade- offs: unified large language models
vs local fine-tuned models for highly-specific radiology NLI task. arXiv preprint
arXiv:230409138. 2023.

157. Ma C, Wu Z, Wang J, et al. ImpressionGPT: an iterative optimizing framework for
radiology report summarization with chatGPT. arXiv preprint arXiv:230408448.
2023.

158. Holmes J, Liu Z, Zhang L, et al. Evaluating large language models on a highly-
specialized topic, radiation oncology physics. arXiv preprint arXiv:230401938. 2023.

159. Liu Z, Yu X, Zhang L, et al. DeID-GPT: zero-shot medical text de-identification by
GPT-4. arXiv preprint arXiv:230311032. 2023.

160. Liu D, Chen Y, Wu Z. Digital twin (DT)-CycleGAN: enabling zero- shot sim-to-real
transfer of visual grasping models. IEEE Rob Autom Lett. 2023.

161. Dai H, Liu Z, Liao W, et al. ChatAug: leveraging ChatGPT for text data
augmentation. arXiv preprint arXiv:230213007. 2023.

162. Dai D, Sun Y, Dong L, Hao Y, Sui Z, Wei F. Why can GPT learn in- context? Language
models secretly perform gradient descent as Meta optimizers. arXiv preprint arXiv:
221210559. 2022.

163. LeCun Y. A Path towards Autonomous Machine Intelligence Version 0.9. vol. 62. 2022,
2022-06-27. Open Review.

164. Sanh V, Webson A, Raffel C, et al. Multitask prompted training enables zero-shot
task generalization. arXiv preprint arXiv:211008207. 2021.

165. Christiano PF, Leike J, Brown T, Martic M, Legg S, Amodei D. Deep reinforcement
learning from human preferences. Adv Neural Inf Process Syst. 2017;30.

166. Chung HW, Hou L, Longpre S, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:221011416. 2022.

167. Wang Y, Mishra S, Alipoormolabashi P, et al. Benchmarking generalization via in-
context instructions on 1,600þ language tasks. arXiv preprint arXiv:220407705.
2022.

168. Goertzel B. Artificial general intelligence: concept, state of the art, and future
prospects. Journal of Artificial General Intelligence. 2014;5(1):1.

169. Hodson H. DeepMind and Google: the battle to control artificial intelli- gence. The
Economist, ISSN. 2019:13–613.

170. Kline R. Cybernetics, automata studies, and the Dartmouth confer- ence on artificial
intelligence. IEEE Ann Hist Comput. 2010;33(4):5–16.

171. Nilsson NJ. The Quest for Artificial Intelligence. Cambridge University Press; 2009.
172. Gugerty L. Newell and Simon's logic theorist: historical background and impact on

cognitive modeling. In: Proceedings of the Human Factors and Ergonomics Society
Annual Meeting. Los Angeles, CA: SAGE Publications Sage CA; 2006:880–884; vol.
50.

173. Weizenbaum J. ELIZA—a computer program for the study of natural language
communication between man and machine. Commun ACM. 1966;9(1):36–45.

174. Shanmuganathan S. Artificial Neural Network Modelling: An Introduction. Springer;
2016.

175. Lippmann R. An introduction to computing with neural nets. IEEE ASSP Mag. 1987;
4(2):4–22.

176. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature. 1986;323(6088):533–536.

177. Cortes C, Vapnik V. Support-vector Networksvol. 20. Machine learning; 1995:
273–297.

178. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.
179. Opitz D, Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res.

1999;11:169–198.
180. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf

Process Syst. 2017;30.
181. Rezayi S, Liu Z, Wu Z, et al. Agribert: Knowledge-Infused Agricultural Language Models

for Matching Food and Nutrition. IJCAI; 2022.
182. Rezayi S, Dai H, Liu Z, et al. Clinical- RadioBERT: knowledge-infused few shot learning

for clinical notes named entity recognition. In: Machine Learning in Medical Imaging:
13th International Workshop, MLMI 2022, Held in Conjunction with MIC- CAI 2022,
Singapore. September 18. Springer; 2022:269–278, 2022, Proceedings.

183. Liu Z, He X, Liu L, Liu T, Zhai X. Context matters: a strategy to pre-train language
model for science education. arXiv preprint arXiv:230112031. 2023.

184. Liu Z, He M, Jiang Z, et al. Survey on natural language processing in medical image
analysis. Zhong nan da xue xue bao Yi xue ban¼ Journal of Central South University
Medical Sciences. 2022;47(8):981–993.

185. Hu R, Singh A. Unit: multimodal multitask learning with a unified trans- former. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021:
1439–1449.

186. Qin C, Zhang A, Zhang Z, Chen J, Yasunaga M, Yang D. Is chatgpt a general-purpose
natural language processing task solver? arXiv preprint arXiv:230206476. 2023.

