Integrated multi-omics reveals the beneficial role of chlorogenic acid in improving the growth performance and immune function of immunologically-stressed broilers

Huawei Liu, Xuemin Li, Kai Zhang, Xiaoguo Lv, Quanwei Zhang, Peng Chen, Yang Wang, Jinshan Zhao

PII: S2405-6545(23)00067-7

DOI: https://doi.org/10.1016/j.aninu.2023.05.009

Reference: ANINU 749

To appear in: Animal Nutrition Journal

Received Date: 3 September 2022

Revised Date: 24 April 2023

Accepted Date: 11 May 2023

Please cite this article as: Liu H, Li X, Zhang K, Lv X, Zhang Q, Chen P, Wang Y, Zhao J, Integrated multi-omics reveals the beneficial role of chlorogenic acid in improving the growth performance and immune function of immunologically-stressed broilers, *Animal Nutrition Journal*, https://doi.org/10.1016/j.aninu.2023.05.009.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Credit Author Statement

Huawei Liu: Conceptualization, Funding acquisition. Xuemin Li: Investigation, Visualization. Kai
Zhang: Methodology. Xiaoguo Lv: Investigation. Quanwei Zhang: Investigation. Peng Chen:
Investigation. Yang Wang: Conceptualization, Writing-Original Draft. Jinshan Zhao:
Conceptualization, Writing-Original Draft.

Journal Prosproof

Pre-proof

1	Integrated multi-omics reveals the beneficial role of chlorogenic acid in improving
2	the growth performance and immune function of immunologically-stressed
3	broilers
4	
5	Huawei Liu ¹ , Xuemin Li ¹ , Kai Zhang, Xiaoguo Lv, Quanwei Zhang, Peng Chen, Yang
6	Wang [*] , Jinshan Zhao [*]
7	
8	College of Animal Science and Technology, Qingdao Agricultural University, Qingdao
9	266109, China
10	
11	*Corresponding authors.
12	Email addresses: yangwang@qau.edu.cn (Y. Wang); jszhaoqau@163.com (J. Zhao)
13	
14	¹ These authors contributed equally to this work.
15	
16	
17	
18	
19	
20	
21	
	1

22 Abstract

23	Intensive production can cause immunological stress in commercial broilers.
24	Chlorogenic acid (CGA) regulates the intestinal microbiota, barrier function, and
25	immune function in chickens. As complex interrelations regulate the dynamic interplay
26	between gut microbiota, the host, and diverse health outcomes, the aim of this study
27	was to elucidate the immunoregulatory mechanisms of CGA using multi-omics
28	approaches. A total of 240 one-day-old male broilers were assigned to a 2×2 factorial
29	design with 2 CGA levels (0 or 500 mg/kg) either with or without dexamethasone (DEX)
30	injection for a 21-day experimental period. Therefore, there were 4 dietary treatments:
31	Control, DEX, CGA, and DEX + CGA, with 6 replicates per treatment. CGA
32	supplementation improved ($P < 0.05$) growth performance, jejunal morphology, jejunal
33	barrier function, and immune function in DEX-treated broilers. Moreover, in DEX +
34	CGA-treated broilers, the increase in gut microbiome diversity ($P < 0.05$) was
35	consistent with a change in taxonomic composition, especially in the Clostridiales
36	vadin BB60_group. Additionally, the levels of short-chain fatty acids increased
37	remarkably ($P < 0.01$) after CGA supplementation. This was consistent with the Kyoto
38	Encyclopedia of Genes and Genomes analysis results that the "pyruvate fermentation
39	to butanoate" pathway was more enriched ($P < 0.01$) in the DEX + CGA group than in
40	the DEX group. Proteomics revealed that CGA treatment increased the expression of
41	several health-promoting proteins, thymosin beta (TMSB4X) and legumain (LGMN),
42	which were verified by multiple reaction monitoring. Metabolomics revealed that CGA

2

43	treatment increased the expression of health-promoting metabolites (2,4-dihydroxy
44	benzoic acid and homogentisic acid). Proteomic and metabolic analyses showed that
45	CGA treatment regulated the peroxisome proliferator-activated receptor (PPAR) and
46	mitogen-activated protein kinase (MAPK) pathways. Western blotting results support
47	these findings. Pearson's correlation analyses showed correlations ($P < 0.01$) between
48	altered immune function, jejunal barrier function, different microbiota, proteins, and
49	metabolites parameters. Overall, our data indicate that CGA treatment increased growth
50	performance and improved the immunological functions of DEX-treated broilers by
51	regulating gut microbiota and the PPAR and MAPK pathways. The results offer novel
52	insights into a CGA-mediated improvement in immune function and intestinal health.
53	Keywords: Broiler; Immunological stress; Microbiome; Metabolomics; Proteomics

54

55 **1. Introduction**

Intensive farming practices have been popular in recent decades due to the increased demand for poultry products. However, high stocking densities have increased the vulnerability of commercial broiler chickens to various stress factors, including immunological stress (Li et al., 2015). These stress factors can easily damage the intestine because the chickens are continuously exposed to multiple antigens from food, resident bacteria, and invading viruses (Söderholm and Perdue, 2001).

Intestinal health can be regulated by gut microbiota (Gao et al., 2018; Shi et al.,
2019), which participates in the development and maintenance of the immune system

64	and intestinal homeostasis by stimulating immune responses and maintaining epithelial
65	barrier functions (Broom and Kogut, 2018). A decrease in gut microbiota biodiversity
66	and disruption of microbe-host equilibrium has been observed in animals with intestinal
67	inflammation (Zou et al., 2019; Yang et al., 2020). Additionally, immunological stress
68	has been demonstrated to influence the gut microbiota of broilers; for example,
69	resulting in lower abundances of Gammaproteobacteria and Enterobacteriales (Chen
70	and Yu, 2021). Recently, the prevention or treatment of diseases through regulating gut
71	microbiota has received considerable research attention. For example, phenolics, such
72	as epicatechin, catechin, gallic acid, and caffeic acid have been implicated in inhibiting
73	the growth of Clostridium perfringens, Clostridium difficile, and Bacteroides spp.
74	(Selma et al., 2009). Chlorogenic acid (CGA) is a phenolic acid produced by several
75	plants, including tea, coffee, and several Chinese herbs, such as the buds of Lonicera
76	japonica Thunb and the leaves of Eucommia ulmodies (Upadhyay and Mohan Rao,
77	2013; Naveed et al., 2018). Lou et al. (2011) showed that CGA could kill pathogenic
78	bacteria strains (Shigella dysenteria and Streptococcus pneumoniae) by provoking
79	irreversible permeability changes in cell membranes. CGA also resists immune stress
80	and regulates gut microbiota (Liang and Kitts, 2015; Chen et al., 2021). Furthermore,
81	CGA has been reported to increase intestinal barrier function and the abundance of
82	Lactobacillus spp. in the cecum of pigs (Chen et al., 2019) and reduce small intestine
83	injury and inflammation in chickens challenged with Clostridium perfringens type A

84	(Zhang et al., 2020). Thus, it is hypothesised that CGA may attenuate the
85	immunological stress of chickens by regulating the gut microbiota.
86	Gut microbiota modulates signalling pathways involved in intestinal mucosa
87	homeostasis by producing specific metabolites, indicating that metabolomics could be
88	used to obtain detailed information on gut metabolic pathways (Vernocchi et al., 2016).
89	Moreover, proteomic techniques can provide detailed information on the function and
90	activity of identified metabolites (Xiong et al., 2015; Haange and Jehmlich, 2016).
91	Studies have examined the effect of stress on the performance of domesticated animals
92	using synthetic glucocorticoids, such as dexamethasone (DEX) (Gao et al., 2010; Njagi
93	et al., 2012). In a previous study, we observed that DEX induced immunological stress
94	and impaired the intestinal immune function of broilers (Liu et al., 2021). Although the
95	beneficial effects of CGA are associated with the gut microbiota, little is known about
96	how CGA intake influences the crosstalk between gut microbiota, host metabolism, and
97	protein expression in the intestinal tract. Therefore, the aim of this study was to examine
98	the effect and mechanism of CGA on immune function and intestinal health in DEX-
99	treated broilers using multi-omics techniques.
0.0	

100

101 **2. Materials and methods**

102 2.1. Animal ethics statement

103	All experimental protocols were approved by the Animal Care and Use Committee
104	of Qingdao Agricultural University (protocol number 20200916115). We have
105	followed the ARRIVE guidelines for reporting animal research (Kilkenny et al., 2010).
106	2.2. Chemicals and reagents
107	The DEX was obtained from Beian Feilong Animal Pharmaceutical Factory
108	(Beian, China). The CGA (98% purity) was purchased from Changsha E.K Herb
109	(Changsha, China).
110	2.3. Experimental design and sample collection
111	A total of 240 one-day-old male Cobb 500 broilers were assigned to a 2×2
112	factorial design with 2 CGA levels (0 or 500 mg/kg feed) and 2 DEX levels (0 or 3
113	mg/kg body weight), resulting in 4 dietary treatments: Control, DEX, CGA, and DEX
114	+ CGA with 6 replicates per treatment and 10 broilers per replicate. The doses of
115	CGA and DEX were according to Liu et al. (2022) and Wang (2012), respectively.
116	The mixed feed was prepared according to the requirements of the National Research
117	Council (NRC, 1994; Table S1), and the correct quantity of CGA was mixed with the
118	basal diet to obtain the prefixed inclusion level. The DEX was injected
119	intraperitoneally once a day from the 15th to the 21st day of the experiments. The
120	experiments were performed for 21 d. On the 21st day, 6 broilers from each group
121	were randomly selected for fasting treatments for 12 h. Thereafter, blood was sampled
122	from the wing vein, centrifuged at 3,000 \times g for 10 min at 4 °C, and stored at -20 °C
123	for further analysis of D-lactate (D-LA), diamine oxidase (DAO), immunoglobulin

124	(Ig) A, IgM, interleukin (IL)-1 β , IL-4, IL-6, IL-10, IL-12, IL-18, IL-22, tumour
125	necrosis factor- α (TNF- α), interferon- γ (IFN- γ), CXC chemokine ligand (CXCL) 1,
126	CXCL2 and metabolites. Chickens were sacrificed by cervical dislocation, and the
127	jejunal segments were fixed in 4% paraformaldehyde for analysing the intestinal
128	morphology. Certain part of the jejunum was cut open, and the contents were rinsed
129	with pre-cooled saline. After rinsing, filter paper was used to absorb water at the edge
130	and the jejunal mucosa was collected by scraping the surface with a slide. The jejunal
131	mucosa was used for the detection of levels of biochemical parameters (IgA, IgM, IL-
132	1β, IL-4, IL-6, IL-10, IL-12, IL-18, IL-22, TNF-α, IFN-γ, CXCL1 and CXCL2),
133	mRNA expression (<i>IL-1β, IL-4, IL-6, IL-10, IL-12, IL-18, IL-22, TNF-α, IFN-γ</i> ,
134	cysteinyl aspartate specific proteinase (caspase)-3 and (caspase-9), protein expression
135	(β-actin, occludin, zonula occludens-1 [ZO-1], extracellular regulated protein kinases
136	(ERK), p-ERK, c-Jun N-terminal kinase [JNK], p-JNK, P38, p-P38 and peroxisome
137	proliferator-activated receptor [PPAR]), immunohistochemistry analysis (occludin
138	and ZO-1), proteomics and multiple reaction monitoring (MRM). The cecal contents
139	were collected for microbiome detection and short-chain fatty acid (SCFA) analysis.
140	All jejunal samples, except for the jejunal samples for morphological analysis, and
141	cecal contents were immediately placed in liquid nitrogen and then stored at -80 °C.
142	2.4. Growth performance measurement
143	The amounts of provided and refused feed were measured daily on a replicate basis

144 to calculate the average daily feed intake (ADFI). Body weight was measured at d 14

145	and 21 to calculate average daily gain (ADG), and feed:gain ratio (F:G) on a per
146	replicate basis. The ADFI, ADG and F:G formulae were calculated using the following
147	equations:
148	ADG = (final body weight – initial body weight)/number of days of the rearing period
149	ADFI = (feed offer weight – feed residue weight)/number of days of the rearing period
150	F:G = ADFI/ADG.

151 2.5. Intestinal morphology

The intestinal morphology of the jejunal parts was evaluated as previously described (Livak and Schmittgen, 2001). Briefly, the jejunal segments were fixed using 4% paraformaldehyde, embedded with paraffin, sliced, placed on glass slides, and stained using hematoxylin and eosin (H&E) stain. Villi heights and crypt depths were observed using an HMIAS-2000 image analysis system and an Olympus microscope (Olympus, Tokyo, Japan).

158 2.6. Analysis of biochemical indices

The biochemical indices were detected using ELISA kits and a continuous
wavelength microplate reader (Infinite 200 PRO, Tecan Life Sciences, Männedorf,
Switzerland). The kits were acquired from Jiangsu Enzymatic Co., Ltd. (Yancheng,
China), and the procedures were carried out according to the manufacturer's
instructions. D-lactate (D-LA) and diamine oxidase (DAO) levels in serum, and Ig A,
IgM, IL-1β, IL-4, IL-6, IL-10, IL-12, IL-18, IL-22, TNF-α, IFN-γ, CXC chemokine
ligand (CXCL) 1, and CXCL2 levels in the serum and jejunal mucosa were evaluated.

166 2.7. Determination of mRNA expression levels by RT-qPCR

167 RNA extraction, cDNA synthesis, qPCR analysis, and analysis of the relative 168 levels of expression of mRNA were carried out as described previously (Wang et al., 169 2021). Total RNA was extracted from the jejunal mucosa using TRIzol (Tiangen 170Biochemical Technology, Beijing, China). The integrity and purity were analysed using 171agarose gel electrophoresis and a spectrophotometer. DNA was amplified using a 172BioRad CFX96 Real-Time PCR system (Bio-Rad Laboratories, Hercules, CA, USA), and expression levels of the target genes were determined using the $2^{-\Delta\Delta Ct}$ method and 173 174normalized to glyceraldehyde-3-phosphate dehydrogenase (GADPH) expression. 175Reverse transcription and quantification kits were purchased from TAKARA (Takara 176Biotechnology, Dalian, China). The primers used in the present study are listed in Table 177S2.

178 2.8. Determination of protein expression levels by Western blotting

179 Proteins were isolated from the jejunal mucosa of the broilers using RIPA lysis 180 buffer (Beyotime Biotechnology, Shanghai, China), according to the manufacturer's 181 instructions. The protein expression levels of β -actin, occludin, ZO-1, ERK, p-ERK, 182 JNK, p-JNK, P38 and p-P38 were detected using western blotting, as previously 183 described (Hu et al., 2020). Equal quantities of protein were separated using sulfate-184 polyacrylamide gel electrophoresis (Beyotime Biotechnology). The protein was 185 transferred onto polyvinylidene difluoride membranes (Merck Millipore, Darmstadt, 186 Germany) and incubated with the primary antibodies. Subsequently, the membranes

187	were incubated with HRP-labelled goat anti-rabbit IgG antibody (Beyotime
188	Biotechnology). The proteins were detected using the iBright FL1000
189	electrochemiluminescence detection system (Invitrogen, Waltham, MA, USA)
190	according to the manufacturer's instructions and quantitated using ImageJ (National
191	Institutes of Health, USA). Anti- β -actin antibody was obtained from Beyotime Institute
192	of Biotechnology (Shanghai, China); anti-occludin and anti-ZO-1 antibodies were
193	obtained from Servicebio (Wuhan, China); anti-PPAR antibody was obtained from
194	Novus Biologicals (Littleton, CO, USA); anti-ERK, anti-p-ERK, anti-JNK, anti-p-JNK,
195	anti-P38 and anti-p-P38 antibodies were obtained from Beijing Bioss Biotechnology
196	(Beijing, China).

197 2.9. Immunohistochemistry analysis

Immunohistochemical analyses were conducted as previously described (Chávez-Carbajal et al., 2019). The jejunal sections were paraffin-embedded, dewaxed and rehydrated, retried in antigen, blocked in endogenous peroxidase activity, sealed with rabbit serum, incubated with specific primary antibodies (occludin or ZO-1) and the corresponding HRP-conjugated secondary antibody, immunostaining with DAB chromogenic and counterstaining the nucleus, dehydrated, and mounted. An Olympus microscope was used to examine the stained sections.

205 2.10. DNA extraction and microbiome analysis

Bacterial genomes were isolated using a TIANamp stool DNA kit (Tiangen
Biotech). The purity was examined using 0.8% agarose gel electrophoresis. It was

quantified using a Qubit 2.0 Fluorometer (Invitrogen), and sequenced using a HiSeq
4000 system (Illumina Inc., San Diego, CA, US) at Lianchuan Biotech Co., Ltd.
(Hangzhou, China).

211 High-quality clean tags were obtained by quality filtering of the raw tags as 212 described in QIIME (Quantitative Insights Into Microbial Ecology v1.2.1) 213 (http://qiime.org/). Uclust v1.2.22 (https://arc.umich.edu/software-item/uclust/) was used to prepare clusters of operational taxonomic units (OTU) at a 97% sequence 214 215 identity level. Sequences with reference meanings per cluster were annotated for 216 taxonomic classification against the SILVA database (https://www.arb-silva.de/). 217 Additionally, the alpha diversity of the dataset was evaluated. R (Version 2.15.3) and 218 PICRUSt (https://picrust.github.io/picrust/) were used independently for principal 219 coordinate analysis (PCoA) of the OTU in different groups and functional prediction of 220 the genes in the gut microbiota, using a closed-reference OTU table in BIOM-format 221 from the pick closed reference otus.py script generated in QIIME.

222 Taxonomic classification was achieved based on homology (>97% identity) 223 between gueried and reference sequences from the Greengenes database v13.8 224 (https://mothur.org/wiki/greengenes-formatted_databases). Subsequently, the OTU 225 table was normalised using Langille Lab Online Galaxy Instance 226 (http://galaxy.morganlangille.com), followed by metagenome functional prediction 227 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Significant 228 differences in gene function among the groups were revealed, in addition to

229	metagenome data prediction by PICRUSt, the Kruskal-Wallis test, and multiple test
230	correction based on Storey's false discovery rates (FDR) (Furuhashi et al., 2018). All
231	sequence data have been submitted to the NCBI under BioProject ID PRJNA789475.
232	2.11. SCFA analysis
233	Short-chain fatty acids were quantified at MetWare Biotechnology Co., Ltd.
234	(Wuhan, China) as previously described (Kuttappan et al., 2017). In brief, SCFA were
235	extracted following homogenising 20 mg caecal content in isobutanol:water (1:9, v/v).
236	The supernatant was obtained by centrifugation at 12,000 \times g for 10 min at 4 °C.
237	Purification of SCFA from each 100 μ L supernatant was carried out following
238	extraction of the the-top-layer supernatant by centrifugation at $12,000 \times g$ for 10 min
239	at 4 °C, after mixing with chloroform and NaOH (20 mmol/L). Subsequently, the
240	samples were mixed with isobutanol, pyridine, and isobutyl chloroformate. Purified
241	SCFA (pretreated by hexane) were quantified using an Agilent 5977 B mass
242	spectrometer (Agilent Technologies, Santa Clara, CA, USA) with helium as the carrier
243	gas. The injector and detector were set to 260 °C. The column temperature was set to
244	50 °C for 5 min, increased to 150 °C at a rate of 5 °C/min, increased to 325 °C at a rate
245	of 40 °C/min, and finally held at 325 °C for 1 min.

246 2.12. Proteomic analysis

247 Proteomic analysis was performed by MetWare Biotechnology Co., Ltd. (Wuhan,

- 248 China). The jejunal samples were homogenized in lysis buffer (2.5% SDS, 100 mmol/L
- 249 Tris-HCl, pH 8.0), subjected to ultrasonication and centrifuged at $10,000 \times g$ for 10

250	min at 4 °C. The proteins were precipitated by adding 4 volumes of pre-cooled acetone
251	and lysed with 8 M urea and 100 mM Tris-Cl. This was used in a reduction reaction
252	with 10 mM dithiothreitol, followed by an alkylation reaction with sulfhydryl and 40
253	mm iodoacetamide. Subsequently, 100 mM Tris-HCl was added, and the urea
254	concentration was diluted to less than 2 M. Equal amounts of samples were used for
255	TMT labelling, which was performed according to the manufacturer's instructions.
256	Each fraction was vacuum-dried and stored at -80 °C until mass spectrometry (MS)
257	analysis.
258	Liquid chromatography-tandem (LC)-MS/MS analysis was carried out using a
259	hybrid LTQ-OrbitrapXL mass spectrometer equipped with 40 cm C18 columns. The
260	mobile phase (0 to 40% acetonitrile) was applied over a 2-h period (Lee et al., 2019).
261	LC-MS/MS analysis was performed in triplicate. Data are available via
262	ProteomeXchange with the following identifier: IPX0003857000.
263	2.13. MRM analysis
264	Peptide samples were desalted using a Monospin column. The dried mixed peptide
265	samples were dissolved in trifluoroacetic acid (TFA, 0.1%), transferred to the desalting

was added to remove contaminants, and acetonitrile solution (50%) was used to elute
the peptide. The elution solutions were collected and dried in tubes.

columns and centrifuged at $300 \times g$ for 10 min at 4 °C. Thereafter, TFA (0.1%) solution

The peptide samples were analysed using a nanoACQUITY HPLC system with a nanoACQUITY ultra-performance liquid chromatography (UPLC) C18 column (100

266

271	$m \times 100$ mm, 1.7 μm particle size; Waters, Milford, MA, USA) and a triple quadrupole
272	mass spectrometer (QTRAP 5500; AB Sciex, Redwood, CA, US). The mobile phase
273	contained acetonitrile (2%)/formic acid (0.1%) and acetonitrile (98%)/formic acid
274	(0.1%) in HPLC-grade water as solvents A and B, respectively. Metabolites were eluted
275	using the following step gradient at a flow rate of 5 L/min: 0–5 min: 95% A, 5% B; 5–
276	50 min: 70% A, 30% B; 50.5–55 min: 20% A, 80% B; and 55.5–60 min: 98% A, 2% B.
277	The mass spectrometry system conditions included ion source, electrospray ion source,
278	positive ion detection, and scanning mode. The electrospray ionization source operation
279	parameters were as follows: injection voltage, 5,500 eV; temperature, 150 °C; curtain
280	gas (CUR, N ₂), 206.850 Pa; collision gas pressure (CAD, N ₂), high mode; auxiliary gas
281	GAS1 pressure, 137,900 Pa; auxiliary gas GAS2 pressure, 103,425 Pa; scanning time,
282	5 ms. All analyses were performed in triplicate. Peptide peak areas were used to
283	calculate percentage coefficient of variation (CV), and the average percentage CV for
284	each target peptide in the sample was calculated (Wu et al., 2021).

285 2.14. Metabolomic analysis

The samples were thawed on ice, vortexed for 10 s and thoroughly mixed. Thereafter, 300 μ L of pure methanol was added to 50 μ L of serum. The mixture was rotated for 3 min and then centrifuged at 12,000 × *g* for 10 min at 4 °C. The resulting supernatant was centrifuged twice at 12,000 × *g* for 5 min at 4 °C. The samples were incubated at -20 °C for 30 min, centrifuged at 12,000 × *g* for 3 min at 4 °C, and 150 μ L

291 of the supernatant transferred into injection bottles for analysis.

The chromatography-mass spectrometry acquisition conditions of serum were as described previously (Zhang et al., 2022). The data acquisition instrument system mainly includes an ExionLCTM AD UPLC system (AB Sciex) and a QTRAP tandem mass spectrometry (MS) system (Applied Biosystems, Waltham, MA, USA).

296 *2.15. Statistics*

297 The effects of DEX and CGA and their interaction on inflammatory parameters, 298 jejunal morphology and barrier function, mRNA and protein expression, and SCFA 299 were assessed using analysis of variance (ANOVA) and the general linear model 300 procedure using IBM SPSS Statistics 18.0 (IBM Corp., Armonk, NY, USA). Multiple 301 mean comparisons were performed using univariate ANOVA and Duncan's multiple 302 range test. Cecum microbial domains, phyla, and genera were compared using the 303 Wilcoxon rank-sum test, and cecal microbial species were compared using linear 304 discriminant analysis effect size (LEfSe) analysis. Differentially expressed metabolites 305 were screened based on a fold change (FC) > 2 or < 0.5 and variable importance in 306 projection (VIP) > 1.2. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to obtain VIP values, including score and permutation plots. The 307 308 MetaboAnalyzer package in (Version 2.15.3) was used to generate the terms. TMT 309 analysis was performed, and proteins with FC > 1.2 were identified as differentially 310 expressed proteins (DEP). Spearman's rank correlation analysis was performed to 311 determine the relationships between serum and jejunal inflammatory parameters, iejunal morphology, mRNA expression of inflammatory cytokines, significantly 312

		nr		$ \Delta f $
			U	

313	different microbiome assemblages, SCFA contents, proteins, and metabolites. All
314	means and comparison groups were considered statistically significant at $P < 0.05$.
315	

316	3. Results
317	3.1. CGA improves the growth performance in DEX-induced broilers
318	Compared with the Control group, DEX injection decreased the ADG ($P < 0.01$) and
319	increased the F:G value ($P < 0.01$) during d 14 to 21 and d 1 to 21. In contrast, CGA
320	supplementation increased the ADG ($P < 0.01$) and reduced the F:G value ($P < 0.01$).
321	The interaction between CGA and DEX also had significant effects on ADG and the

322

- F:G value during d 14 to 21 and d 1 to 21 (P < 0.01) (Table 1).
- 323 3.2. Immunoregulation effects of CGA in DEX-induced broilers

324 Compared with the Control group, DEX treatment increased the serum IL-1 β (P = 325 0.02), IL-6 (*P* < 0.01), IL-18 (*P* < 0.01), IL-22 (*P* < 0.01), TNF-α (*P* = 0.01), CXCL1 326 (P = 0.02), and CXCL2 (P < 0.01) levels of the broilers and decreased the serum IL-4 327 and IFN- γ levels (P < 0.01). In contrast, CGA supplementation increased serum IgM 328 (P = 0.02), IL-4 (P < 0.01), and IFN- γ (P = 0.01) levels and decreased serum IL-1 β (P = 0.02)329 < 0.01), IL-12 (P = 0.01), IL-18 (P < 0.01), IL-22 (P < 0.01), CXCL1 (P < 0.01), and 330 CXCL2 (P < 0.01) levels. Moreover, the interaction between CGA and DEX (CGA \times 331 DEX) reversed the DEX-induced changes in serum IL-1 β (P = 0.03), IL-4 (P = 0.04), 332 IL-6 (P < 0.01), IL-10 (P < 0.01), IL-12 (P < 0.01), IL-18 (P < 0.01), IL-22 (P = 0.03), IFN- γ (*P* < 0.01), CXCL1 (*P* < 0.01), and CXCL2 (*P* < 0.01) levels (Table 2). 333