187. Wang S, Zhao Z, Ouyang X, Wang Q, Shen D. Chatcad: interactive computer-aided
diagnosis on medical image using large language models. arXiv preprint arXiv:
230207257. 2023.

188. OpenAI. GPT-4 Technical Report. 2023.
189. Bansal T, Jha R, McCallum A. Learning to few-shot learn across diverse natural

language classification tasks. arXiv preprint arXiv:191103863. 2019.

http://refhub.elsevier.com/S2950-1628(23)00005-X/sref207
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref207
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref208
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref208
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref209
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref209
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref210
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref210
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref211
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref211
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref61
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref61
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref61
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref62
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref62
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref62
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref63
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref63
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref63
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref64
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref64
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref65
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref65
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref66
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref66
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref67
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref67
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref67
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref67
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref68
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref68
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref68
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref69
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref69
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref69
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref70
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref70
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref70
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref70
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref70
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref71
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref71
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref71
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref71
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref72
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref72
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref72
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref73
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref73
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref74
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref74
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref74
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref75
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref75
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref75
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref75
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref76
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref76
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref76
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref77
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref77
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref77
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref77
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref78
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref78
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref79
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref79
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref79
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref79
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref80
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref80
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref81
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref81
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref81
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref81
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref82
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref82
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref83
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref83
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref83
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref84
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref84
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref85
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref85
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref86
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref86
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref87
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref87
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref88
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref88
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref89
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref89
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref90
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref90
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref90
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref91
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref91
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref92
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref92
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref93
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref93
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref94
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref94
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref94
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref95
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref95
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref95
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref96
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref96
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref96
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref97
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref97
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref97
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref98
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref98
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref99
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref99
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref100
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref100
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref101
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref101
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref102
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref102
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref102
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref103
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref103
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref104
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref104
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref105
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref105
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref106
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref106
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref107
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref107
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref107
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref107
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref108
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref108
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref109
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref109
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref109
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref110
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref110
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref110
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref111
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref112
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref112
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref112
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref112
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref112
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref113
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref113
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref113
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref113
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref114
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref114
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref115
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref115
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref115
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref116
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref116
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref116
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref117
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref117
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref117
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref118
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref118
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref119
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref119
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref119
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref120
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref120
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref121
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref121
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref122
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref122
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref122
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref122
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref122
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref123
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref123
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref124
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref124
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref124
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref124
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref124
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref125
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref125
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref125
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref125
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref126
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref126
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref127
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref127
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref127
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref128
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref129
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref129


L. Zhao et al. Meta-Radiology 1 (2023) 100005
190. Liao W, Liu Z, Dai H, et al. Mask-guided bert for few shot text classification. arXiv
preprint arXiv:230210447. 2023.

191. Cai H, Liao W, Liu Z, et al. Coarse-to- fine knowledge graph domain
adaptation based on distantly-supervised iterative training. arXiv preprint arXiv:
221102849. 2022.
11
192. Liu F, Vulic I, Korhonen A, Collier N. Fast, effective, and self-supervised:
transforming masked language models into universal lexical and sentence encoders.
arXiv preprint arXiv:210408027. 2021.

193. Liao W, Liu Z, Dai H, et al. Differentiate ChatGPT-generated and human-written
medical texts. arXiv preprint arXiv:230411567. 2023.

http://refhub.elsevier.com/S2950-1628(23)00005-X/sref130
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref130
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref131
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref131
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref131
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref132
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref132
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref132
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref133
http://refhub.elsevier.com/S2950-1628(23)00005-X/sref133

	When brain-inspired AI meets AGI
	1. Brain-inspired AI and AGI
	2. Characteristics of AGI
	2.1. Scale
	2.2. Multimodality
	2.2.1. Text-to-image and image-to-text generation
	2.2.2. Visual question answering
	2.2.3. Video-language modeling
	2.2.4. Multimodal learning with auditory data

	2.3. Alignment
	2.4. Reasoning

	3. Important technology
	3.1. In-context learning
	3.2. Prompt and instruction tuning
	3.3. Evolution of AGI
	3.4. Early days of AI
	3.5. Deep learning and modern AGI
	3.6. The infrastructure of AGI

	4. Discussion
	4.1. Limitations
	4.2. Future of AGI

	5. Conclusion
	Credit authorship statement
	Conflict of interests
	References