334	Furthermore, DEX treatment increased ($P < 0.01$) the concentrations of IL-1 β , IL-
335	6, IL-18, IL-22, TNF- α , CXCL1, and CXCL2 in the jejunal mucosa of the broilers. In
336	contrast, CGA supplementation increased ($P < 0.01$) the jejunal concentration of IgM
337	and decreased ($P < 0.01$) the jejunal expression of IL-1 β , IL-6, IL-12, IL-18, IL-22, and
338	CXCL2. Additionally, CGA \times DEX reversed the DEX-induced changes in the jejunal
339	expression of IL-1 β , IL-4, IL-6, IL-12, IL-18, IL-22, CXCL1, CXCL2 ($P < 0.01$) and
340	TNF- α (P = 0.03) (Table 3). Moreover, gene expression analysis showed that DEX
341	treatment increased jejunal expression of <i>IL-1</i> β (<i>P</i> < 0.01), <i>IL-6</i> (<i>P</i> < 0.01), <i>IL-12</i> (<i>P</i> <
342	0.01), <i>IL-18</i> ($P < 0.01$), <i>IL-22</i> ($P = 0.01$), <i>TNF-a</i> ($P = 0.01$), <i>caspase-3</i> ($P = 0.02$), and
343	caspase-9 ($P = 0.04$) genes compared with the Control group. In contrast, CGA
344	supplementation decreased the jejunal expression of <i>IL-1</i> β (<i>P</i> < 0.01), <i>IL-6</i> (<i>P</i> < 0.01),
345	<i>IL-12</i> ($P = 0.02$), <i>IL-18</i> ($P < 0.01$), <i>IL-22</i> ($P = 0.04$), <i>TNF-a</i> ($P = 0.01$), <i>caspase-3</i> ($P = 0.01$), <i>caspas</i>
346	0.02), and <i>caspase-9</i> ($P < 0.01$). Additionally, CGA × DEX reversed the DEX-induced
347	changes in the jejunal expression of <i>IL-1</i> β (<i>P</i> < 0.01), <i>IL-4</i> (<i>P</i> < 0.01), <i>IL-6</i> (<i>P</i> < 0.01),
348	$\textit{IL-10} \ (P < 0.01), \textit{IL-12} \ (P = 0.05), \textit{IL-18} \ (P < 0.01), \textit{IL-22} \ (P = 0.01), \textit{TNF-a} \ (P = 0.04),$
349	<i>caspase-3</i> ($P < 0.01$), and <i>caspase-9</i> ($P = 0.03$) genes (Fig. 1).
350	3.3. CGA improves the jejunal morphology and barrier function of DEX-treated

351 broilers

352 Compared with the Control group, histological analysis showed that DEX 353 treatment decreased (P < 0.01) villus height and villus height to crypt depth ratio (V:C

ratio) and increased (P < 0.01) crypt depth. In contrast, CGA supplementation increased

355	villus height ($P = 0.02$) and V:C ratio ($P < 0.01$) and decreased crypt depth ($P = 0.04$).
356	Additionally, CGA \times DEX reversed the DEX-induced decrease in villus height (P =
357	0.02) and V:C ratio (<i>P</i> < 0.01) (Fig. 2A, Table 4).
358	Moreover, DEX treatment increased ($P < 0.01$) the D-LA levels of the broilers,
359	whereas CGA supplementation decreased ($P < 0.01$) the D-LA levels. Additionally,
360	CGA × DEX reversed ($P < 0.01$) the DEX-induced increase in D-LA levels. However,
361	the DAO level was not significantly affected by CGA, DEX, or their interaction ($P >$
362	0.05) (Table 5).
363	Furthermore, the expression of tight junction proteins was examined using western
364	blotting and immunohistochemical analysis. The results showed that DEX treatment
365	downregulated ($P < 0.01$) occludin expression, whereas CGA supplementation
366	upregulated ($P < 0.01$) occludin expression. Additionally, CGA × DEX reversed the
367	DEX-induced decreases in occludin ($P = 0.01$) and ZO-1 ($P = 0.04$) expression (Fig.
368	2B), which was confirmed by immunohistochemical analysis (Fig. 2C, D).
369	3.4. The gut microbiota and SCFA were altered by CGA
370	High-throughput 16S rRNA sequencing was performed to determine the effect of
371	DEX treatment and CGA supplementation on the gut microbiome of the broilers. The
372	α -diversity indices, including chao1, goods_coverage, observed_otus, Shannon, and
373	Simpson, were not significantly influenced ($P > 0.05$) by CGA or DEX treatments.
374	However, DEX + CGA treatment increased chao1 ($P = 0.02$) and observed_otus ($P =$

- 375 0.01) indices compared with the DEX group (Fig. 3A). PCoA showed that different
 - 18

376	treatments induced distinct ($P = 0.02$) clustering of bacterial communities (Fig. 3B),
377	with different gut microbiota compositions at the phylum, family, genus, and species
378	levels. At the phylum level, CGA supplementation decreased ($P = 0.04$) the abundance
379	of Actinobacteria. At the family level (top 20), CGA supplementation decreased the
380	abundance of Firmicutes_unclassified ($P = 0.04$), Christensenellaceae ($P < 0.01$), and
381	Mollicutes_RF39_unclassified ($P = 0.02$). DEX treatment decreased ($P < 0.01$) the
382	abundance of <i>Clostridiales</i> vadin BB60_group. Compared with the DEX group, DEX
383	+ CGA treatment increased ($P = 0.02$) the abundance of <i>Clostridiales</i> vadin
384	BB60_group. At the genus level (top 20), DEX treatment decreased ($P < 0.01$) the
385	abundance of <i>Clostridiales</i> vadin BB60_group_unclassified and increased ($P < 0.01$)
386	the abundance of Erysipelatoclostridium. Dietary supplementation with CGA increased
387	(P = 0.01) the abundance of <i>Intestinimonas</i> and decreased the abundances of
388	Ruminococcaceae_UCG-014 ($P < 0.01$), Firmicutes_unclassified ($P = 0.02$), and
389	<i>Ruminiclostridium_5</i> ($P < 0.01$). Additionally, DEX + CGA treatment increased ($P < 0.01$).
390	0.01) the abundance of <i>Clostridiales</i> vadin BB60_group_unclassified compared with
391	the DEX group. At the species level, DEX treatment decreased ($P = 0.03$) the
392	abundance of Clostridiales vadin BB60_group unclassified. Moreover, CGA
393	supplementation increased ($P = 0.01$) the abundance of Intestinimonas_unclassified
394	and decreased the abundance of <i>Ruminococcaceae_UCG-014_</i> unclassified ($P = 0.01$),
395	<i>Firmicutes</i> _unclassified ($P = 0.03$), and <i>Ruminiclostridium_5_</i> unclassified ($P < 0.01$).

396	Moreover, compared with the DEX group, DEX + CGA treatment increased ($P < 0.01$)
397	the abundance of <i>Clostridiales</i> vadin BB60_group_unclassified (Fig. 3C).
398	LEfSe analysis was performed to identify taxonomic biomarkers in the gut
399	microbiota. There was an increase in the relative abundance of bacteria, including
400	Coprobacter (genus), Coprobacter_fastidiosus (species), Anaerotruncus_unclassified
401	(species), DTU089 (genus), and DTU089_unclassified (species), in non-treated broilers.
402	Additionally, CGA supplementation increased the relative abundance of Intestinimonas
403	(genus), Intestinimonas_unclassified (species), UC5_1_2E3 (genus),
404	UC5_1_2E3_unclassified (species), and Eubacterium_unclassified (species). DEX
405	treatment increased the relative abundances of Shuttlewothia (genus) and
406	Erysipelatoclostridium_unclassified (species). DEX + CGA treatment increased the
407	relative abundance of <i>Clostridiales</i> vadin BB60_group (family), <i>Clostridiales</i> vadin
408	BB60_group_unclassified (genus and species), Erysipelatoclostridium (genus),
409	Shuttleworthia_unclassified (species), and Lactobacillus_hilgardii (species) (Fig. 3D).
410	PICRUSt analysis was conducted to determine the potential functional differences
411	of the gut microbiota between the groups and predict their classification based on the
412	KEGG pathways. Compared with the CGA group, there was a decrease in 4 terms,
413	including "methanogenesis from acetate" ($P = 0.03$), "starch degradation V" ($P = 0.03$),
414	and "galactose degradation I (Leloir pathway)" ($P = 0.02$), and an increase in 26 terms,
415	including "myo-, chiro-, and scyllo-inositol degradation" ($P = 0.03$), "D-fructuronate
416	degradation" ($P = 0.03$), and "superpathway of sulfur oxidation (<i>Acidianus ambivalens</i>)"

417	(P = 0.02), in the Control group. Compared with the Control group, there was a decrease
418	in 7 terms, including "L-glutamate degradation V (via hydroxyglutarate)" ($P = 0.05$),
419	"pyrimidine deoxyribonucleotide biosynthesis from CTP" ($P = 0.05$), and "GDP-
420	mannose biosynthesis" ($P = 0.04$), and an increase in 2 terms, i.e., "sucrose degradation
421	IV (sucrose phosphorylase)" ($P = 0.05$) and "sucrose degradation III (sucrose invertase)"
422	(P = 0.04), in the DEX treatment group. Compared with the DEX group, there was a
423	decrease in "glycerol degradation to butanol" ($P = 0.01$) and "sucrose degradation IV
424	(sucrose phosphorylase)" ($P < 0.01$) and an increase in 9 terms, including
425	"superpathway of polyamine biosynthesis II" ($P = 0.05$), "D-fructuronate degradation"
426	(P = 0.05), and "pyruvate fermentation to butanoate" $(P = 0.02)$, in the DEX+CGA
427	group (Fig. 4).

428 Short-chain fatty acids are the main metabolites generated by gut microbiota. In 429 the present study, DEX treatment had no significant effects on SCFA levels. In contrast, 430 CGA supplementation increased the levels of acetic (P < 0.01), propanoic (P = 0.03), 431 butyric (P < 0.01), isovaleric (P < 0.01), valeric (P < 0.01), and hexanoic acid (P <432 0.01). Additionally, CGA × DEX reversed (P < 0.01) DEX-induced decreases in acetic,

- 433 propanoic, butyric, isovaleric, valeric, and hexanoic acid levels (Table 6).
- 434 *3.5. CGA altered the jejunal protein profiles*

Differentially expressed proteins (DEP) are represented using volcano plots (Fig. 5A). Compared with the Control group, 25 DEP were upregulated and 33 were downregulated in the DEX group; 27 DEP were upregulated, and 10 were

438	downregulated in the CGA group. Compared with the DEX group, 61 DEP were
439	upregulated, and 48 were downregulated in the DEX + CGA group. The top 10 up- and
440	downregulated DEP are presented based on fold change (Tables 7 to 9).
441	GO enrichment analysis showed that DEP between the DEX and Control groups
442	were enrichedin biological process (BP) terms such as "oxidation-reduction process"
443	(P < 0.01), "chemical homeostasis" $(P < 0.01)$, and "metabolic drug process" $(P < 0.01)$;
444	cellular component (CC) terms such as "extracellular region" ($P = 0.01$), "cytoskeleton"
445	(P = 0.01), "extracellular space" $(P < 0.01)$; and molecular function (MF) terms such
446	as "transition metal ion binding" ($P < 0.01$), "oxidoreductase activity" ($P = 0.02$), and
447	"protein dimerization activity" ($P < 0.01$). DEP between the CGA and Control groups
448	were enriched in BP terms such as "cytoskeleton organization" ($P < 0.01$) and "cellular
449	protein-containing complex assembly" ($P = 0.01$); CC terms such as "cytoskeleton" (P
450	= 0.04) and "plasma membrane part" ($P = 0.04$); and MF terms such as "cytoskeletal
451	protein binding" ($P = 0.02$) and "DNA binding" ($P = 0.04$). DEP between the DEX +
452	CGA and DEX groups were enriched in BP terms such as "carbohydrate metabolic
453	process" ($P < 0.01$), "myeloid cell differentiation" ($P < 0.01$), and "organic anion
454	transport" ($P = 0.02$); CC terms such as "plasma membrane part" ($P < 0.01$),
455	"cytoskeletal part" ($P = 0.03$), and "plasma membrane region" ($P < 0.01$); and MF
456	terms such as "cytoskeletal protein binding" ($P = 0.03$), "protein dimerization activity"
457	(P = 0.04), and "protein homodimerization activity" $(P = 0.02)$ (Fig. 5B).

458	KEGG metabolic pathway enrichment analysis showed that DEP between the
459	DEX and Control groups were enriched in "protein digestion and absorption" ($P < 0.01$),
460	"PPAR signalling pathway" ($P = 0.01$), and "proximal tubule bicarbonate reclamation"
461	(P < 0.01). DEP between the CGA and Control groups were enriched in "endocytosis"
462	(P = 0.01), "viral myocarditis" $(P = 0.03)$, and "type I diabetes mellitus" $(P < 0.01)$.
463	Additionally, DEP between the DEX + CGA and DEX groups were enriched in "protein
464	digestion and absorption" ($P < 0.01$), "RNA transport" ($P < 0.01$), and "PPAR
465	signalling pathway" ($P < 0.01$) (Fig. 5C). MRM analysis was performed to validate the
466	presence and levels of relevant proteins identified by proteomics. The MRM results
467	verified that eukaryotic translation initiation factor 3 subunit J (EIF3J, accession
468	number: Q5ZKA4) was downregulated ($P = 0.04$), whereas pyridoxal phosphate
469	homeostasis protein (PROSC, accession number: E1C516) ($P = 0.03$) and
470	apolipoprotein A-I (APOA1, accession number: P08250) ($P = 0.03$) were
471	upregulatedby DEX treatment. Additionally, DEX + CGA treatment downregulated (P
472	< 0.01) APOA1 and calcineurin B homologous protein 1 (CHP1, accession number:
473	Q5ZM44) (Fig. S1). According to the KEGG results of proteomic analysis, EIF3J is
474	involved in the MAPK signalling pathway, PROSC is involved in butanoate
475	metabolism, APOA1 is involved in the PPAR signalling pathway, and CHP1 is
476	involved in the apoptosis signalling pathway.

477 Furthermore, a protein-protein interaction (PPI) network was generated using the
478 STRING database (Fig. 5D). The network diagram illustrates the interactions between

the DEP in the screened pathways. Among the PPIs, cyclin-dependent kinase 1 (CDK1,

480	accession number: F1NBD7) was the core PPI node in the DEX vs Control groups, with
481	8 interactions. DNA-binding protein Ikaros (IKZF1, accession number: FINT33) was
482	the core PPI node in the CGA vs Control groups, with 4 interactions. Moreover, CDK1
483	was the core PPI node in the DEX + CGA vs DEX groups, with 19 interactions.
484	3.6. CGA altered the serum metabolic profiles of the broilers
485	Broad-spectrum metabolomics was used to evaluate the serum profiles of the
486	broilers. We observed a clear separation from the OPLS-DA score plots between the
487	Control vs CGA groups, Control vs DEX groups, and DEX vs DEX + CGA groups
488	(Fig. 6A). Differentially expressed metabolites between the groups were screened at a
489	fold change ≥ 2 or ≤ 0.5 , which was illustrated using a heatmap (Fig. 6B). Compared
490	with the Control group, CGA supplementation significantly increased the levels of 14
491	metabolites and decreased the levels of 4 metabolites, whereas DEX treatment
492	significantly increased the levels of 37 metabolites and decreased the levels of 35
493	metabolites. Moreover, DEX + CGA treatment significantly increased the levels of 40
494	metabolites and decreased the levels of 16 metabolites compared with the DEX group
495	(Fig. 6C). The top 20 metabolites with multiple differences between the groups are
496	displayed in Fig. 6D. Compared to the Control group, CGA supplementation increased
497	the levels of α -muricholic acid, phenylacetyl-L-glutamine, and cis-pentadecenoic acid
498	and decreased the levels of 5'-deoxyadenosine, deoxyadenosine, and acetaminophen
499	glucuronide. Additionally, DEX treatment increased the levels of α -muricholic acid,

479

500	phenylacetyl-L-glutamine, and B-nicotinamide mononucleotide and decreased the
501	levels of 20-carboxyarachidonic acid, stearidonic acid, and 9,12-octadecadienoic acid
502	compared with the Control group. Moreover, DEX + CGA treatment increased the
503	levels of 3-(3-hydroxyphenyl) propionate acid, 2,4-dihydroxy benzoic acid, and
504	homogentisic acid, and decreased the levels of 23-deoxycholic acid, 2'-
505	deoxyadenosine-5'-monophosphate, and carnitine C18:1-OH, compared with the DEX
506	group. KEGG analysis showed that the differentially expressed metabolites in the
507	Control vs CGA groups were enriched in "purine metabolism" ($P < 0.01$), "ABC
508	transporters" ($P = 0.04$), and the "cyclic guanosine monophosphate-protein kinase G
509	signalling pathway" ($P = 0.03$). Differentially expressed metabolites in the Control vs
510	DEX groups were enriched in "tyrosine metabolism" ($P = 0.03$), "biosynthesis of
511	unsaturated fatty acids" ($P = 0.04$), and "alpha-linolenic acid metabolism" ($P = 0.03$).
512	Additionally, differentially expressed metabolites in the DEX vs DEX + CGA groups
513	were enriched in "riboflavin metabolism" ($P = 0.02$), "tyrosine metabolism" ($P = 0.04$),
514	"purine metabolism" ($P = 0.03$), "glutathione metabolism" ($P = 0.02$) and the "PPAR
515	signalling pathway" ($P = 0.01$) (Fig. 6E).

516 3.7. Effects of CGA on the PPAR and MAPK signalling pathways

517 Proteomic and metabolomic analyses revealed that CGA plays an important role 518 in the PPAR signalling pathway. Additionally, MRM analysis showed that CGA 519 participates in regulating the MAPK signalling pathway. Thus, western blotting was 520 used to examine the effect of CGA on the activation of PPAR and MAPK signalling

521	pathways. The results showed that DEX decreased p-JNK ($P < 0.01$), P-38 ($P = 0.03$),
522	p-P38 ($P < 0.01$), and ERK ($P < 0.01$) expression. In contrast, CGA treatment increased
523	JNK (<i>P</i> < 0.01), p-JNK (<i>P</i> < 0.01), P-38 (<i>P</i> = 0.01), and p-P38 (<i>P</i> < 0.01) expression.
524	Additionally, CGA supplementation (CGA \times DEX) reversed DEX-induced decreases
525	in JNK (<i>P</i> = 0.02), p-JNK (<i>P</i> < 0.01), P38 (<i>P</i> = 0.02), and p-P38 (<i>P</i> < 0.01) (Fig. 7A).
526	Regarding the PPAR signalling pathway, DEX treatment did not significantly affect
527	(P > 0.05) PPAR expression, whereas CGA supplementation downregulated $(P < 0.01)$
528	PPAR expression. Additionally, DEX × CGA interaction increased ($P < 0.01$) PPAR
529	expression (Fig. 7B).
530	3.8. Crosstalk between gut microbiota, SCFA, and biochemical parameters
531	Spearman's correlation analysis was performed to identify the relationships
532	between biochemical parameters and differential gut bacteria, proteins, and metabolites

- 533 (Fig. 8). A total of 4 bacterial genera were common between the Control vs DEX and
- 534 DEX vs DEX + CGA groups (Fig. 8A). Based on this, parameters with a correlation
- 535 coefficient (r) > 0.7 or < -0.7 and P < 0.01 were selected. Among the 4 genera,
- 536 Mordavella was positively correlated (P < 0.01) with villus height (r = 0.866), and
- 537 negatively correlated with jejunal CXCL1 level (r = -0.714) and serum IL-6 level (r =
- 538 -0.710). Coprobacter was negatively correlated (P < 0.01) with jejunal IL-18 (r = -
- 539 0.866) and IL-12 levels (r = -0.700) and positively correlated (P < 0.01) with serum IL-
- 540 4 level (r = 0.797) and *IL-10* transcription (r = 0.708). Clostridiales vadin
- 541 BB60_group_unclassified was negatively correlated (P < 0.01) with serum IL-18 (r =

542	-0.740), jejunal IL-18 ($r = -0.740$), serum CXCL2 ($r = -0.707$), jejunal CXCL2 ($r = -0.740$)
543	0.733), serum CXCL1 ($r = -0.730$), and jejunal IL-12 levels ($r = -0.712$). Additionally,
544	7 bacterial genera were common between the Control vs CGA and CGA vs DEX +
545	CGA groups; however, there was no significant correlation between the different
546	genera and the biochemical parameters under the screening condition ($r < -0.7$ or $r >$
547	0.7). Regarding the correlation between biochemical parameters and SCFA, results
548	with $r > 0.8$ or < -0.8 and $P < 0.01$ were selected. A total of 4 SCFA were correlated
549	with biochemical parameters in the Control vs DEX and DEX vs DEX + CGA
550	comparison groups, among which acetic acid was negatively correlated ($P < 0.01$) with
551	D-LA level ($r = -0.827$), jejunal IL-6 level ($r = -0.886$), <i>IL-18</i> transcription ($r = -0.820$),
552	and serum CXCL1 ($r = -0.802$). Butyric acid was negatively correlated ($P < 0.01$) with
553	jejunal IL-6 levels ($r = -0.853$), jejunal IL-22 levels ($r = -0.813$), and serum IL-18 levels
554	($r = -0.808$). Additionally, valeric acid was negatively correlated ($P < 0.01$) with jejunal
555	IL-12 levels ($r = -0.823$), whereas isovaleric acid was negatively correlated ($P < 0.01$)
556	with serum IL-1 β levels ($r = -0.819$) and <i>IL-1β</i> transcription ($r = -0.805$). Regarding the
557	Control vs CGA and CGA vs DEX + CGA comparison group, there were no significant
558	correlations between the parameters under the screening conditions ($r < -0.8$ or > 0.8)
559	(Fig. 8B).

560 *3.9. Crosstalk between proteomic and biochemical parameters*

A total of 15 proteins were common between the Control vs DEX and DEX vs

562 DEX + CGA comparison groups. Based on this, parameters with r > 0.85 or < -0.85

563	and $P < 0.01$ were selected. Regarding the Control vs DEX and DEX vs DEX + CGA
564	comparison groups, legumain (LGMN, accession number: E1C958) was negatively
565	correlated ($P < 0.01$) with D-LA ($r = -0.867$), and serum IL-12 ($r = -0.983$), CXCL2 (r
566	= -0.917), and CXCL1 levels (r = -0.900). Meprin A subunit (MEP1A, accession
567	number: A0A1D5P6N4) was positively correlated ($P < 0.01$) with <i>IL-10</i> transcription
568	(r = 0.983) and serum IL-10 levels $(r = 0.867)$, and CDK1 was positively correlated (<i>P</i>
569	< 0.01) with <i>caspase-9</i> transcription ($r = 0.933$) and negatively correlated ($P < 0.01$)
570	with serum IL-10 levels ($r = -0.900$). Nuclear autoantigenic sperm protein (NASP,
571	accession number: A0A3Q2UF99) was positively correlated ($P < 0.01$) with caspase-
572	9 transcription ($r = 0.933$) and negatively correlated with serum IL-10 levels ($r = -$
573	0.867). Additionally, metalloprotease meprin beta gene (MEP1B, accession number:
574	A0A1L1RS59) was positively correlated ($P < 0.01$) with serum IL-10 levels ($r = 0.933$),
575	and an octamin 5 (ANO5, accession number: F1NN74) was positively correlated ($P <$
576	0.01) with <i>IL-10</i> transcription ($r = 0.933$). Thymosin beta (TMSB4X, accession
577	number: R4GF71) was positively correlated ($P < 0.01$) with <i>caspase-9</i> transcription (r
578	= 0.933), serum CXCL1 levels ($r = 0.917$), and serum IL-18 levels ($r = 0.867$).
579	Nucleolar complex protein 2 homolog (NOC2L, accession number: F1NV71) was
580	positively correlated ($P < 0.01$) with serum IL-22 levels ($r = 0.917$), DAB1, reelin
581	adaptor protein (Dab1, accession number: Q6XBN7) was positively correlated ($P <$
582	0.01) with <i>IL-10</i> transcription ($r = 0.900$), and myristoylated alanine-rich C-kinase
583	substrate (MARCKS, accession number: A0A1D5PDE6) was negatively correlated (P

584	< 0.01) with <i>IL-10</i> transcription ($r = -0.867$). Additionally, mitochondrial genome
585	maintenance exonuclease 1 (MGME1, accession number: A0A1L1RXX7) was
586	positively correlated ($P < 0.01$) with <i>IL-18</i> transcription ($r = 0.867$), PROSC was
587	positively correlated ($P < 0.01$) with serum IL-10 levels ($r = 0.867$). Furthermore, 4
588	proteins were common between the Control vs CGA and CGA vs DEX + CGA
589	comparison groups, among which dynein regulatory complex subunit 4 (GAS8,
590	accession number: F1NLA8) and Apolipoprotein C-III (APOC3, accession number:
591	A0A1D5PK48) were negatively correlated ($P < 0.01$) with serum IL-18 levels ($r = -$
592	0.933 and $r = -0.900$, respectively) (Fig. 8C).
593	3.10. Crosstalk between metabolomic and biochemical parameters
594	A total of 25 metabolites were common between the Control vs DEX and DEX vs
595	DEX + CGA groups, and parameters with $r > 0.8$ or < -0.8 and $P < 0.01$ were selected.
596	Among the 25 metabolites, α -muricholic acid was negatively ($P < 0.01$) correlated with
597	V:C ratio ($r = -0.866$), villus height ($r = -0.815$), and jejunal IL-4 level ($r = -0.901$), and
598	positively correlated with jejunal CXCL1 levels ($r = 0.843$) and serum IL-6 level ($r =$
599	0.840). Additionally, 7,8-dihydro-L-biopterin was positively correlated ($P < 0.01$) with
600	villus height ($r = 0.829$), whereas Asp-Phe was negatively correlated ($P < 0.01$) with
601	villus height ($r = -0.814$) and positively correlated with <i>IL-1</i> β transcription ($r = 0.874$)
602	and jejunal IL-12 ($r = 0.862$) and CXCL2 levels ($r = 0.805$). Glycyl-L-proline was
603	negatively correlated ($P < 0.01$) with jejunal CXCL2 levels ($r = -0.807$), whereas 2,4-
604	hexadienoic acid was negatively correlated ($P < 0.01$) with <i>IL-4</i> transcription ($r = -$

612	4. Discussion
611	
610	metabolite and the biochemical parameters (Fig. 8D).
609	vs DEX + CGA groups; however, there was no significant correlation between the
608	Furthermore, only 1 metabolite was common between the Control vs CGA and CGA
607	uracil was negatively correlated ($P < 0.01$) with <i>IL-4</i> transcription ($r = -0.840$).
606	levels were positively correlated ($P < 0.01$) with jejunal CXCL2 levels. Additionally,
605	0.860). Moreover, (\pm)5-HETE ($r = 0.846$), (\pm)9-HETE ($r = 0.846$), and LTE4 ($r = 0.836$)

In the present study, we evaluated the effect of CGA supplementation on the gut 613 614 microbial composition, intestinal protein profiles, serum metabolites, intestinal barrier 615 function, immune function and growth performance of broilers with DEX-induced 616 immunological stress. The findings showed that CGA supplementation effectively 617 improved the growth performance and reversed DEX-induced inflammation and jejunal 618 permeability. Additionally, CGA × DEX improved jejunal morphology and expression of tight junction proteins in DEX-treated broilers, which was similar to the findings of 619 620 previous studies on the growth-promoting effects and anti-inflammatory activities of 621 CGA in chickens and pigs (Chen et al., 2018a,b; Xu et al., 2020; Zhang et al., 2020). 622 Although the gut microbial diversity of the broilers was not significantly altered 623 by DEX treatment, CGA supplementation significantly increased the chao1 and 624 observed_otus indices of broilers in the DEX + CGA group. Moreover, the gut 625 microbiota of broilers in the DEX + CGA group was significantly affected at the family

626	(Clostridiales	vadin	BB60_gro	up),	genus	(Clostridiales	vadin
627	BB60_group_uncl	lassified	genus),	and	species	(Clostridiales	vadin
628	BB60_group_uncl	lassified) l	evels compa	red with	those of b	roilers in the DEX	group.
629	Although a study	indicated	that the a	bundance	e of Clostr	<i>ridiales</i> vadin BB	60 was
630	enriched in mice	with ente	ritis (Liu et	al., 202	20), recent	research has sho	wn that
631	Clostridium butyr	ricum MIY	AIRI 588 s	uppleme	ntations in	creased the abund	ance of
632	<i>Clostridiales</i> vadi	n BB60 in	mice under	stress (7	Tian et al., 2	2019). Additionally	y, Kang
633	et al. (2019) foun	d that Clo	stridiales va	idin BB6	50 was posi	tively correlated w	with the
634	expression of inter-	estinal ZO	-1 and neg	atively o	correlated v	with serum inflan	nmatory
635	parameters, such a	as TNF-α,	IL-6, and L	PS. Simi	larly, the re	esults of the presen	nt study
636	showed that Close	tridiales va	adin BB60_	group_u	nclassified	was negatively co	rrelated
637	with inflammatory	/ parameter	rs, including	serum II	L-18, CXCI	1, and CXCL2 lev	els, and
638	jejunal IL-12, IL-1	18, and CX	CL2 levels.				

Studies have shown that gut bacteria ferment non-digestible carbohydrates to 639 produce SCFA, conferring several health benefits (Gibson et al., 2017; Ojo et al., 2021). 640 641 Clostridiales vadin BB60_group are potential SCFA-producing bacteria (Cheng et al., 642 2021). SCFA affect gut epithelial integrity, which may regulate exposure of the 643 mucosal immune system to bacteria or innate signals that affect immune tolerance (Macia et al., 2012). In the present study, CGA and CGA + DEX treatments 644 significantly increased the levels of SCFA, such as acetic, propanoic, and butyric acids. 645 646 These data are in accordance with the KEGG results of gut microbiota, which showed

31

647 an upregulation in the pyruvate fermentation pathway, an SCFA-related pathway 648 (Liang et al., 2020), in the DEX + CGA group compared with the DEX group. 649 Additionally, the SCFA were negatively correlated with D-LA and pro-inflammatory 650 cytokines. These findings indicated that CGA supplementation improved inflammatory 651 responses and enhanced gut barrier function. Furthermore, CGA intake may also play a role in the host proteome (Lin et al., 652 2017). The results obtained in the present study showed altered protein profiles in 653 654 broilers treated with CGA and/or DEX. In particular, SELENBP1 and CLCN2 were 655 decreased by DEX. SELENBP1 is a member of the selenium-binding protein family, which has been shown to bind covalently to selenium (Porat et al., 2000). The role of 656 SELENBP1 in the intestine is to modulate the differentiation and function of immune 657 658 cells, contributing to a reduction in excessive immune response (Speckmann and 659 Steinbrenner, 2014). Moreover, CLCN2 can enhance the intestinal epithelial tight 660 junction barrier function (Nighot et al., 2017). The expression of COX17 in the CGA 661 group was increased compared to the control. It has been reported that in the 662 gastrointestinal tract of weaned piglets, LPS significantly decreased the expression of 663 COX17, while epidermal growth factor treatment significantly increased the expression

of COX17 (Xue et al., 2020). In addition, compared with the DEX group, DEX + CGA
 significantly decreased the expression of FHOD1, which is upregulated in epithelial mesenchymal transition, and participates in cancer cell migration and invasion

667 (Gardberg et al., 2013). It is also worth noting that DEX increased the expression of the

668	TMSB4X protein and decreased LGMN expression. However, DEX + CGA
669	significantly reversed the above trends. TMSB4X is a naturally occurring peptide
670	(Vasilopoulou et al., 2016) that exhibits several functions. Although exogenous
671	TMSB4X has been shown to have beneficial effects on diverse pathologies, including
672	myocardial infarction (Smart et al., 2011), stroke (Morris et al., 2014), and
673	inflammatory lung disease (Conte et al., 2013), a recent study has revealed that the ethyl
674	acetate extract of Cremastra appendiculata inhibits the growth of breast cancer tissues
675	and reduces the expression of the TMSB4X gene in breast cancer cells in a tumour
676	transplanted mouse model (Cao et al., 2021). Additionally, to participate in immune
677	response, LGMN can process self-antigen peptides and foreign proteins, deliver them
678	to T cells in the form of MHC II molecular complexes, and trigger the activation of toll-
679	like receptors (TLRs) or other cathepsins via hydrolysis (Dall and Brandstetter, 2016),
680	indicating the important role of LGMN in the immune system. Thus, decreased
681	expression of TMSB4X and increased expression of LGMN after CGA
682	supplementation confirmed the positive immunoregulatory activity of CGA in DEX-
683	challenged broilers.

MRM analysis further confirmed that DEX treatment causes increased APOA1 expression. However, CGA supplementation caused a decrease in APOA1 expression. KEGG pathways analysis demonstrated that the DEP, including APOA1, were enriched in the PPAR signalling pathway. PPARs are involved in energy homeostasis. Moreover, a study showed that PPARs are expressed in immune cells and play an emerging critical
689 role in immune cell differentiation and fate commitment (Christofides et al., 2021). 690 Similar to our results, Ma et al. (2015) also reported that CGA caused a decrease in 691 PPAR mRNA expression. Furthermore, MRM analysis also showed that DEX 692 treatment caused increased PROSC expression, and CGA supplementation caused a 693 decrease in CHP1 expression. According to the KEGG result, PROSC and CHP1 were 694 enriched in the butanoate metabolism and the apoptosis signalling pathways. These 695 findings confirmed that CGA plays positive roles in SCFA metabolism, PPAR signalling pathway, and apoptosis. Furthermore, EIF3J was downregulated in the DEX 696 697 group. KEGG analysis indicated that EIF3J was involved in the MAPK signalling 698 pathway. The MAPK signalling pathway is involved in the regulation of immune 699 function. A previous study showed that Se-enriched Grifola frondosa polysaccharides 700 improve immune function by activating the MAPK signalling pathway (Li et al., 2018). 701 sulfated modification enhanced the immunomodulatory effect Additionally, 702 of Cyclocarya paliurus polysaccharides in immunosuppressed mice through the 703 MyD88-dependent MAPK signalling pathway (Yu et al., 2021). In the present study, 704 western blotting confirmed that CGA supplementation reversed DEX-induced 705 inactivation of the MAPK signalling pathway, confirming the immunoregulatory 706 activity of CGA.

Normally, proteins interact with each other to perform various biological functions.
Therefore, a PPI network was generated to visualize the interactions between the DEP
identified in this study. CDK1 was the core PPI node in the DEX vs Control groups in

710	this network, with 8 interactions. IKZF1 was the core PPI node in the CGA vs Control
711	groups, with 4 interactions, and CDK1 was the core PPI node in the DEX + CGA vs
712	DEX groups, with 19 interactions. The considerable overlap among the pathways
713	indicated that a particular protein could exist in diverse signalling pathways and that
714	various proteins could regulate a particular pathway. Moreover, Li et al. (2015) reported
715	a significant increase in CDK1 expression in DF-1 cells after infection with subgroup
716	J avian leukosis virus, indicating the immunoregulatory role of CDK1. Correlation
717	analysis demonstrated that several upregulated DEP in the DEX + CGA group, such as
718	ANO5, were positively correlated with the anti-inflammatory cytokine IL-10 level. In
719	contrast, several downregulated DEP in the DEX + CGA group, such as TMSB4X,
720	were positively correlated with the levels of pro-inflammatory cytokines and
721	chemokines, such as CXCL1, IL-18, and IL-22. Although the functions of these
722	proteins have rarely been reported, a study showed a decrease in ANO5 expression in
723	DF-1 cells infected with subgroup J avian leukosis virus (Li et al., 2015). Similarly, as
724	mentioned above, a decrease in TMSB4X expression may be beneficial for animal
725	health. The proteomic analysis indicated that CGA supplementation played important
726	roles in regulating intestinal health or inflammation-related proteins and the PPAR,
727	MAPK, butanoate metabolism and apoptosis signalling pathways.

Metabolomic analyses corroborated several key findings from microbiome and proteome analyses, providing valuable insights into the immunoregulatory effects of CGA. OPLS-DA analysis clustered the metabolites according to the treatments.

731	Compared to the DEX group, there was an increase in the levels of 2,4-dihydroxy
732	benzoic acid (a derivative of hydroxybenzoic acid), homogentisic acid, 7,8-dihydro-L-
733	biopterin and a decrease in the levels of 23-deoxycholic acid, 2'-deoxyadenosine-5'-
734	monophosphate, and carnitine C18:1-OH in the DEX + CGA treatment group. Reports
735	have shown that hydroxybenzoic acids and their derivatives possess antioxidant
736	properties (Hubková et al., 2014). Moreover, homogentisic acid exhibits antioxidant
737	and antiradical activities (Rosa et al., 2011). Therefore, the increased concentrations of
738	2,4-dihydroxy benzoic acid and homogentisic acid may imply an increase in the
739	antioxidant capacity of broilers in the DEX + CGA group. KEGG analysis
740	demonstrated that the different metabolites between the DEX + CGA and DEX groups
741	were enriched in glutathione metabolism and the PPAR signalling pathway.
742	Glutathione possesses antioxidant capacity (Gaucher et al., 2018), indicating that CGA
743	can exert antioxidant activity by promoting glutathione metabolism (Miao and Xiang,
744	2020) and reverse acetaminophen-induced decrease in liver glutathione levels and
745	glutamate-cysteine ligase and glutathione reductase activities (Ji et al., 2013). Moreover,
746	PPAR signalling pathway enrichment was downregulated in the DEX + CGA group
747	compared with the DEX group, which was in accordance with the results of the KEGG
748	analysis of the DEP. Western blotting further confirmed the effects of CGA on PPAR
749	expression. Additionally, there were significant correlations between the altered
750	metabolites and biochemical parameters. For instance, 7,8-dihydro-L-biopterin, which
751	was increased by CGA treatment, was positively correlated with villus height. In

contrast, glycyl-L-proline was negatively correlated with jejunal CXCL2 levels. This
indicates that CGA regulated intestinal health and immune function of broilers through
serum metabolites.

755

756 **5.** Conclusions

757 In conclusion, the multi-omics analysis showed that for the supplementation of CGA to oxidatively stressed broilers, the gut microbes (Clostridiales vadin BB60), 758 759 jejunal proteins (TMSB4X, LGMN, APOA1, PROSC, CHP1 and EIF3J), and serum 760 metabolites, such as 2,4-dihydroxy benzoic acid and homogentisic acid, were the 761 primary targets. Correlation analysis between biochemical and omics parameters 762 indicated that CGA exerted beneficial effects by regulating gut microbiota, jejunal 763 protein, and serum metabolites. Moreover, the increase in SCFA levels after CGA treatment verified the increased abundance of the SCFA-producing bacteria 764 765 Clostridiales vadin BB60 in CGA-treated broilers. Proteomic and metabolomic analyses and western blotting corroborated the predicted PPAR and MAPK signalling 766 767 pathway changes. However, further studies are necessary to identify additional 768 mechanisms of CGA, including specific protein and metabolite targets.

769 Acknowledgements

This study was supported by the Qingdao Science and Technology Program (22-3-7-

771 xdny-11-nsh) and Shandong Provincial Natural Science Foundation (ZR2021MC118).

773 Availability of data and materials

- 774 Microbiomic and proteomic sequencing data have been deposited under BioProject
- 775 PRJNA789475 and IPX0003857000, respectively.
- 776

```
777 References
```

- 778 Broom LJ, Kogut MH. The role of the gut microbiome in shaping the immune system
- of chickens. Vet Immunol Immunopathol 2018;204:44–51.
- 780 Cao XD, Nan Z, Yang DD, Liu Y, Wang H, Zhang ZY. New revelation of TMT-based
- quantitative proteomic analysis on anti-4T1 breast cancer of ethyl acetate extract of

782 *Cremastra appendiculata*. Nat Prod Res Dev 2021;33:246.

- 783 Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, Hernández-Quiroz F, Ramírez-del-
- Alto S, García-Mena J et al. Gut microbiota and predicted metabolic pathways in a
- sample of Mexican women affected by obesity and obesity plus metabolic
- syndrome. Int J Mol Sci 2019;20:438.
- 787 Chen J, Xie H, Chen D, Yu B, Mao X, Zheng P, et al. Chlorogenic acid improves
- intestinal development via suppressing mucosa inflammation and cell apoptosis in
 weaned pigs. ACS Omega 2018a;3:2211–9.
- 790 Chen J, Yu B, Chen D, Huang Z, Mao X, Zheng P, et al. Chlorogenic acid improves
- intestinal barrier functions by suppressing mucosa inflammation and improving
- antioxidant capacity in weaned pigs. J Nutr Biochem 2018b;59:84–92.

- 793 Chen J, Yu B, Chen D, Zheng P, Luo Y, Huang Z, et al. Changes of porcine gut
- microbiota in response to dietary chlorogenic acid supplementation. Appl Microbiol
 Biotechnol 2019;103:8157–68.
- 796 Chen JY, Yu YH. Bacillus subtilis-fermented products ameliorate the growth
- performance and alter cecal microbiota community in broilers under
 lipopolysaccharide challenge. Poult Sci 2021;100(2):875–86.
- 799 Chen F, Zhang H, Zhao N, Yang X, Du E, Huang S, et al. Effect of chlorogenic acid on
- 800 intestinal inflammation, antioxidant status, and microbial community of young hens
- challenged with acute heat stress. Anim Sci J 2021;92:e13619.
- 802 Cheng R, Cheng L, Zhao Y, Wang L, Wang S, Zhang J. Biosynthesis and prebiotic
- activity of a linear levan from a new *Paenibacillus isolate*. Appl Microbiol
 Biotechnol 2021;105:769–87.
- Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome
 proliferator-activated receptors (PPAR) in immune responses. Metabolism
 2021;114:154338.
- 808 Conte E, Genovese T, Gili E, Esposito E, Iemmolo M, Fruciano M, et al. Thymosin β4
- 809 protects C57BL/6 mice from bleomycin-induced damage in the lung. Eur J Clin
- 810 Invest 2013;43:309–15.
- 811 Dall E, Brandstetter H. Structure and function of legumain in health and disease.
- 812 Biochimie 2016;122:126–50.

813	Furuhashi T, Sugitate K, Nakai T, Jikumaru Y, Ishihara G. Rapid profiling method for
814	mammalian feces short chain fatty acids by GC-MS. Anal Biochem 2018;543:51-
815	4.
816	Gao J, Lin H, Wang XJ, Song ZG, Jiao HC. Vitamin E supplementation alleviates the
817	oxidative stress induced by dexamethasone treatment and improves meat quality in
818	broiler chickens. Poult Sci 2010;89:318–27.
819	Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the gut microbiota on
820	intestinal immunity mediated by tryptophan metabolism. Front Cell Infect
821	Microbiol 2018;8:13.
822	Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant
823	properties dedicated to nanotechnologies. Antioxidants (Basel) 2018;7:62.
824	Gardberg M, Kaipio K, Lehtinen L, Mikkonen P, Heuser VD, Talvinen K, et al. FHOD1,
825	a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell
826	migration and invasion. PLOS ONE, 2013, 8(9):e74923.
827	Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al.
828	Expert consensus document: The International Scientific Association for Probiotics
829	and Prebiotics (ISAPP) consensus statement on the definition and scope of
830	prebiotics. Nat Rev Gastroenterol Hepatol 2017;14:491-502.

- 831 Haange SB, Jehmlich N. Proteomic interrogation of the gut microbiota: Potential
- 832 clinical impact. Expert Rev Proteomics 2016;13:535–7.

		nr		$ \Delta f $
			U	

833	Hu R, He Z, Liu M, Tan J, Zhang H, Hou DX, et al. Dietary protocatechuic acid
834	ameliorates inflammation and up-regulates intestinal tight junction proteins by
835	modulating gut microbiota in LPS-challenged piglets. J Anim Sci Biotechnol
836	2020;11:92.
837	Hubková B, Veliká B, Birková A, Guzy J, Mareková M. Hydroxybenzoic acids and
838	their derivatives as peroxynitrite scavengers. Free Radic Biol Med 2014;75(Suppl
839	1):S33–4.
840	Ji L, Jiang P, Lu B, Sheng Y, Wang X, Wang Z. Chlorogenic acid, a dietary polyphenol,
841	protects acetaminophen-induced liver injury and its mechanism. J Nutr Biochem
842	2013;24:1911–9.
843	Kang Y, Li Y, Du Y, Guo L, Chen M, Huang X, et al. Konjaku flour reduces obesity in
844	mice by modulating the composition of the gut microbiota. Int J Obes (Lond)
845	2019;43:1631–43.
846	Kuttappan VA, Bottje W, Ramnathan R, Hartson SD, Coon CN, Kong BW, et al.
847	Proteomic analysis reveals changes in carbohydrate and protein metabolism
848	associated with broiler breast myopathy. Poult Sci 2017;96:2992–9.
849	Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience
850	research reporting: the ARRIVE guidelines for reporting animal research. J
851	Pharmacol Pharmaco 2010;1(2):94–9.

- Lee J, Mun S, Kim D, Lee YR, Sheen DH, Ihm C, et al. Proteomics analysis for
 verification of rheumatoid arthritis biomarker candidates using multiple reaction
- monitoring. Proteomics Clin Appl 2019;13:e1800011.
- 855 Li Q, Chen G, Chen H, Zhang W, Ding Y, Yu P, et al. Se-enriched G. frondosa
- 856 polysaccharide protects against immunosuppression in cyclophosphamide-induced
- mice via MAPKs signal transduction pathway. Carbohydr Polym 2018;196:445–56.
- Li X, Wang Q, Gao Y, Qi X, Wang Y, Gao H, et al. Quantitative iTRAQ LC-MS/MS
- proteomics reveals the proteome profiles of DF-1 cells after infection with subgroup
- J Avian leukosis virus. BioMed Res Int 2015;2015:395307.
- Li Y, Zhang H, Chen YP, Yang MX, Zhang LL, Lu ZX, et al. Bacillus amyloliquefaciens
- 862 supplementation alleviates immunological stress in lipopolysaccharide-challenged

broilers at early age. Poult Sci 2015;94:1504–11.

- Liang S, Mao Y, Liao M, Xu Y, Chen Y, Huang X, et al. Gut microbiome associated
- with APC gene mutation in patients with intestinal adenomatous polyps. Int J Biol
 Sci 2020;16:135–46.
- Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory
 stress conditions. Nutrients 2015;8:16.
- 869 Lin S, Hu J, Zhou X, Cheung PCK. Inhibition of vascular endothelial growth factor-
- 870 induced angiogenesis by chlorogenic acid via targeting the vascular endothelial
- growth factor receptor 2-mediated signalling pathway. J Funct Foods 2017;32:285–
- **872 95**.

873	Liu H, Zhao F, Zhang K, Zhao J, Wang Y. Investigating the growth performance, meat
874	quality, immune function and proteomic profiles of plasmal exosomes in
875	Lactobacillus plantarum-treated broilers with immunological stress. Food Funct
876	2021;12:11790-807.
877	Liu H, Chen P, Lv X, Zhou Y, Li X, Ma S, et al. Effects of chlorogenic acid on
878	performance, anticoccidial indicators, immunity, antioxidant status, and intestinal
879	barrier function in coccidia-infected broilers. Animals 2022;12(8):963.
880	Liu Z, Liu F, Wang W, Sun C, Gao D, Ma J, et al. Study of the alleviation effects of a
881	combination of Lactobacillus rhamnosus and inulin on mice with colitis. Food
882	Funct 2020;11:3823–37.
883	Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
884	quantitative PCR and the 2(-Delta C(T)) Method. Methods 2001;25:402-8.
885	Lou Z, Wang H, Zhu S, Ma C, Wang Z. Antibacterial activity and mechanism of action
886	of chlorogenic acid., J Food Sci 2011;76:M398-403.
887	Ma Y, Gao M, Liu D. Chlorogenic acid improves high fat diet-induced hepatic steatosis
888	and insulin resistance in mice. Pharm Res 2015;32:1200–9.
889	Macia L, Thorburn AN, Binge LC, Marino E, Rogers KE, Maslowski KM, et al.
890	Microbial influences on epithelial integrity and immune function as a basis for
891	inflammatory diseases. Immunol Rev 2012;245:164–76.

- 892 Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid.
- 893 Adv Pharmacol 2020;87:71–88.

- 894 Morris DC, Cui Y, Cheung WL, Lu M, Zhang L, Zhang ZG, et al. A dose-response study
- solution of thymosin β 4 for the treatment of acute stroke. J Neurol Sci 2014;345:61–7.
- 896 Nighot PK, Leung L, Ma TY. Chloride channel ClC-2 enhances intestinal epithelial
- tight junction barrier function via regulation of caveolin-1 and caveolar trafficking
- 898 of occludin. Exp Cell Res 2017;352(1):113–22.
- Njagi LW, Nyaga PN, Bebora LC, Mbuthia PG, Minga UM. Effect of
 immunosuppression on Newcastle disease virus persistence in ducks with different
 immune status. ISRN Vet Sci 2012;2012:253809.
- 902 Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, et al. Chlorogenic
- acid (CGA): A pharmacological review and call for further research. Biomed
 Pharmacother 2018;97:67–74.
- 905 Ojo BA, Lu P, Alake SE, Keirns B, Anderson K, Gallucci G, et al. Pinto beans modulate
- the gut microbiome, augment MHC II protein, and antimicrobial peptide gene
 expression in mice fed a normal or western-style diet. J Nutr Biochem
 2021;88:108543.
- 909 Porat A, Sagiv Y, Elazar Z. A 56-kDa selenium-binding protein participates in intra-
- Golgi protein transport. J Biol Chem 2000;275:14457–65.
- 911 Rosa A, Tuberoso CI, Atzeri A, Melis MP, Bifulco E, Dessì MA. Antioxidant profile of
- 912 strawberry tree honey and its marker homogentisic acid in several models of
- 913 oxidative stress. Food Chem 2011;129:1045–53.

	D	ri	nr		
oum			UΤ		

914	Shi D, Bai L, Qu Q, Zhou S, Yang M, Guo S, et al. Impact of gut microbiota structure
915	in heat-stressed broilers. Poult Sci 2019;98:2405–13.
916	Smart N, Bollini S, Dubé K N, Vieira J M, Zhou B, Davidson S, et al. De novo
917	cardiomyocytes from within the activated adult heart after injury. Nature
918	2011;474:640–4.
919	Söderholm JD, Perdue MH. Stress and gastrointestinal tract. II. Stress and intestinal
920	barrier function. Am J Physiol Gastrointest Liver Physiol 2001;280:G7–13.
921	Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut
922	microbiota: role in human health. J Agric Food Chem 2009;57(15):6485–501.
923	Speckmann B, Steinbrenner H. Selenium and selenoproteins in inflammatory bowel
924	diseases and experimental colitis. Inflamm Bowel Dis 2014;20:1110–9.
925	Tian T, Xu B, Qin Y, Fan L, Chen J, Zheng P, et al. <i>Clostridium butyricum</i> miyairi 588
926	has preventive effects on chronic social defeat stress-induced depressive-like
927	behaviour and modulates microglial activation in mice. Biochem Biophys Res
928	Commun 2019;516:430–6.
929	Upadhyay R, Mohan Rao L J. An outlook on chlorogenic acids—occurrence, chemistry,
930	technology, and biological activities. Crit Rev Food Sci 2013;53:968–984.
931	Vasilopoulou E, Kolatsi-Joannou M, Lindenmeyer MT, White KE, Robson MG, Cohen
932	CD, et al. Loss of endogenous thymosin β 4 accelerates glomerular disease. Kidney
933	Int 2016;90:1056–70.

- 934 Vernocchi P, Del Chierico F, Putignani L. Gut microbiota Profiling: Metabolomics
- based approach to unravel compounds affecting human health. Front Microbiol2016;7:1144.
- 937 Wang Y, Lv X, Li X, Zhao J, Zhang K, Hao X, et al. Protective effect of Lactobacillus
- 938 *plantarum* P8 on growth performance, intestinal health, and microbiota in Eimeria-

939 infected broilers. Front Microbiol 2021;12:705758.

- Wang J. Dietary selenium and vitamin E alleviate DEX-induced oxidative stress in
 broilers. Northwest A&F University, 2012.
- 942 Wu Y, Zhang H, Zhang R, Cao G, Li Q, Zhang B, et al. Serum metabolome and gut
- 943 microbiome alterations in broiler chickens supplemented with lauric acid. Poult Sci
 944 2021;100:101315.
- Xiong W, Abraham PE, Li Z, Pan C, Hettich RL. Microbial metaproteomics for
 characterizing the range of metabolic functions and activities of human gut
 microbiota. Proteomics 2015;15:3424–38.
- 948 Xu X, Chang J, Wang P, Yin Q, Liu C, Li M, et al. Effect of chlorogenic acid on
- alleviating inflammation and apoptosis of IPEC-J2 cells induced by deoxyniyalenol.
- 950 Ecotoxicol Environ Saf 2020;205:111376.
- 951 Xue J, Xie L, Liu B, Zhou L, Hu Y, Ajuwon KM, et al. Epidermal growth factor
- 952 ameliorates essential trace element absorption in the gastrointestinal tract by 953 regulating the expression of microelement transport-relative genes in

doi:10.21203/rs.3.rs-102470/v1.

lipopolysaccharide challenged early weaning piglets. Res Square 2020;

956	Yang X, Liang S, Guo F, Ren Z, Yang X, Long F, et al. Gut microbiota mediates the
957	protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced
958	apoptosis and intestinal inflammation of broiler chickens. Poult Sci
959	2020;99(5):2395–406.
960	Yu Y, Mo S, Shen M, Chen Y, Yu Q, Li Z, et al. Sulfated modification enhances the
961	immunomodulatory effect of Cyclocarya paliurus polysaccharide on
962	cyclophosphamide-induced immunosuppressed mice through MyD88-dependent
963	MAPK/NF-KB and PI3K-Akt signaling pathways. Food Res Int 2021;150:110756.
964	Zhang K, Li X, Zhao J, Wang Y, Hao X, Liu K, et al. Protective effects of chlorogenic
965	acid on the meat quality of oxidatively stressed broilers revealed by integrated
966	metabolomics and antioxidant analysis. Food Funct 2022;13:2238-52.
967	Zhang X, Zhao Q, Ci X, Chen S, Xie Z, Li H, et al. Evaluation of the efficacy of
968	chlorogenic acid in reducing small intestine injury, oxidative stress, and
969	inflammation in chickens challenged with Clostridium perfringens type A. Poult
970	Sci 2020;99:6606–18.
971	Zou X, Ji J, Qu H, Wang J, Shu DM, Wang Y, et al. Effects of sodium butyrate on
972	intestinal health and gut microbiota composition during intestinal inflammation

973 progression in broilers. Poult Sci 2019;98(10):4449–56.

47

954

97	4
----	---

975 **Table 1** Effects of dexamethasone, chlorogenic acid, or their interaction on the growth performance of broilers

Crown	_	Day 1–14		D	ay 14–21	Day 1–21			
Gloup	ADG, g	ADFI, g	F:G	ADG, g	ADFI, g	F:G	ADG, g	ADFI, g	F:G
Control	26.11	31.10	1.19	55.56 ^a	74.35	1.35 ^b	36.60 ^a	45.04	1.23°
DEX	26.52	30.73	1.17	26.96 ^c	64.89	2.44 ^a	26.70 ^c	43.18	1.62 ^a
CGA	27.30	32.16	1.18	53.67 ^a	73.45	1.37 ^b	35.96 ^a	45.95	1.28 ^{bc}
DEX + CGA	26.49	30.76	1.16	46.00 ^b	69.21	1.51 ^b	32.42 ^b	43.49	1.34 ^b
SEM	1.13	0.67	0.04	2.25	2.14	0.10	1.16	1.30	0.05
Main effect									
CGA									
-	_	-	_	41.26	69.63	1.89	31.65	44.11	1.43
+	_	-	_	49.83	69.21	1.44	34.19	44.72	1.31
DEX									
-	_	-	- ~	54.61	73.90	1.36	36.28	45.50	1.26
+	_	-	-0	36.48	67.06	1.97	29.56	43.34	1.48
<i>P</i> -value									
CGA	0.76	0.15	0.81	< 0.01	0.27	< 0.01	< 0.01	0.51	< 0.01
DEX	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01
Interaction	_	-	_	< 0.01	0.10	< 0.01	< 0.01	0.75	< 0.01

976 DEX = dexamethasone; CGA = chlorogenic acid; DEX + CGA = dexamethasone + chlorogenic acid.

977 a,b,c Within a column, means without a common superscript differ significantly (P < 0.05). n = 6 for each group.

Table 2 Effects of dexametrasone, emologenic acid, of their interaction on the seruin minute parameters of biomers													
Itana	IgA,	IgM,	IL-1β,	IL-4,	IL-6,	IL-10,	IL-12,	IL-18,	IL-22,	TNF-α,	IFN-γ,	CXCL1,	CXCL2,
nem	ng/mL	ng/mL	pg/mL	pg/mL	pg/mL	pg/mL	pg/mL	ng/L	ng/L	pg/mL	pg/mL	ng/L	ng/L
Control	333.77	1097.70	709.56 ^b	187.46 ^{ab}	86.61°	56.45ª	534.33 ^b	105.19 ^b	19.16 ^b	93.33	12.86 ^a	189.78 ^b	187.87 ^b
DEX	349.95	887.38	800.67 ^a	131.52°	122.55 ^a	37.43 ^b	651.00 ^a	202.99 ^a	28.10 ^a	114.00	7.23 ^b	258.61ª	280.04 ^a
CGA	381.08	1241.75	693.44 ^b	195.78ª	98.64 ^b	47.01 ^{ab}	496.33°	124.84 ^{bc}	14.88 ^b	89.76	11.34 ^a	164.78°	145.83°
DEX + CGA	341.13	1176.67	698.44 ^b	170.46 ^b	100.05 ^b	54.29ª	403.67°	76.26 ^c	17.01 ^b	96.85	11.27ª	140.40 ^c	142.76 ^c
SEM	12.24	48.63	12.53	6.24	3.14	2.18	24.60	10.31	1.24	3.03	0.49	10.01	12.81
Main effect													
CGA													
_	341.86	992.54	755.11	160.49	104.58	46.94	592.67	154.09	23.63	103.67	10.04	224.20	232.46
+	361.10	1209.21	695.94	183.13	99.34	50.65	450.00	100.55	15.94	93.31	11.31	152.29	144.30
DEX													
-	357.43	1169.72	701.50	192.62	92.62	51.73	515.33	115.02	17.02	91.54	12.10	177.28	165.35
+	329.61	1032.02	749.56	151.00	111.30	54.29	527.33	139.62	22.55	105.43	9.25	199.51	211.40
<i>P</i> -value													
CGA	0.12	0.02	< 0.01	< 0.01	0.14	0.27	0.01	< 0.01	< 0.01	0.05	0.01	< 0.01	< 0.01

Table 2 Effects of dexamethasone, chlorogenic acid, or their interaction on the serum immune parameters of broilers

DEX	0.22	0.12	0.02	< 0.01	< 0.01	0.09	0.73	< 0.01	< 0.01	0.01	< 0.01	0.02	< 0.01
Interaction	0.59	0.41	0.03	0.04	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.19	< 0.01	< 0.01	< 0.01

 $DEX = dexamethasone; CGA = chlorogenic acid; DEX + CGA = dexamethasone + chlorogenic acid; Ig = immunoglobulin; IL = interleukin; TNF-<math>\alpha$ = tumor necrosis factor α ;

- 980 IFN- γ = interferon γ ; CXCL= CXC chemokine ligand.
- 981 ^{a,b,c} Within a column, means without a common superscript differ significantly (P < 0.05). n = 6 for each group.

	Table 3	Effects of	dexameth	asone, chlo	progenic a	cid, or thei	ir interacti	on on the j	jejunal im	mune para	meters of	broilers	
	IgA,	IgM,	IL-1β,	IL-4,	IL-6,	IL-10,	IL-12,	IL-18,	IL-22,	TNF-α,	IFN-γ,	CXCL1,	CXCL2,
Item	ng/mg	ng/mg	pg/mg	pg/mg	pg/mg	pg/mg	pg/mg	ng/mg	ng/mg	pg/mg	pg/mg	ng/mg	ng/mg
	prot	prot	prot	prot	prot	prot	prot	prot	prot	prot	prot	prot	prot
Control	29.53	63.77	5.34 ^b	1.56 ^a	0.26 ^b	0.53	714.41 ^b	10.22 ^b	2.72 ^b	0.44 ^c	18.75	12.42°	16.47 ^b
DEX	18.39	50.06	7.34 ^a	1.15 ^c	0.34 ^a	0.48	889.90ª	14.87 ^a	4.48 ^a	0.53 ^a	16.64	21.75 ^a	26.01 ^a
CGA	27.29	72.32	5.33 ^b	1.38 ^b	0.22 ^c	0.56	700.69 ^b	9.51 ^b	2.54 ^b	0.49 ^b	17.31	15.00 ^{bc}	15.63 ^b
DEX + CGA	22.26	68.54	5.41 ^b	1.33 ^b	0.23°	0.54	635.98 ^b	10.38 ^b	2.68 ^b	0.51 ^{ab}	16.80	16.09 ^b	17.12 ^b
SEM	1.26	2.31	0.21	0.039	0.011	0.013	24.78	0.50	0.18	0.01	1.19	0.87	0.95
Main effect													
CGA													
_	23.96	56.91	6.34	1.35	0.30	0.50	802.16	12.55	3.60	0.49	17.70	17.08	21.24
+	24.78	70.43	5.37	1.35	0.22	0.55	668.33	9.95	2.61	0.50	17.06	15.54	16.38
DEX													
-	28.41	68.04	5.33	1.47	0.24	0.54	707.55	9.87	2.63	0.47	18.03	13.71	16.05
+	20.32	59.30	6.38	1.24	0.28	0.51	762.94	12.63	3.58	0.52	16.72	18.92	21.56
<i>P</i> -value													

1. C1 '1

			$\mathbf{n}\mathbf{r}$		
			$\mathbf{p}_{\mathbf{T}}$		

CGA	0.67	< 0.01	< 0.01	0.98	< 0.01	0.08	< 0.01	< 0.01	< 0.01	0.43	0.80	0.16	< 0.01
DEX	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.16	0.10	< 0.01	< 0.01	< 0.01	0.61	< 0.01	< 0.01
Interaction	0.12	0.14	< 0.01	< 0.01	< 0.01	0.58	< 0.01	< 0.01	< 0.01	0.03	0.75	< 0.01	< 0.01

991 $DEX = dexame thas one; CGA = chlorogenic acid; DEX + CGA = dexame thas one + chlorogenic acid; Ig = immunoglobulin; IL = interleukin; TNF-<math>\alpha$ = tumor necrosis factor α ;

992 IFN- γ = interferon γ ; CXCL = CXC chemokine ligand.

993 a,b,c Within a column, means without a common superscript differ significantly (P < 0.05). n = 6 for each group

Item	Villus height, µm	Crypt depth, µm	V:C ratio
Control	347.86 ^a	73.26	4.76 ^a
DEX	224.59 ^b	110.71	2.11 ^b
CGA	344.57 ^a	72.33	4.81 ^a
DEX + CGA	332.15 ^a	79.89	4.18 ^a
SEM	29.21	10.06	0.43
Main effect			
CGA			
_	286.23	91.98	3.43
+	338.36	76.11	4.50
DEX			
-	346.22	72.79	4.78
+	278.37	95.30	3.15
<i>P</i> -value			
CGA	0.02	0.04	< 0.01
DEX	<0.01	<0.01	< 0.01
Interaction	0.02	0.05	< 0.01

	994	Table 4 Effects of	dexamethasone,	chlorogenic acid,	or their interaction	on the jejunal
--	-----	--------------------	----------------	-------------------	----------------------	----------------

995 morphology of broilers

996 DEX = dexamethasone; CGA = chlorogenic acid; DEX + CGA= dexamethasone + chlorogenic acid;

997 V:C = villus height to crypt depth.

998 ^{a,b} Within a column, means without a common superscript differ significantly (P < 0.05). n = 6 for each

999 group.

Item	D-LA, µg/L	DAO, pg/mL
Control	769.86 ^b	95.72
DEX	1,294.86 ^a	101.37
CGA	815.69 ^b	97.21
DEX + CGA	793.99 ^b	91.66
SEM	60.65	4.26
Main effect		
CGA		
_	1,032.36	98.54
+	804.84	94.43
DEX		
-	792.77	96.46
+	1,044.42	96.52
<i>P</i> -value		
CGA	<0.01	0.19
DEX	<0.01	0.99
Interaction	< 0.01	0.08

Table 5 Effects of dexamethasone, chlorogenic acid, or their interaction on the

DEX = dexame thas one; CGA = chlorogenic acid; DEX + CGA = dexame thas one + chlorogenic acid; D-DEX = dexam

LA = D-lactate; DAO = diamine oxidase.

^{a,b} Within a column, means without a common superscriptdiffer significantly (P < 0.05). n = 6 for each

group.

1007 Table 6 Dexamethasone and chlorogenic acid effects or interactions on short-chain

Item	Acetic	Propanoic	Butyric	Isovaleric	Valeric	Hexanoic
	acid	acid	acid	acid	acid	acid
Control	115.56 ^b	21.38 ^{ab}	27.19 ^b	2.08 ^b	3.31 ^b	0.07 ^b
DEX	6.58 ^c	7.63 ^c	5.74 ^c	0.89 ^c	1.04 ^c	0.04 ^b
CGA	115.95 ^b	17.10 ^b	26.56 ^b	2.23 ^{ab}	2.64 ^b	0.08^{b}
DEX + CGA	169.00 ^a	27.38 ^a	47.45 ^a	3.23 ^a	5.40 ^a	0.13 ^a
SEM	22.20	4.54	7.75	0.5	0.72	0.02
Main effect						
CGA						
_	61.07	14.51	16.46	1.48	2.17	0.06
+	142.47	22.24	37.01	2.73	4.02	0.10
DEX						
-	115.75	19.24	26.88	2.15	2.97	0.07
+	87.79	17.50	26.60	2.06	3.21	0.08
<i>P</i> -value						
CGA	<0.01	0.03	< 0.01	< 0.01	< 0.01	< 0.01
DEX	0.09	0.59	0.96	0.79	0.64	0.60
Interaction	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

1008 fatty acid (SCFA) levels of broilers (µmol/g)

1009 DEX = dexamethasone, CGA = chlorogenic acid, DEX + CGA = dexamethasone + chlorogenic acid.

1010 a,b,c Within a row, means without a common superscript differ significantly (P < 0.05). n = 6 for each

1011 group.

1012

Table 7 Top 10 up- and downregulated DEP between Control and DEX groups (fold-

1015 change ranked)

	Protein		Fold	<i>P</i> -
Accession	symbol	Protein name	change	value
P04354	CALB1	Calbindin	2.80	0.04
A0A1D5P6N4	MEP1A	Meprin A subunit	1.87	0.01
A0A1L1RS59	MEP1B	Metalloprotease meprin beta gene	1.82	0.05
F1NN74	ANO5	Anoctamin 5	1.61	0.03
R4GFW3	CLCN2	Chloride channel protein 2	1.58	0.01
Н9КҮХ6	SELENBP1	Selenium-binding protein 1	1.54	0.02
R4GGG4	CYP2U1	Cytochrome P450 CYP2 subfamily U member 1	1.53	0.04
F1NB67	PLEKHO2	Pleckstrin homology domain containing, family O member 2	1.50	0.01
P11183	GCSH	Glycine cleavage system H protein (lipoate- binding)	1.43	0.04
P21642	PCK2	Phosphoenolpyruvate carboxykinase 2	1.41	0.02
A0A3Q2U8K0	N/A	Uncharacterized protein	0.57	0.01
R4GF71	TMSB4X	Thymosin beta	0.56	0.01
A0A1D5PXP9	TGFBI	Transforming growth factor-beta-induced protein ig-h3	0.56	0.05
P11602	LPL	Lipoprotein lipase	0.55	< 0.01
F1NBD7	CDK1	Cyclin-dependent kinase 1	0.51	0.01
P33145	K-CAM	B-cadherin	0.49	< 0.01
A0A1D5PDE6	MARCKS	Myristoylated alanine-rich C-kinase substrate	0.49	0.05
A0A3Q3AU25	N/A	TED_complement domain-containing protein	0.45	0.03

A0A1D5NTE7	N/A	Fibrinogen C-terminal domain-c protein	ontaining 0.37	0.0
FIFIF5	FAN	Frataxin, mitochondriai	0.37	0.0
DEX = dexamethat	asone; N/A =	not applicable; DEP = differentially e	expressed proteins.	
n = 3 for each gro	oup.			

Table 8 The top 10 up- and downregulated DEP between Control ntrol and CGA groups

1033 (fold-change ranked)

Accession	Protein symbol	Protein name	Fold change	<i>P</i> -value
F1NPA3	ARID4A	ARID domain-containing protein	2.26	<0.01
A0A3Q2TTI3	FBRSL1	Uncharacterized protein	1.97	0.04
A0A1D5PTI4	ARID1A	ARID domain-containing protein	1.94	0.04
F1NI13	SYAP1	Synapse-associated protein	1.92	0.04
A0A1D5PQJ7	CYP1C1	Cytochrome P450 CYP1 subfamily	1.79	0.04
A0A1D5PYB7	LIMD1	LIM domain-containing protein 1	1.73	0.02
R4GF71	TMSB4X	Thymosin beta	1.64	0.04
E1C2V9	ARFGAP2	Arf-GAP domain- containing protein	1.61	0.01
F1ND55	ADD1	Aldolase_II domain- containing protein	1.61	0.01
E1C667	LAD1	Uncharacterized protein	1.59	0.01
A0A3Q2UD05	N/A	Aldolase_II domain- containing protein	0.81	0.02
F1NT33	IKZF1	DNA-binding protein Ikaros	0.81	0.05
F1P0B2	APP	Amyloid-beta A4 protein	0.78	0.05
F1NBT0	STK10	Serine/threonine-protein kinase 10	0.76	0.03
E1C1X1	TMEM126A	Uncharacterized protein	0.72	0.02

	E1BXC7	MALL	MARVEL domain- containing protein	0.71	0.02
	F1NPL9	COX17	Cytochrome c oxidase copper chaperone protein	0.54	0.01
	A0A1D5P7X3	CAPG	Macrophage-capping protein	0.54	0.02
	A5HUL4	BLB2	MHC class II beta chain 2	0.50	<0.01
	Q95601	BFIV21	MHC class II beta chain 2	0.47	<0.01
 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 	<i>n</i> = 3 for each group				
1047 1048					

Table 9 The top 10 up- and downregulated DEP between DEX and DEX + CGA groups

1050 (fold-change ranked)

A	Protein symbol	Destain	Fold	<i>P</i> -value	
Accession		Protein name	change		
R4GF71	TMSB4X	Thymosin beta	2.79	< 0.01	
A0A3Q2U3Y3	CNN1	Calponin	2.65	0.04	
A0A3Q2U295	C19orf43	Uncharacterized protein	2.53	0.05	
F1NVA3	FHOD1	Formin homology 2 domain	2.40	0.03	
		containing 1			
A0A1D5PTI4	ARID1A	ARID domain-containing	2.28	0.05	
		protein	2.20		
F1NPA3	ARID4A	ARID domain-containing	2 19	<0.01	
		protein	2.17		
A0A3Q2U530	MAP7D3	Uncharacterized protein	2.18	0.04	
		Cell cycle-regulated SHNi-			
A0A3Q2UF99	NASP	Nuclear autoantigenic sperm	2.05	0.02	
		protein			
A0A1D5PYB7	LIMD1	LIM domain-containing	2.05	0.02	
		protein 1	2.05		
A0A1D5PDE6	MARCKS	Myristoylated alanine-rich	2.02	0.05	
		C-kinase substrate	2.02		
F1NHR4	ACE2	Angiotensin-converting	0.64	0.03	
		enzyme			
F1NYM0	ACE	Angiotensin-converting	0.60	0.04	
		enzyme	0.00		
F1NPI1	SLC6A19	Neutral amino acid	0.60	0.02	
		transporter B0AT1	0.00		
A0A1D5PHR1	ABCD2	Uncharacterized protein	0.58	0.05	
F1NN74	ANO5	Anoctamin 5	0.56	0.02	

		JOU	irnal Pre-proof		
	F1NAN4	LCT	Uncharacterized protein	0.56	0.03
	F1NY83	LOC101747844	Carbohydrate sulfotransferase	0.55	0.02
	E1C958	LGMN	Asparaginyl endopeptidase	0.53	<0.01
	A0A1L1RS59	MEP1B	Metalloprotease meprin beta gene	0.52	0.02
	A0A1D5P6N4	MEP1A	Meprin A metalloprotease	0.49	0.03
1051	DEX = dexamethasor	ne; CGA = chloro	genic acid; N/A = not appli	cable; DI	EP = differentially
1052	expressed proteins.				
1053	n = 3 for each group.				
1054					
1055					
1056					
1057					
1058					
1059					
1060					
1061					
1062					
1063					
1064					
1065					
1066					

1067 Figure Legends

- 1068 Fig. 1 Effects of DEX, CGA, or their interaction on mRNA expressions of
- 1069 inflammation- and apoptosis-related genes. DEX = dexamethasone; CGA =
- 1070 chlorogenic acid; DEX + CGA = dexamethasone + chlorogenic acid; IL = interleukin;
- 1071 TNF- α = tumor necrosis factor α . n = 6 for each group.
- 1072 Fig. 2 Effects of DEX, CGA, or their interaction on jejunal morphology and expressions
- 1073 of tight junction proteins. (A) H&E staining. (B) Western blotting for ZO-1 and
- 1074 occludin. (C) Immunohistochemistry for occludin. (D) Immunohistochemistry for ZO-
- 1075 1. DEX = dexamethasone; CGA = chlorogenic acid; DEX + CGA = dexamethasone +
- 1076 chlorogenic acid; ZO-1 = zonula occludens-1. n = 6 for each group.
- 1077 Fig. 3 Effects of DEX, CGA, and DEX + CGA on the gut microbiota of broilers. (A)
- 1078 Changes in the a-diversity of gut microbiota communities, as indicated by chao1,
- 1079 goods_coverage, observed_otus, Shannon's, and Simpson's indices. (B) PCoA of gut
- 1080 microbiota. (C) The abundance of gut microbiota at phylum, family, genus, and species
- 1081 levels. (D) LDA score. DEX = dexamethasone; CGA = chlorogenic acid; DEX + CGA
- 1082 = dexamethasone + chlorogenic acid. n = 6 for each group.
- 1083 Fig. 4 Predicted function of gut microbiota genes in the cecal contents of broilers.
- 1084 KEGG metabolic pathway enrichment analysis based on significant differential
- 1085 bacteria. DEX = dexamethasone; CGA = chlorogenic acid; DEX + CGA =
- 1086 dexamethasone + chlorogenic acid. n = 6 for each group.

1087	Fig. 5 Effects	of DEX. CGA	. and $DEX + CGA$	on the jejunal	proteomics. (A	A) Volcano
			,			-,

- 1088 map of jejunal proteins. (B) GO analysis of jejunal proteins. (C) KEGG metabolic
- 1089 pathway enrichment analysis based on significant differentially expressed proteins. (D)
- 1090 PPI network. DEX = dexamethasone; CGA = chlorogenic acid; DEX + CGA =
- 1091 dexamethasone + chlorogenic acid; BP = biological process; CC = cellular components;
- 1092 MF = molecular functions. n = 3 for each group.
- 1093 Fig. 6 Effects of DEX, CGA, and DEX + CGA on the metabolites of cecal contents.
- 1094 (A) OPLS-DA analysis. (B) Heatmap analysis. (C) Volcano analysis. (D) The top 20
- 1095 metabolites with multiple differences between groups. (E) KEGG metabolic pathway
- 1096 enrichment analysis based on significant differential metabolites. DEX =
- 1097 dexamethasone; CGA = chlorogenic acid; DEX + CGA = dexamethasone + chlorogenic
- 1098 acid. n = 3 for each group.
- 1099 Fig. 7 Effects of DEX, CGA or their interaction on the (A) MAPK and (B) PPAR
- signaling pathway in the jejunum. DEX = dexamethasone; CGA = chlorogenic acid;
- 1101 DEX + CGA = dexamethasone + chlorogenic acid. n = 6 for each group.

Fig. 8 Spearman's correlation analysis between biochemical parameters and omics parameters. (A) Spearman's correlation analysis between biochemical parameters and gut bacteria at the genus level. (B) Spearman's correlation analysis between biochemical parameters and SCFA. (C) Spearman's correlation analysis between biochemical parameters and jejunal proteins. (D) Spearman's correlation analysis between biochemical parameters and serum metabolites. DEX = dexamethasone; CGA

- 1108 = chlorogenic acid; DEX + CGA = dexamethasone + chlorogenic acid; G-IL = gene
- 1109 expression of interleukin; G-TNF- α = gene expression of tumor necrosis factor α ; J-IL
- 1110 = interleukin level in jejunal mucosa; J-TNF- α = tumor necrosis factor α level in jejunal
- 1111 mucosa; J-CXCL = CXC chemokine ligand level in jejunal mucosa.

r even even even even even even even

D

s_Clostridiales_vadinBB60_group_unclassified g_Clostridiales_vadinBB60_group (_Clostridiales_vadinBB60_group g_Erysipelatoclostridium s_Shuttleworthia_unclassified s_Lactobacilius_higardii g_Shuttleworthia g_Coprobacter s_Coprobacter s_Coprobacter s_Coprobacter s_Coprobacter g_Coprobacter g_Coprobacter s_Coprobacter s_Coprobacter g_Coprobacter s_Coprobacter g_Coprobacter g_Coprobacter s_Coprobacter s_Coprobacter g_Coprobacter g_Coprobacter s_Loutessified g_UCS_1_2E3_unclassified g_UCS_1_2E3 s_Eubacterium_unclassified g_UCS_1_2E3

CGA

DEX+CGA

Control DEX

DEX

P value
Journal Pre-proof

Α

al Pre-proot

в

Conflict of Interest

Manuscript Title: Integrated multi-omics reveals the beneficial roles of chlorogenic acid in improving the growth performance and immune function of immunologically-stressed broilers

Authors: Huawei Liu, Xuemin Li, Kai Zhang, Xiaoguo Lv, Quanwei Zhang, Peng Chen, Yang Wang, Jinshan Zhao

Declarations of interest: We declare that we have no financial or personal relationships with other people or organizations that might inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be constructed as influencing the content of this paper.